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Paleoceanographic reconstructions indicate that the distribution of global6

ocean water masses has undergone major glacial-interglacial rearrangements7

over the past ∼2.5 million years. Given that the ocean is the largest carbon8

reservoir, such circulation changes were likely key in driving the variations9

in atmospheric CO2 concentrations observed in the ice-core record. However,10

we still lack a mechanistic understanding of the ocean’s role in regulating11

CO2 on these time scales. Here we show that glacial ocean-sea-ice numeri-12

cal simulations with a single-basin general circulation model, forced solely by13

atmospheric cooling, can predict ocean circulation patterns associated with14

increased atmospheric carbon sequestration in the deep ocean. Under such15

conditions, Antarctic Bottom Water becomes more isolated from the sea sur-16

face as a result of two connected factors: reduced air-sea gas exchange under17
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sea ice around Antarctica and weaker mixing with North Atlantic Deep Wa-18

ter due to a shallower interface between southern and northern-sourced water19

masses. These physical changes alone are sufficient to explain ∼40 ppm atmo-20

spheric CO2 drawdown; about half of the glacial-interglacial variation. Our21

results highlight that atmospheric cooling could have directly caused the reor-22

ganization of deep ocean water masses and, thus, glacial CO2 drawdown. This23

provides an important step forward towards a consistent picture of glacial24

climates.25

Since the onset of the Northern Hemisphere glaciation (∼2.7 million years ago), Earth’s26

climate has undergone large transitions between cold glacial and warm interglacial (e.g.,27

present-day) stages. The geological record suggests that such transitions were also ac-28

companied by large-scale ocean circulation changes, which were likely key in the glacial-29

interglacial shifts themselves, by affecting the partitioning of carbon between the atmo-30

sphere and the ocean (1; 2).31

The distribution of carbon, heat and freshwater throughout the global ocean is largely32

shaped by the meridional overturning circulation, which today consists of two main over-33

turning cells that originate in the polar regions. The upper cell, or Atlantic Meridional34

Overturning Circulation (AMOC), is associated with sinking of dense water to depths of35

∼3 km in the subpolar North Atlantic; the abyssal cell is fed by the formation of even36

denser water around Antarctica. Antarctic Bottom Water (AABW) formation and wind-37
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driven upwelling of deep waters originating from both hemispheres make the Southern38

Ocean the dominant conduit for the exchange of heat and carbon between the surface39

and the abyss (3).40

The leading interpretations of geochemical water mass tracers indicate that ocean circu-41

lation was substantially different during the Last Glacial Maximum (LGM, ∼21,000 years42

ago) and characterized by a shallower AMOC (4; 5; 6). The glacial deep ocean was not43

only colder, but also likely more stratified and saltier (7; 8). The interpretation of many44

of these reconstructions is, however, still debated (9). To further complicate matters, the45

representation of the glacial ocean state in coupled climate simulations differs substan-46

tially between models and is often at odds with the geological evidence (10; 11; 12).47

A number of studies have highlighted the key role of Antarctic sea ice and the result-48

ing surface buoyancy forcing in driving the inferred glacial-interglacial rearrangements in49

global ocean water masses (13; 14; 15; 16; 17; 18; 19; 20; 21). A recent study directly linked50

glacial circulation changes to atmospheric cooling (18), suggesting that enhanced brine51

rejection from Antarctic sea-ice formation in a colder climate leads to increased abyssal52

stratification and ultimately a shoaling of the AMOC (22). Coupled climate models simu-53

lating strong LGM sea-ice formation have also been shown to exhibit enhanced stratifica-54

tion and a shallower AMOC, largely consistent with the geological evidence, while LGM55

simulations with relatively little Antarctic sea ice typically reveal the opposite response56

(12).57
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Since the ocean is the largest carbon reservoir that reacts on glacial-interglacial time-58

scales, the suggested changes in ocean circulation may play an important role in explaining59

the variations in atmospheric CO2 concentrations between glacial and interglacial climates60

(1; 2). Several modelling studies have investigated the ocean’s role in glacial-interglacial61

changes in carbon storage (23; 24; 25; 26; 27; 28; 29), but no consensus has yet been reached62

on which are the dominant drivers and processes. The existing studies typically use models63

with highly simplified physics, coarse resolution, and/or a complex coupling between the64

atmosphere, sea ice and ocean components. In addition, physical and biogeochemical65

drivers have often been considered in conjunction, which makes it difficult to disentangle66

the response to a number of changes in the boundary conditions and to obtain a deeper67

mechanistic understanding of the results.68

Here we apply an idealized yet physically robust setup, using an ocean-sea-ice general69

circulation model (GCM), where changes in the ocean circulation and biogeochemistry70

are forced solely by atmospheric cooling (see Methods). The physical changes between a71

warm (interglacial) and cold (glacial) climate are described in a previous manuscript (18)72

and are broadly consistent with the available LGM proxy record. The model setup uses73

an idealized geometry, which includes only one ocean basin, but simulations with multiple74

ocean basins and more complex coupled climate models suggest that the idealized model75

reproduces the global mean meridional overturning circulation changes found in multi-76

basin models (12; 21). In this study, we also include a biogeochemical model with a closed77
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carbon cycle to gain a mechanistic understanding of the role of the physical changes in78

regulating glacial atmospheric CO2.79

Simulated glacial ocean circulation and carbon storage80

In our ocean-sea-ice simulations, a lowering of atmospheric temperature leads to an ex-81

pansion of Antarctic sea-ice cover and increased deep-ocean stratification, as compared82

to the Pre-Industrial (PI) reference simulation (Figure 1), in agreement with LGM recon-83

structions (7; 30). The “LGM-like” ocean circulation is also characterized by a shallower84

AMOC, further separated from the abyssal cell than in the “PI-like” case (Figure 1), again85

broadly consistent with the paleoclimate record (5). Changes in the deep ocean circula-86

tion and stratification have been attributed to enhanced brine rejection from Antarctic87

sea-ice formation in a colder climate, which leads to increased abyssal stratification (18).88

The larger abyssal stratification in turn leads to a shoaling of the AMOC (22). In the89

LGM configuration, AABW is more isolated from the surface due to 1) weaker mixing90

with North Atlantic Deep Water (NADW) as a result of a shoaling of the interface be-91

tween the upper and abyssal cells to a depth where turbulent vertical mixing is reduced92

(31; 21), and 2) reduced air-sea gas exchange under expanded sea ice around Antarctica93

(13). The change in sea ice and circulation is, therefore, likely to favor increased carbon94

sequestration in the glacial deep ocean.95

We test the increased glacial carbon storage hypothesis by coupling the physical ocean-sea-96
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ice model (18) to a biogeochemistry model (32) and a well-mixed atmospheric box, which97

allows atmospheric CO2 concentrations to adjust while total carbon is conserved (33).98

Under glacial conditions, the dissolved inorganic carbon (DIC) concentration increases99

substantially in the deep ocean (Figure 2b), as a consequence of cooling, sea-ice expansion100

and circulation changes. This results in a drawdown of atmospheric CO2 concentrations101

by 40 ppm from 278 ppm in the PI to 238 ppm in the LGM (Figure 2 and Table 1), which102

corresponds to about half of the inferred glacial-interglacial variations (34).103

To better understand the changes in the partitioning of carbon between the atmosphere104

and ocean, we diagnostically decompose the atmospheric CO2 drawdown into different105

physical and biological contributions (25; 35; 36; 37). The most easily understood contri-106

bution is associated with the solubility pump (38; 39), which reflects the dependence of107

CO2 solubility on the ocean’s temperature and (to a lesser extent) salinity. As the ocean108

gets colder, it can dissolve more carbon, but this only explains about 16 of the 40 ppm109

of atmospheric pCO2 drawdown between the PI and LGM reference simulations (Figure110

2 and Table 1).111

The largest contribution instead is associated with a strengthening of the disequilibrium112

pump, which reflects the air-sea disequilibrium at the surface. The large air-sea disequilib-113

rium in the LGM simulation results from the fact that the abyssal overturning circulation,114

which carries waters enriched in DIC by the biological pump, reaches the surface only un-115

der sea ice around Antarctica, where outgassing is strongly inhibited. As a result, the116
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disequilibrium pump drives a reduction of atmospheric CO2 between the PI and LGM117

reference simulations of 39 ppm.118

Some of the disequilibrium pump contribution, however, is offset by a reduction in the119

biological pump, which represents the export of carbon into the deep ocean via organic120

matter. The apparent weakening of the biological pump and an associated enhancement121

in the disequilibrium pump in the LGM simulation are likely related to changes in AABW122

formation processes, and highlight some of the challenges in the interpretation of the car-123

bon pump decomposition. In the present-day-like control simulation, convection at high124

southern latitudes does not fully reach the surface (not shown), but instead appears to be125

triggered by a subsurface cabelling instability (40). As a result, circumpolar deep water126

(CDW) is transformed into AABW with little direct surface exposure (although there is127

mixing between CDW and surface waters). Since the diagnostic carbon pump decompo-128

sition only considers water that enters the surface model layer as ventilated, upwelling129

phosphate is not relabeled as preformed, which leads to an apparently efficient biological130

pump. In the LGM simulation, deep convection instead does reach to the surface, but131

CDW mostly comes to the surface under sea ice, where it is exposed to little air-sea gas132

exchange and relatively little biological production. However, any remineralized nutrients133

that come to the surface (even under ice) are relabeled as preformed, thus weakening the134

biological pump, while the associated DIC contributes to the disequilibrium pump. This135

highlights that compensating changes in the biological and disequilibrium pump need to136
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be interpreted with caution, especially in the presence of sea ice. Nevertheless, our results137

highlight unambiguously that changes in sea ice and circulation in the colder climate more138

than double the CO2 drawdown that would be expected from the solubility effect alone.139

Sensitivity experiments and carbon pump decomposition140

To illustrate the importance of Antarctic sea-ice dynamics in explaining glacial atmo-141

spheric pCO2 drawdown, we performed a sensitivity experiment where air-sea gas ex-142

change and biogeochemistry do not depend on the sea ice cover (i.e. the presence of sea143

ice is simply ignored in the computation of the air-sea flux of CO2). The atmospheric CO2144

concentration in the PI simulation is virtually unaffected by this change, which may be145

understood by noting that the abyssal cell is not as strongly isolated from the upper cell,146

such that not as much DIC can accumulate in the first place (21). In the LGM simula-147

tion, the CO2 concentration instead increases from 238 (in the LGM reference) to 268 ppm148

when the sea ice effect is removed, corresponding to a drawdown between PI and LGM149

of only 10 ppm (Table 1). The carbon pump decomposition indicates that the difference150

between the LGM simulation with and without sea-ice effects on air-sea gas exchange is151

explained almost entirely by a change in the efficiency of the disequilibrium pump (see152

Table 1). The mechanism for the drawdown of atmospheric pCO2 here appears to differ153

from that described in (27), which invokes a more efficient biological pump, driven by an154

increased residence time of waters near the surface, as opposed to a disequilibrium pump155
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driven by suppressed air-sea gas exchange under sea ice in our case.156

The important role of the disequilibrium pump is qualitatively consistent with the results157

of (41); however, contrary to our results, these authors suggest that sea ice is not a major158

driver of the disequilibrium pump. This may be a result of differences in the models used,159

but it may also arise from differences in the analysis. While we estimate the role of sea ice160

by eliminating the effect of sea ice on biogeochemistry in both PI and LGM experiments,161

their conclusion is based on sensitivity experiments using LGM sea-ice cover in the PI162

simulation and vice versa. Prescribing LGM sea ice with PI ocean circulation does not163

account for the tight coupling between sea ice and circulation changes (e.g. 17; 18) and164

limits the drawdown potential, because the decoupling of the lower and upper cells and165

suppression of air-sea gas exchange need to act together to isolate the abyssal water masses166

(21).167

Estimates of LGM circulation and carbon storage are expected to be sensitive to the verti-168

cal (i.e. diapycnal) mixing rate, whose magnitude is uncertain. The lower sea level would169

have significantly reduced the extent of shallow shelf seas, which likely led to enhanced170

tidal energy dissipation in the deep ocean, thus providing more energy for turbulent171

mixing (e.g. 42; 43). At the same time, strongly enhanced deep ocean stratification, as172

predicted by our model, means that more energy is required to maintain a similar amount173

of vertical mixing (e.g. 44). As a result, the net change in mixing rates is uncertain. To174

test the sensitivity of LGM ocean carbon storage to changes in the vertical mixing rates175
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in our model, we performed two sensitivity experiments where the diapycnal diffusivity176

was increased and reduced by 50%, respectively (see Table 1). Increased diffusivity re-177

duces carbon uptake in the LGM, which is consistent with the expectation that carbon178

sequestration in the deep ocean is less effective in the presence of strong vertical mixing179

(e.g. 45). Surprisingly, reduced mixing also leads to slightly reduced carbon uptake in the180

LGM, apparently as a result of a weaker biological pump (see Table 1).181

Changes in the disequilibrium pump instead are more robust: its contribution is increased182

with reduced diffusivity and decreased with enhanced diffusivity (Table 1), consistent183

with the expectation that water masses in the abyssal cell become increasingly isolated,184

mixing less with the relatively well-ventilated water masses of the upper cell. These results185

indicate that changes in the vertical mixing rate may have played an important role in186

the glacial carbon cycle, although the net effect on carbon storage is complex and may be187

sensitive to the specific magnitude and structure of vertical mixing, which are very hard188

to predict.189

While the focus of this study is on the physical drivers of ocean carbon storage associated190

directly with atmospheric cooling, it has often been suggested that changes in biologi-191

cal productivity, driven e.g. by changes in temperature, sea ice, or dust fluxes may also192

play a major role in explaining changes in pCO2 between the present and LGM (e.g.193

46; 47; 2; 48). While likely to be important, these feedbacks are relatively poorly under-194

stood and not included in our model. To address the potential role of changes in biological195
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productivity in the context of our idealized LGM experiment, we explore the upper limit196

of biological carbon uptake by strongly increasing the maximum community production197

rate, such that virtually all available nutrients are consumed at the surface and the model198

approaches the maximum drawdown potential (49). In this scenario, glacial pCO2 con-199

centrations decrease to 153 ppm, surpassing the reconstructed LGM values of ∼180-190200

ppm (34). Enhanced biological productivity, therefore, provides a possible pathway for201

a substantial CO2 drawdown beyond the physical effects outlined here. In this experi-202

ment, the drawdown is strongly dominated by the biological pump (Table 1) as expected.203

By contrast, the disequilibrium pump contributes slightly negatively, because biological204

production rapidly utilizes the excess DIC in the upwelling waters and consequently re-205

moves the disequilibrium carbon in the mixed layer (especially around Antarctica). This206

result shows that physical and biological effects on ocean carbon storage are not linearly207

additive, illustrating the challenges in quantifying how different non-linearly interacting208

mechanisms contribute to the observed lower CO2 concentrations during the LGM.209

The idealized simulations discussed so far do not include a seasonal cycle. While seasonally-210

varying temperatures in this model lead to significant seasonality in the sea-ice cover211

around Antarctica, these result in only minor differences in the stratification and circula-212

tion (18). Here, we test the effect of adding a seasonal cycle on the carbon cycle, using an213

additional sensitivity experiment with the same seasonal temperature forcing as in (18).214

The seasonal cycle is found to slightly reduce CO2 concentrations in both PI and LGM215
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simulations and since the effect is somewhat stronger in the PI simulation, the PI-LGM216

CO2 drawdown is slightly lower at 34 ppm (Table 1). As before, the CO2 drawdown217

above the solubility pump effect is dominated by the change in the disequilibrium pump,218

although the latter is significantly weaker compared to the reference experiments without219

seasonality, but supported (rather than compensated) by a small increase in the biological220

pump. The difference in the decomposition of the CO2 drawdown between the sets of sim-221

ulations with and without seasonality primarily reflects differences in the PI simulations.222

Specifically, the PI experiment with a seasonal cycle has a weaker biological pump but223

stronger disequilibrium pump, likely due to differences in the details of AABW formation,224

which affect the decomposition into biological and disequilibrium pump contributions (as225

discussed in the context of the reference simulation above).226

From atmospheric cooling to increased ocean carbon storage227

Our results show that idealized ocean-ice-biogeochemistry simulations forced solely by228

atmospheric cooling can not only reproduce inferred physical changes in the deep ocean229

circulation and stratification between the pre-industrial and last glacial climate, but also230

explain a substantial drawdown in atmospheric CO2 concentrations. While the specific231

numbers may need to be interpreted with caution, due to the idealized model setup, the232

key conclusion that sea-ice dynamics and the associated circulation changes lead to an233

increase in glacial carbon drawdown well beyond the solubility effect alone, is likely to234
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CTRL κ-50% κ+50% No ice Seas. cycle Max bio.

pCO2 PI 278 278 270
pCO2 LGM 238 244 255 268 236 153

PI-LGM
Solubility Pump

16 20 16 17 15 12

PI-LGM
Biological Pump

-15 -42 -15 -16 5 122

PI-LGM
Disequil. Pump

39 57 22 10 14 -10

Table 1: Atmospheric pCO2 (ppm) in the different PI and LGM simulations dis-
cussed in this study. All experiments start from the same total carbon inventory as the PI
reference simulation and have been integrated to equilibrium. The different contributions to the
CO2 drawdown between the PI and LGM simulations from the carbon pump decomposition are
also shown for all simulations. For the LGM sensitivity experiments with reduced and increased
vertical mixing, κ-50% and κ+50% respectively, as well as the LGM simulation with maximized
biological productivity, “max bio.”, the CO2 drawdown is computed relative to the PI CTRL
simulation. The DIC distribution in the sensitivity experiments is shown and discussed further
in the Supplementary Material (Figure S1).

be robust. The results, therefore, highlight the critical role of Antarctic sea ice in our235

understanding of glacial-interglacial transitions and that physical changes alone, triggered236

directly by atmospheric cooling, can provide a major contribution to the lowering of237

glacial atmospheric CO2 concentrations. This would be consistent with the close coupling238

between CO2 and Antarctic air temperatures, as observed in the ice core record (34).239
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Methods240

Ocean-sea-ice model241

The coupled ocean and sea-ice model configuration is the same as discussed in a previ-242

ous manuscript (18), and uses the Massachusetts Institute of Technology ocean general243

circulation model (MITgcm; 50) in an idealized single-basin domain extending from 70◦S244

to 65◦N and covering 72◦ in longitude, with a re-entrant channel at the southern end245

of the domain (representing the Southern Ocean). The ocean has a uniform depth of246

4 km, except for a sill in the Southern Ocean, which extends the continental barrier247

below 3 km depth. The horizontal resolution is 1◦ × 1◦ and we use 29 vertical levels248

with varying thicknesses from 20 m at the surface to 200 m in the deep ocean. Diapy-249

cnal mixing is prescribed via a vertically varying profile, which is based on estimates of250

mixing driven by breaking internal waves (51). The diffusivity values range from about251

2 × 10−5m2s−1 in the thermocline region to about 2 × 10−4m2s−1 in the abyss (18). Ad-252

ditional sensitivity experiments are performed where the diapycnal diffusivity has been253

reduced and increased by 50%. Mesoscale eddy effects are described via an eddy-driven254

overturning streamfunction(52) and along-isopycnal diffusion (53), with a variable eddy255

diffusivity (54). The ocean component is coupled to a dynamic viscous-plastic sea-ice256

model (55). All atmospheric forcing fields are kept constant in time, with the exception257

of the sensitivity experiments including a seasonal cycle, where surface air temperatures258
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vary every calendar month with the annual mean temperatures as in the other simulations259

(18). Surface heat exchange restores the sea surface temperature to a prescribed zonally260

symmetric atmospheric temperature and salt fluxes are computed from a fixed zonally261

symmetric profile of evaporation-precipitation (18). A no-flux condition is applied at the262

bottom boundary, i.e. geothermal heating is neglected. The changes in ocean circula-263

tion observed between the PI and LGM experiments do not appear to be sensitive to the264

details of the thermal boundary conditions (18), but additional details and sensitivity ex-265

periments can be found in (18). Crucially, the only difference in the boundary conditions266

between our PI and LGM simulations is a polar-amplified reduction in atmospheric tem-267

peratures, ranging from 2◦C in the tropics to about 6◦C at the poles, which is consistent268

with LGM proxy data (18, and references therein).269

Carbon cycle and atmosphere coupling270

The ocean-sea-ice component is coupled to an online biogeochemical model (32), which271

includes cycles of dissolved inorganic carbon (DIC), alkalinity, oxygen, phosphate, and272

dissolved organic phosphorus. Different elements are linked by fixed Redfield stoichio-273

metric ratios of R[C:N:P:O] = 117:16:1:-170 in biologically-mediated transformations.274

Phosphate and light availability regulate the rates of carbon uptake and oxygen produc-275

tion by biological productivity, where phosphate consumption by biology is transformed276

into dissolved organic matter and the remaining portion sinks down as particulate organic277
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matter; some fraction is not utilized and subducted as dissolved inorganic (or preformed)278

nutrients (32). Calcium carbonate production is computed via a fixed rain ratio of 5%279

and carbonate chemistry is solved explicitly (56). The air-sea exchange of CO2 is param-280

eterized with a gas transfer coefficient that depends on the square of the local wind speed281

(57). Wind speed is computed based on the mean wind fields shown in (18), to which we282

add a gustiness of 6.5 m s−1, which leads to a global mean piston velocity of 20 cm h−1
283

(e.g. 58). A different value for the gas transfer coefficient was tested, in line with more284

recent estimates (59), but this made very little difference (not shown). In sea-ice covered285

regions, air-sea gas exchange is reduced by a factor representing the ice-covered fraction286

of the grid box (except for the sensitivity experiment where the effect of sea ice on air-sea287

fluxes is removed - see Table 1).288

The model is first integrated in the control configuration with pre-industrial boundary289

conditions, prescribed atmospheric pCO2 of 278 ppm, and initial values for alkalinity and290

DIC concentrations taken from (24). The model is integrated to equilibrium and the291

final state provides the initial conditions for all simulations discussed in the manuscript.292

The model is then coupled to an atmospheric box, which consists of a well-mixed carbon293

reservoir (33), such as to ensure conservation of the total amount of carbon; however,294

atmospheric CO2 is not radiatively-active, which means that there are no carbon cycle295

feedbacks on the rest of the simulated climate system. The mass of the atmosphere is296

scaled down to 4.9 ×1019 moles, so that the observed ratio between atmosphere and ocean297
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mass is approximately equal to reality. All coupled ocean-ice-atmosphere simulations are298

again integrated to full equilibrium.299

Carbon pump decomposition300

The carbon pump is decomposed into various components with the help of explicit tracers301

for preformed phosphate and preformed alkalinity (60). These tracers are reset to the302

local phosphate concentration and alkalinity at the surface, while being treated as passive303

tracers below. The alternative would be to extrapolate preformed alkalinity and phosphate304

using apparent oxygen utilization (36; 29); this leads to different results for the carbon305

pump decomposition (not shown) and may generate substantial overestimations and biases306

in the interpretation (41).307

The preformed phosphate and alkalinity tracers allow us to separate DIC in the ocean308

into components associated with the surface saturated carbon concentration, Csat, the soft309

tissue biological pump, Csoft, the carbonate pump, Ccarb, and the disequilibrium pump,310

Cdis. Csat can at any point be computed directly based on the temperature, salinity,311

preformed alkalinity and atmospheric pCO2 using the carbonate chemistry equations (56).312

Csoft is computed as:313

Csoft = 117(P − Ppre) (1)

where P is the total Phosphate and Ppre the preformed Phosphate concentration. Ccarb314
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is computed as:315

Ccarb =
1

2
[AT − Apre + 16(P − PPre)] (2)

where AT is in-situ alkalinity and Apre is preformed Alkalinity (36). Finally, Cdis follows316

as:317

Cdis = DIC − Csat − Csoft − Ccarb . (3)

The separation of total DIC into Csat, Csoft, Ccarb, and Cdis for the control PI and LGM318

simulations is shown in Figures S2, S3 (Supplementary Material). The results for the PI319

simulation are broadly consistent with previous studies (61; 36; 37), although the compa-320

rability to models and observations with realistic continental configuration is limited by321

our single-basin geometry, where deep-ocean water masses share aspects with both the322

Atlantic and the Pacific. Comparison to observations is further limited by the indirect323

methods required to obtain the carbon pump separation from observable quantities and324

by the disequilibrium contribution associated with anthropogenic CO2 uptake (61).325

To attribute the atmospheric CO2 drawdown to components associated with the different326

pumps, we consider the global carbon inventory (25; 35):327

ΣC = MpCO2 + V [Csat + Cdis + Csoft + Ccarb] (4)

Here ΣC is the total amount of inorganic carbon in the atmosphere and ocean, M is the328

molar volume of the atmosphere ( 4.9 ×1019 moles in our model) and V is the volume of329
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the ocean (3.6 ×1017m3 in our model). Since the organic carbon contribution to the total330

carbon budget is negligible, ΣC is approximately constant, and changes in the various331

reservoirs between our pre-industrial and glacial simulations obey:332

δpCO2 =
V

M
[δCsat + δCdis + δCsoft + δCcarb] (5)

Ignoring nonlinearities, we can further de-compose δCsat into contributions associated with333

changes in temperature, δCT , salinity, δCS, preformed alkalinity, δCA, and atmospheric334

CO2 concentration itself, δCCO2
(36):335

δCsat ≈ δCT + δCS + δCA + δCCO2
(6)

where:336

δCT =
∂Csat

∂T
δT , δCS =

∂Csat

∂S
δS , δCA =

∂Csat

∂A
δA , δCCO2

=
∂Csat

∂pCO2

δpCO2 . (7)

Combining Eqs. (5) and (6) and re-arranging, we obtain:337

δpCO2 = α[δCsol + δCdis + δCbio] (8)

where α ≡
[

M/V + ∂Csat

∂pCO2

]

−1

, δCsol = δCT + δCS denotes the total change associated338

with the solubility pump, which here is dominated by the temperature effect (see Table339
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S1, Supplementary Material), and δCbio = δCsoft + δCcarb + δCA denotes the net effect of340

the biological pump. Here, changes in preformed alkalinity are driven primarily by the341

carbonate pump, which acts to increase the alkalinity gradient between the surface and342

the deep ocean. δCA is therefore directly linked to the carbonate pump and overcompen-343

sates for the effect of δCcarb, such that a strengthening of the carbonate pump acts to344

raise atmospheric CO2 concentrations (35). Since the soft tissue and carbonate pumps are345

tightly linked in our model, we further combine them into a net biological pump contri-346

bution. Changes in the biological pump are generally dominated by the soft tissue pump347

with the net effect of the carbonate pump (δCcarb + δCA) partially compensating in most348

cases (Table S1, Supplementary Material).349

The contributions of the solubility, disequilibrium, and biological pumps to the total350

atmospheric pCO2 change between the PI and LGM simulations are then defined as:351

(δpCO2)sol ≡ αδCsol , (δpCO2)dis ≡ αδCdis , (δpCO2)bio ≡ αδCbio , (9)

where α can either be computed directly or inferred from Eq. (8) as:352

α =
δpCO2

δCsol + δCdis + δCbio

. (10)

We here use Eq. (10), but either approximation leads to very similar results.353
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Data Availability354

The input files used to run the MITgcm simulations that support the findings of this355

study are available from the corresponding author upon request. The model output data356

for all simulations can be obtained from: github.com/alicemarzocchi/MITgcmOutput.357

Code Availability358

The MITgcm code is freely available for download at https://doi.org/10.5281/zenodo.1409237.359

Computer code used to process the model output and generate figures is available from360

the corresponding author on request.361
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Figure 1: Changes in ocean circulation and sea ice cover between the preindustrial
(PI) and Last Glacial Maximum (LGM). Figures show potential density referenced to 2000
m (shading) and meridional overturning streamfunction (contours; solid lines for positive values
and dashed for negative ones) for the PI and LGM reference simulations. Note that 1000 kg
m−3 has been subtracted from the potential density values. Sea ice cover of 25% or more is
shown at the southern end of the domain (top face).
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Figure 2: Deep ocean carbon storage and atmospheric CO2 concentrations in the PI
and LGM reference simulations. Figures show zonally averaged dissolved inorganic carbon
(DIC) and atmospheric CO2 concentration; Antarctic sea-ice cover is sketched in white (a,b).
The breakdown of the overall LGM pCO2 change into different ocean carbon storage terms is
shown for the reference simulation (c). The biological pump term includes contributions from
both soft tissue and carbonate pumps, and the alkalinity effect of the latter (see Methods for
more details). The distribution of the four components is shown and discussed further in the
Supplementary Material (Figures S2 and S3).
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