'LEGIBILITY. NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federa,
state and local governments.

Although a small portior. of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1



LA-UR _g6-1027 hR'E‘L‘eiV ol nsT! CONF ,y(/@g((, - :_5

APR 0 71986

Los Alamos Natonal Laboratory 18 oberawnd by ina University of Cakfornia for the United Jues Departivent of Energy under contract W-7405-ENG-30

TTLe: GLOBAL COORDINATES AND EXACT ABERRATION CALCULATIONS APPLTED
TO PHYSICAL OPTICS MODELING OF COMPLEX OPTICAL SYSTEMS

LA-UR--86-1027

DE86 008751
AUTHOR(S) G. Lawrence, AOR

C. Barnard, AOR
V.K. Viswanathan, P-15

suBMTTep 10 SPIE Technical Symposium East, March 31-April 4, 1986,
Orlando, FL

DISCLAIMER

This report “vas prepared as an account of work sponsored by wn ageney ol the United States
Guvernmeat. Neither the Hnited States Government nor any ngency thereol, nor any of their
cmployees, mukes any warranty, express or miplicd, or assumes any Jegal hability o1 tesinsi
bilty fur the accurney, completeness, or uscfulness of any mformation, appartus, priduct, or
process disclosed, or represents that ats use would not infringe povately owned nghts, Reler
ence hercin to any specific commmerciad product, proveas, o service by de une, ndemork,
munufacturer, or otherwise does not necessily constitute o imply its endorsement, recom
me.adation, or favoring by the Umted States Government or . 1y agency theteol. The views
and opinions of authors cxprevsed herein do not necessarily stnte or reflect those of the
United Stutes Government or uny agency thercol,

Hy accoptance of (hi arhicte the publisher 1 :cognites that the U S Jovernment relains & nonesciusve royally free iicanse to publish or reproduce
the published form ot this contrtbulion or (0 allow alhere o do so. for \I'S Government purposes

The Lod Alarmon Natwonal Laboratoty regueats thal the publisher dentity this arlicie as work perfo med under the auspices of tha U S,

Ny

DISTRIBUTION DF 1HIS DOGUMENT 1S UNLIMITED - T\\ &
4

X Los Alarnos National Laboratory
L@S A @Wﬂ@@ Los Alamos,New Mexico 87545

P ORM NOU 834 A4


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


Global Coordinates and Exact Aberration Calculations Applied to
Physical Optics Modeling of Complex Optical Systems

G. Lawrence and C. Barnard
Applied Optics Research

V. Viswanathau
Los Alamos National Laboratory

Absatract

Historically, wave optics computer codes have Leen paraxial in nature. Folded systems could be modeled by
"unfolding" the optical system. Calculation of optical aberrations is, in general, left for the analyst to do
with off-line codes. While such paraxial codes were adequate for the simpler systems ieing studied 10 years
ago, current problems such as phased ari.,3, ring resonators, coupled resonvrtori, and grazing incidence optics
require a major advance in analytical capability. This paper describes extension of the physical optics codes
GLAD and GLAD V to include a global coordinate system and exact ray aberration calculations. The global
coordinate system allows components to be positioned and rotated arbitrarily. Exact aberrations are calculated
for components in aligned or misaligned configurations by using ray tracing to compute optical path differences
and diffraction propacation. Optical path lengthas between components and beam rotations In complex mirror
systems are calculated accurately so that coherent interactjons in phased arrays and coupled devices may he
treated correctly.

Introduction

This paper describes techniques that have recently been developed for modellig components in physical optics
ccdes. The basis of most physical optics codes is a quasi-paraxial approach which treats folded systems by
implizitly untolding the system and which can treat only small tilts and decenters from the chief ray. The
technlque described here is much more powerful and allows components to be located aut arbltrary positions in
space and at largr angle rctations. Advantages of the global cocrdinate system and asscciated functions ave:

Global positioning of comoonents

Arbicrary component rotations

Accurate path langth calculations

Correct calculation of azimuthal rotationa of the beam
Exact or appro.imate aberrations of tilted components
furface polarization effecta in s- and p—directions.

* % * ® % %

Systems which require thia type of sophiatication in the code Include:

* QGrazing incidence systems
* Lystems with gtrongly tilted components
* Coupled resonaivrs
* Complex folded resonators
* DPolarization calculations
Component. Location and Rotat {on in Global Coordinaten
Ta dencriba the propagation of a bram t! rough a complox 3-dimendlonnl optical ayatem, we define rour coordinate
qlobal - ray and vortex locationn,
ray - cumplex amplitwde Adistribution,

vertex - component rotations and shape definftion.
surface « nurface at chiof ray interceopt point

When the optical elements are to by located at arbitrare postttonn ad with arbitrary rotationn, {t in necenrony
to define a global coordinate myatem on which the beam path am the optical components are apectflstl. Ay the
beams proprgate throagh the optical syntem, the global coordinate nyntom {8 updated, The tocat{on of the
optical component in defined by the vertex poattion, The rotation In conatdered (o e about the vorbex Tocal fon

or may be made about a separate point.

The directjon of the chinf ray munt alno be defined on the name global coordinate ayatem, 1t fn alno neceanagy
to determine the azlmathal orfoatation of the complex amplitude dintribution about the chief ray.  Syntomn with
out-of -plane componenta ¢an rotats the beam dintribution about the chfef ray direction, e asimuthal rotation
may be dotormined by ontabiiabing a ray matrix conninting of 1, J-, and k-voctorn,  The kovector detinen tlee

chdef ray direction.



The properties of the optical component are most easily defined in terms of a vertex coordinate system. For a
rotationally symmetric surface, the z-axis is identical to the axis of symmetry.

A fourth coordinate system at the point of intersection of a ray allows calculation of the polarization
properties. This .urface coordinate system consists of s-, p-, and n-vrctors. The n-vect:or is the surface
normal vector. We choose the surface normal vector to point toward the center of curvature.

Figure 1 illustrates the four coordinate systems schematically.

RAY COORDINATES

VLRTEX COORDINATES

N

z
GLOBA. COORDLINATES

Figure 1. The glohal, ray, vortex, and surface coordinate aystens,

The unit vectors for the systems are

Ly - global coordinate system
65 e - ray coordinate system

t a9 - vertex coordinate gystem
ton - surface coordinate system

The ray, vertex, ark! aurface mitrices are describod in termu of unit vectors with respect: to the qlobal
coordinate system.

Ryr - ray coordinate matrix

Rov = vortex coordinate matrix

L - surface coordinate matrix

Rar = [(DN(D)) (1

Ruv - (e} D)])
Rge = {(8)(H)(A))

whore ()] Indicatea column vectors concatented into a antrix,

e = 7 of elements may be defined on the qlobal coordinatea system by apecifing the vertex lobal
conp e e vertex Jocation and rotation may be defined absolutely or with referenca to the curient
PoRitl ! oan optical boam. The rotation of the vertux s defined by the umer by Fuler angles.

Rolative rotation fa with reapect to the coordinaten of the beam, The rotation arqglen a, 8, and y apply to x-,
Y-, and 2 oaxtn totationn, Theae aotations obey the right hamd rale. A posftive x-rotation {n done by rotating
m the dbrection of the fingors of the cight hand whn the thumb in aligned with the ponftive x-direction,  The
votatione arn appliod fo the order x, y, Al 7.

Chinf Ray Propagat icn
The propagation of a heam through an optical configaration {s may be dencribmd b, following the chief ray. 'The

chief 1tay fa defined te ba the path of the center of the bean array frresjective of the actual cumplex
Aanplade Hatribatlon in the array,  The movement of the chilef ray in described b georatrfeal opticen.



We begin by defining several vectors. Each is in global coordinates

chief ray position.

chief ray direction.

vertex location.

surface intercept of chief ray.

w g W=
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Movement along a ray is defined as a change in the physicel path length (PPL). If the PPL is q, then the vector
equation is

n =n gk )

where r. i3 the starting position and r. is the final position.

Currently, the index of refraction is always 1 exactly. Subsequent versicns may implement nonunity index of
refraction.

Chief Ray Surface Intarcept

We firat find the point of closest approach te the vert of the conic. This approach s more numerically
stable than finding the distance to the vertex tangen* plane, since the tangen*: plane may rotated so that it is
far from normal to the ray.

a = (v - )k 3
The new vector position is

LI (T q:ﬁ (9
The equation for propagation along the ray to the lnterception point on the surfuce is

n=n* q.ﬁ (%)
where r), is the chief ray intercept on the surface. The incremental distance from the point of closost
appioach to the vevtex to the surface is qe. The solution for ¢» I8 des:ribed below,
The ccordinates of the optical element are expressed in vertex coordinates. We will une €, 3, and 0 as ver!ex

unit vectors and t, u, and v as vertex coordinates.

twm(v-r)t
um(v-nl)u
vy -y )V

The component «f the ray direct{on vector parallsl to the vertox v-axin ia

ky = £%

The surfaca equation in vertex coordinates 1n

Ltuv) = v - g“ sat (et tn)



where ¥ is the conic constant and C is the vertex curvature,

We may solve for q, as follows

Aq," -2Bq, * D= 0 {(7)
A =C(1 ¢k,

B =k, (1-«Cv)

D = -2F(1,u,v)

This equation has the roots

D
Q= a—— (8)
o]

where the sign is hasod on the intersection point. In gereral conic surfaces have two intersection points. We
chouse the root with the smallest positive value for qi+q,, unlass ASI has been chosen. This result in the
smallest forward propagation step. Backward propagation to a surface is not allowed, unlike ray trace codes.
If neither roo'. results in a positive qi+q, suin, a ray error i3 isaued. This implies that all of the conic
surface is behind the ray. The user should consider the position of the beams at the point in the command
sequence at which the vertex is defined. 1If ASI is selected. the root giving the largest q,+q, sum is chosen.
If this distance is negative, a ray failure error oc:turs.

By propagating to the chief ray intercept, all of the diffraction effects are accounted for in the region of the
transverse distribution near the chlef ray. Regions of the transverse distribution distant form tke chief ray
have the correct propagation distance, but the aberrations due to reflection from the optical component will,
in general, occur earlier or later in the propagation step than they shoula.

Calculation of the Surface Coordinate System

The normal to the surface, fi, is calculated by taking the negative of the surface gradient.

t
R
Y
Vi - ko (9)
1‘(:‘1)7{-
R |
nm= ﬁﬂ»

The code uges the convention that the surface normal polr a8 toward the center of curvature of the surface.

having found A and knowing lthe chief ray direciion, K, we may define the Burface coordinate system. Two
rangent rays ol the surface may be defined, § and #. These correspond to the 8- and p-dircctions used for pol-
aization calculations.  The vector p 15 in the plane of reflection and § {8 perpendicular to the plane of
teflection, a4 shown [n Flgure 2.
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where X denotea the voctor croan product,

When the beam atriken the aurface at normal incidence, the crora product of & and € s zoro and 3 {s not
dofiney. dowaver, a. rormal incldence, it {a not neceasary to diatinquieh between the a- and p-vectora. In
rr-u'lif:n, when the croan product dropa below a threahold value, the cade ansigna § and f to be dentical to
At .
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Figure 2. Illustration of surface coordinates.

Reflection
The reflection equation is
1'-%-28-?\)?‘ (mn
'wm -2 '?\);
1' =k - 2(k-n)n
Equation 12 shows that reflection consists of reversing the component in the n-direction,

Calculation of Local Surface Curvature

It is necessary to calculate the local surface curvature where the chlef ray strikcs the surface. The local
curvature {s used to calculate the new phase blas to be applied to complex amplitude and also may be uscd for
a quick, approximate calculation of the aberration, using only the astigmatism terms.

The code uses a toric phase blas of the form
w 1 ll L
(xy) =3 R, ¢ g—y. (N

The iias phase is uued to reduce the amount of phase which cesides in the complex amplitude distribution. The
sepatrability ot the diffraction calculations aliows us to make adroit ufe of separable blas as described in the
diffraction theory section of this manunl. Spherical, cylindrical, and, in the general ci.se, toric phase bian
may be used. Atter reflection from a curved optical surface, this bias phuse muat be recaloulated,  Thia
section describea the calculatien of the new toric hias phase.

The aurface aberration is described in terma of the sagittal and tangential radii (or s- and p-radii)
1=w ety
Rp - L.__ Ac,r_ )»._._ (] \,
PR UL K

¢

Dy converting the initial phase bias terms to Zernike polynomials, making use of the torlc mirror termn, and o
mol{ finl Coddington ray trace; we may cal ~ulate the exiting toric phase bian terma, Detatla of thin calenlation
are included {n the GLAD and GLAD V manualr, but are too lengthy to Inclikle here.



Exact Ray Tracing

Exact ray tracing is done in the same fashion as the chief ray up to the surface intercept. The first
reference surface is the plane perpendicular to the chief ray at the chief ray intercept. The second reference
surface is the riane perpendicular ro the exiting chief ray. For each point in the transverse distribution a
new starting ray position and direction is determined. We define the vectors

"y - position vector for each x,y point
Eny - direction vector for each x,y point

The position vector is calculated to be
txy = v ¢ xf oyl (14)
- (2 - (L
'] (E;)t (RV)T

TRV
12- () ‘aym

where x,y are the local c: .llnates of the transverse beam distribution and Ry and Ry are the phase bias
radius. In this approach, the ray slopes are determined by tne phase bias radii. Exact slopes could be taken,
but the errors with the simpler assumptions are very small.

The ceflected direction vector for .“e current ray, indicated by primes on the coordinates, is

B'yy = Exy = 2(Kxy R)h (15)

The vector between the chief ray intercept and the intercept of the current ray being traced is ryy - a.

Consider reference planes perpendicular to the chief ray and reflected chlef ray. Let % be the distance from
the chief ray reterence plane to the surface measuted along the chief ray and & be the distance from the
surface intercept to the reflected chicf ray cefereace plane mearured along the reflected chief ray. Then

- o)k
= {rey ~ 8% (16)
R,y-ﬁ
(ryy = 8)°K
5. - - .__L__...__
ﬁlxv"‘

The transverse {ntercepts on the reflected chief ray reference plane are found from &

A NV R SR (17,
MR it

where the unit vectors of the reflected ayatewn are found with Eq. 11,

The complex amplitude in transferel from the first reference plane to the accond by

]K‘6|’6|)

Aldy') = A(xy)e ()

Ih general, the polint x',y' will not 11> on a grid point {1 the new array. The value muat he intorpolated to
the nearest neighboring grid points.

The valuea % and & must be externxded to include the OM from tte curved refurence murface to the refercice
plane.  ™n the cade, this is done by asnuming the reforece murface (i an esxact torle Aurface and calcutat ing
the path differonce to the ray intercept,



The methods described here enable determination of properties of optical beams passing through a -omplex
gsystem of mirrors. The equations have been implemented successfully in a physical optics code.
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