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Abstract
High dimensional data that lies on or near a low dimensional manifold can be de-
scribed by a collection of local linear models. Such a description, however, does
not provide a global parameterization of the manifold—arguably an important
goal of unsupervised learning. In this paper, we show how to learn a collection
of local linear models that solves this more difficult problem. Our local linear
models are represented by a mixture of factor analyzers, and the “global coordi-
nation” of these models is achieved by adding a regularizing term to the standard
maximum likelihood objective function. The regularizer breaks a degeneracy
in the mixture model’s parameter space, favoring models whose internal coor-
dinate systems are aligned in a consistent way. As a result, the internal coor-
dinates change smoothly and continuously as one traverses a connected path on
the manifold—even when the path crosses the domains of many different local
models. The regularizer takes the form of a Kullback-Leibler divergence and
illustrates an unexpected application of variational methods: not to perform ap-
proximate inference in intractable probabilistic models, but to learn more useful
internal representations in tractable ones.

1 Manifold Learning

Consider an ensemble of images, each of which contains a face against a neutral back-
ground. Each image can be represented by a point in the high dimensional vector space
of pixel intensities. This representation, however, does not exploit the strong correlations
between pixels of the same image, nor does it support many useful operations for reasoning
about faces. If, for example, we select two images with faces in widely different locations
and then average their pixel intensities, we do not obtain an image of a face at their average
location. Images of faces lie on or near a low-dimensional, curved manifold, and we can
represent them more usefully by the coordinates on this manifold than by pixel intensi-
ties. Using these “intrinsic coordinates”, the average of two faces is another face with the
average of their locations, poses and expressions.

To analyze and manipulate faces, it is helpful to imagine a “magic black box” with levers
or dials corresponding to the intrinsic coordinates on this manifold. Given a setting of the
levers and dials, the box generates an image of a face. Given an image of a face, the box
deduces the appropriate setting of the levers and dials. In this paper, we describe a fairly
general way to construct such a box automatically from an ensemble of high-dimensional
vectors. We assume only that there exists an underlying manifold of low dimensionality
and that the relationship between the raw data and the manifold coordinates is locally linear
and smoothly varying. Thus our method applies not only to images of faces, but also to
many other forms of highly distributed perceptual and scientific data (e.g., spectrograms of
speech, robotic sensors, gene expression arrays, document collections).



2 Local Linear Models

The global structure of perceptual manifolds (such as images of faces) tends to be highly
nonlinear. Fortunately, despite their complicated global structure, we can usually char-
acterize these manifolds as locally linear. Thus, to a good approximation, they can be
represented by collections of simpler models, each of which describes a locally linear
neighborhood[3, 6, 8]. For unsupervised learning tasks, a probabilistic model that nicely
captures this intuition is a mixture of factor analyzers (MFA)[5]. The model is used to
describe high dimensional data that lies on or near a lower dimensional manifold. MFAs
parameterize a joint distribution over observed and hidden variables:���������	��
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where the observed variable,
�����! 

, represents the high dimensional data; the discrete
hidden variables,
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, indexes different neighborhoods on the manifold; and

the continuous hidden variables,
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, represent low dimensional local coordinates.
The model assumes that data is sampled from different neighborhoods on the manifold
with prior probabilities

�������2�43 �
, and that within each neighborhood, the data’s local

coordinates are normally distributed1 as:����
 � � ���2�5�6&87.�:9 1�;�<
=?>A@�BDC %& 
 �*E 
 �	F ( (2)

Finally, the model assumes that the data’s high and low dimensional coordinates are related
by linear processes parameterized by centers G � , loading matrices H � and noise levels I � :������� �	��
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The marginal data distribution,
�����O�

, is obtained by summing/integrating out the model’s
discrete and continuous latent variables. The result is a mixture of Gaussian distributions
with parameterized covariance matrices of the form:�����2���QP � 3R�-� &872� H � H E�"S I ���)� 9
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The learning problem for MFAs is to estimate the centers G � , transformations H � , and
noise levels I � of these linear processes, as well as the prior probabilities

3��
of sampling

data from different parts of the manifold. Parameter estimation in MFAs can be handled
by an Expectation-Maximization (EM) algorithm[5] that attempts to maximize the log-
probability, VXW�Y �����Z� , averaged over training examples.

Note that the parameter space of this model exhibits an invariance: taking H �-[ H �:\/� ,
where

\ �
are ]_^`] orthogonal matrices (

\ � \ E� �ba
), does not change the marginal dis-

tribution,
�����2�

. The transformations H � [ H � \ � correspond to arbitrary rotations and
reflections of the local coordinates in each linear model. The objective function for the EM
algorithm is unchanged by these transformations. Thus, maximum likelihood estimation
in MFAs does not favor any particular alignment; instead, it produces models whose inter-
nal representations change unpredictably as one traverses connected paths on the manifold.
Can we encourage models whose local coordinate systems are aligned in a consistent way?

3 Global Coordination

Suppose the data lie near a smooth manifold with a locally flat (developable) structure.
Then there exist a single set of “global coordinates” c which parametrize the manifold

1Although in principle each neighborhood could have a different prior on its local coordinates,
without loss of generality we have made the standard assumption that d/egfih*j k?l is the same for all
settings of k and absorbed the shape of each local Gaussian model into the matrices m2h .
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Figure 1: Graphical model for globally coordinated MFAs. Al-
though global coordinates � are unobserved, they affect the learn-
ing through a regularization term. After learning, inferences about
the global variables are made by computing posterior distributions,d/e���j �.l . Likewise, data can easily be generated by sampling from
the conditional distribution, d/e��Zj � l . All these operations are partic-
ularly tractable due to the conditional independencies of the model.

everywhere. Furthermore, to a good approximation, these global coordinates can be related
to the local coordinates of different neighborhoods (in their region of validity) by linear2

transformations: c �6����
���� ��� ��

� S�� � (
(5)

What does it mean to say that the coordinates c ���	��
 �?� provide a global parameterization
of the manifold? Intuitively, if a data point belongs to overlapping neighborhoods, then the
global coordinates computed from their local coordinate systems, given by eq. (5), should
agree. We can formalize this “global coordination” of different local models by treating the
coordinates c as unobserved variables and incorporating them into the probabilistic model:��� c � �	��
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�� C � �)��� (6)

(Here we posit a deterministic relationship between local and global coordinates, although
it is possible to add noise to this mapping as well.) The globally coordinated MFA is rep-
resented by the graphical model in Fig. 1. We can appeal to its conditional independencies
to make other useful inferences. In particular:��� c � ��
R�:��� � � ] 
R�R��� c � �	��
���������
���� �	���
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Now, if two or more mixture components—say,
� K and

� < —explain a data point
��


with
non-negligible probability, then the posterior distributions for the global coordinates of
this data point, as induced by eq. (8), should be nearly identical: that is,

��� c � ��
R�:� K ������ c � � 
 ��� < � . To enforce this criterion of agreement, we need to penalize models whose
posterior distributions

��� c � ��
'� given by eq. (8) are multimodal, since multiple modes only
arise when different mixture components give rise to inconsistent global coordinates. While
directly penalizing multimodality of

��� c � ��
'� is difficult, a penalty which encourages con-
sistency can be easily incorporated into the learning algorithm. We introduce a family of
unimodal distributions over both c and

�
, and encourage the true posteriors,

��� c ���T� ��
'� , to
be close to some member, � � c �:� � ��
'� , of this family.

Developing this idea further, we introduce a new objective function for unsupervised learn-
ing in MFAs. The new objective function incorporates a regularizer to encourage the global
consistency of local models:� � P 
 VXW�Y ������
'� C�� P 
�� ��� c�� � c ���T� �

i� VXW�Y�� � � c �:� � �

i���� c ���T� � 
 ��� � (9)

The first term in this objective function computes the log-probability of the data. The
second term computes a sum of Kullback-Leibler (KL) divergences; these are designed to

2Without loss of generality, the matrices ��h can be taken to be symmetric and positive-definite,
by exploiting the polar factorization and absorbing reflection and rotation into the local coordinate
systems. (In practice, though, it may be easier to optimize the objective function without constraining
the matrices to be of this form.) In the experiments reported below, we have further restricted them to
be diagonal. Together, then, the coordination matrices ��h and vectors  
h account for an axis-aligned
scaling and uniform translation between the global and local coordinate systems.



penalize MFAs whose posterior distributions over global coordinates are not unimodal. The
twin goals of density estimation and manifold learning in MFAs are pursued by attempting
to balance these terms in the objective function. The factor

�
controls the tradeoff between

density modeling and global coordination: as
� [��

only strict invariances (which do not
affect likelihood) are exploited in order to achieve submodel agreement. In what follows
we have set

� � %
arbitrarily; further optimization is possible.

The most convenient way to parameterize the family of unimodal distributions is a factor-
ized form involving a Gaussian density and a multinomial:� � c ���T� ��
'�2� � � c � ��
'� � ���T� ��
'��� � � c � ��
'����� � c 
 �	��
'�
� � �6�T� ��
'�2��� 
�� (10)

Note that the distribution � � c ���T� ��
'� in eq. (10) factorizes over
�

and c , implying that—
according to this family of models—the global coordinate c is independent of the mixture
component

�
given the data point

� 

. Also, � � c � � 
 � is Gaussian, and thus unimodal.

These are exactly the constraints we wish to impose on the posterior
��� c �:�T� � 
i� . At each

iteration of learning, the means c 
 , covariance matrices
� 


, and mixture weights
� 
��

are
determined separately for each data point,

� 

so as to maximize the objective function in

eq. (9): this amounts to computing the unimodal distributions, � � c �:�T� � 
 � , best matched to
the true posterior distributions,

��� c �:� � ��
'� .
4 Learning Algorithm

Latent variable models are traditionally estimated by maximum likelihood or Bayesian
methods whose objective functions do not reward the interpretability of their internal rep-
resentations. Note how the goal of developing more useful internal representations has
changed the learning problem in a fundamental way. Now we have additional “coordina-
tion” parameters–the offsets

� �
and weights

� �
–that must also be learned from examples.

We also have auxiliary parameters for each data point—the means c 
 , covariance matri-
ces

� 

, and mixture weights

� 
��
—that determine the target distributions, � � c ���T� � 
'� . All

these parameters, as well as the MFA model parameters
#�3 � � H � � G � � I � , , must be chosen

to “stitch together” the local coordinates systems in a smooth way and to learn internal
representations easily coordinated by the local-to-global mapping in eq. (6).

Optimization of the objective function in eq. (9) is reminiscent of so-called “variational”
methods for approximate learning[7]. In these methods, an approximation to an exact
(but intractable) posterior distribution is fitted by minimizing a KL divergence between the
two distributions. The auxiliary parameters of the approximating distribution are known
as variational parameters. Our objective function illustrates an unexpected application of
such variational methods: not to perform approximate inference in intractable probabilistic
models, but to learn more useful internal representations in tractable ones. We introduce the
unimodal and factorized distributions � � c ���T� ��
'� to regularize the multimodal distributions��� c ���T� � 
 � . Penalizing the KL divergence between these distributions lifts a degeneracy in
the model’s parameter space and favors local linear models that can be globally aligned.

4.1 Computing and optimizing the objective function

Evaluating the objective function in eq. (9) requires a sum and integral over the latent vari-
ables of the model. These operations are simplified by rewriting the objective function as:� � P 
�� ��� c�� � c �:� � ��
'� M C V W	Y � � c ���T� �

'� S VXW�Y ������
R� c ����� N	( (11)

The factored form of the distributions � � c �:�T� ��
'� makes it straightforward to perform the
required sums and integrals. The final result is a simple form in terms of entropies 
 
�� and



energies � 
�� associated with the � th data point:� � P 
�� � 
��O� 
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where we have introduced simplifying notation for the vector differences
� 
�� ����� 
 C G � �

and c 
�� � � c 
 C � � � and the local precision matrices
� � � � 9�K��� a S H E� I 9
K� H ��� � 9
K� .

Iteratively maximizing the objective function by coordinate ascent now leads to a learning
algorithm of the same general style as EM.

4.2 E-step
Maximizing the objective function, eq. (9), with respect to the regularizing parameters# c 
 �	��
R� � 
���, (and subject to the constraint � � � 
���� %

) leads to the fixed point equations:

� 
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where
� 
��"� � � � � S � � E� H E� I 9
K� � 
	�

. These equations can be solved by iteration with
initialization

� 
�� �43 �
. Notice that

� �
and

� 
	�
only need to be computed once before iter-

ating the fixed point equations. The objective function is completely invariant to translation
and rescaling of c 
 and

� �
(since

� �
,
� �

and c 
 appear only in the form
� c 
 C � � � � � E� ). To

remove this degeneracy, after solving the equations above we further constrain the global
coordinates to have mean zero and unit variance in each direction. These constraints are
enforced without changing the value of the objective function by simply translating the
offsets ' � and rescaling the diagonal matrices

� �
.

4.3 M-step
The M-step consists of maximizing the objective function, eq. (9), with respect to
the generative model parameters. Let us denote the updated parameter estimates by#)(3R� �+*� ���,*G � � (H � � (I � � (� �*, . Letting

� � � � 
 � 
	� , the M-step updates for the first three
of these are:(3 �.- �*�!/ P �%$ � � $ *� �,- � 9
K� P 
 � 
�� c 
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 � 
��Z��
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The remaining updates, to be performed in the order shown, are given in terms of updated
difference vectors

*��
�� � �

 C *G � �0*c 
�� � c 
 C *� � , the correlations 1 ��� � 
 � 
	�.*��
��+*c E
�� ,
and the variances 2 � � � 
 � 
�� M � 
 S *c 
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K� � � � (17)3 (I ��465 - � 9
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 ��� E� (H E� 465?F (18)(� 9
K� - ��a S H E� I 9
K� H ��� 9
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At the optimum, the coordination weights
� �

satisfy an algebraic Riccati equation which
can be solved by iterating the update shown above. (Such equations can also be solved
by much more sophisticated methods well known in the engineering community. Most
approaches involve inverting the previous value of

� �
which may be expensive for full

matrices but is fast in our diagonal implementation.)



Figure 2: Global coordination of local lin-
ear models. (left) A model trained using maxi-
mum likelihood, with the arrows indicating the
direction of increase for each factor analyzer’s
local coordinate system. (right) A coordinated
model; arrows indicate the direction in the data
space corresponding to increasing the global
coordinate � as inferred by the algorithm. The
ellipses show the one standard deviation con-
tour of the density of each analyzer.

5 Experiments

We have tested our model on simple synthetic manifolds whose structure is known as well
as on collections of images of handwritten digits and faces. Figure 2 illustrates the basic
concept of coordination, as achieved by our learning rule. In the coordinated model, the
global coordinate always points in the same direction along the data manifold, as defined
by the composition of the transformations H � and

� �
. In the model trained with maxi-

mum likelihood, the density is well captured but each local latent variable has a random
orientation along the manifold.

We also applied the algorithm to collections of images of handwritten digits and of faces.
The representation of

�
was an unprocessed vector of raw 8-bit grayscale pixel intensities

for each image (of dimensionality 256 for the
%�� ^ %�� digits and 560 for the

&�� ^ & � faces.)
The MFAs had 64 local models and the global coordinates were two dimensional. After
training, the coordinated MFAs had learned a smooth, continuous mapping from the plane
to images of digits or of faces. This allows us both to infer a two-dimensional location given
any image by computing

��� c � �2� and to generate new images from any point in the plane
by computing

������� c � . (Precisely what we wanted from the magic box.) In general, both
of these conditional distributions have the form of a mixture of Gaussians. Figure 3 shows
the inferred global coordinates c 
 (i.e. the means of the unimodal distributions � � c � � 
 � )
of the training points after the last iteration of training as well as examples of new images
from the generative model, created by evaluating the mean of

������� c � along straight line
paths in the global coordinate space. In the case of digits, it seems as though our models
have captured tilt/shape and identity and represented them as the two axes of the c space; in
the case of the faces the axes seem to capture pose and expression. (For the faces, the finalc space was rotated by hand to align interpretable directions with the coordinate axes.)

As with all EM algorithms, the coordinated MFA learning procedure is susceptible to lo-
cal optima. Crucial to the success of our experiments is a good initialization, which was
provided by the Locally Linear Embedding algorithm[9]. We clamped c 
 equal to the em-
bedding coordinate provided by LLE and

� 

to a small value and trained until convergence

(typically 30-100 iterations). Then we proceeded with training using the full EM equations
to update c 
 , again until convergence (usually 5-10 more iterations). Note, however, that
LLE and other embedding algorithms such as Isomap[10] are themselves unsupervised, so
the overall procedure, including this initial phase, is still unsupervised.

6 Discussion

Mixture models provide a simple way to approximate the density of high dimensional data
that lies on or near a low dimensional manifold. However, their hidden representations
do not make explicit the relationship between dissimilar data vectors. In this paper, we
have shown how to learn global coordinates that can act as an encapsulating interface, so
that other parts of a learning system do not need to interact with the individual compo-
nents of a mixture. This should improve generalization as well as facilitate the propagation
and exchange of information when these models are incorporated into a larger (perhaps



Figure 3: Automat-
ically constructed two
dimensional global param-
eterizations of manifolds
of digits and faces. Each
plot shows the global
coordinate space discov-
ered by the unsupervised
algorithm; points indicate
the inferred means ��� for
each training item at the
end of learning. The image
stacks on the borders are
not from the training set
but are generated from the
model itself and represent
the mean of the predictive
distribution d/e��Zj � l at the
corresponding open circles
(sampled along the straight
lines in the global space).

The models provide both a
two degree-of-freedom gen-
erator for complex images
via d/e��Zj � l as well as a
pose/slant recognition sys-
tem via d/e���j �.l .
For the handwritten digits,
the training set consisted
of 1100 examples of the
digit “2” (shown as crosses
above) mixed with 1100 ex-
amples of “3”s (shown as
triangles). The digits are
from the NIST dataset, dig-
itized at 16x16 pixels. For
the faces, we used 2000 im-
ages of a single person with
various poses and expres-
sions taken from consecu-
tive frames of a video digi-
tized at 20x20 pixels. Bren-
dan Frey kindly provided
the face data.

hierarchical) architecture for probabilistic reasoning.

Two variants of our purely unsupervised proposal are possible. The first is to use an em-
bedding algorithm (such as LLE or Isomap) not only as an initialization step but to provide
clamped values for the global coordinates. While this supervised approach may work in
practice, unsupervised coordination makes clear the objective function that is being opti-



Figure 4: A situation in which an un-coordinated mix-
ture model–trained to do density estimation–cannot be “post-
coordinated”. Noise has caused one of the local density mod-
els to orient orthogonal to the manifold. In globally coordi-
nated learning, there is an additional pressure to align with
neighbouring models which would force the local model to
lie in the correct subspace.

mized, which unifies the goals of manifold learning and density estimation. Another variant
is to train an unsupervised mixture model (such as a MFA) using a traditional maximum
likelihood objective function and then to “post-coordinate” its parameters by applying local
reflections/rotations and translations to create global coordinates. As illustrated in figure 4,
however, this two-step procedure can go awry because of noise in the original training set.
When both density estimation and coordination are optimized simultaneously there is extra
pressure for local experts to fit the global structure of the manifold.

Our work can be viewed as a synthesis of two long lines of research in unsupervised
learning. In the first are efforts at learning the global structure of nonlinear manifolds
[1, 4, 9, 10]; in the second are efforts at developing probabilistic graphical models for rea-
soning under uncertainty[5, 6, 7]. Our work proposes to model the global coordinates on
manifolds as latent variables, thus attempting to combine the representational advantages
of both frameworks. It differs from embedding by providing a fully probabilistic model
valid away from the training set, and from work in generative topographic mapping[2] by
not requiring a uniform discretized gridding of the latent space. Moreover, by extending
the usefulness of mixture models,it further develops an architecture that has already proved
quite powerful and enormously popular in applications of statistical learning.
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