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Global copy number analyses by next generation
sequencing provide insight into pig genome
variation
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Wenbin Bao6, Qin Zhang1 and Jian-Feng Liu1*

Abstract

Background: Copy number variations (CNVs) confer significant effects on genetic innovation and phenotypic
variation. Previous CNV studies in swine seldom focused on in-depth characterization of global CNVs.

Results: Using whole-genome assembly comparison (WGAC) and whole-genome shotgun sequence detection
(WSSD) approaches by next generation sequencing (NGS), we probed formation signatures of both segmental
duplications (SDs) and individualized CNVs in an integrated fashion, building the finest resolution CNV and SD maps of
pigs so far. We obtained copy number estimates of all protein-coding genes with copy number variation carried by
individuals, and further confirmed two genes with high copy numbers in Meishan pigs through an enlarged
population. We determined genome-wide CNV hotspots, which were significantly enriched in SD regions, suggesting
evolution of CNV hotspots may be affected by ancestral SDs. Through systematically enrichment analyses based on
simulations and bioinformatics analyses, we revealed CNV-related genes undergo a different selective constraint from
those CNV-unrelated regions, and CNVs may be associated with or affect pig health and production performance under
recent selection.

Conclusions: Our studies lay out one way for characterization of CNVs in the pig genome, provide insight into the pig
genome variation and prompt CNV mechanisms studies when using pigs as biomedical models for human diseases.
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Background
Copy number variations (CNVs) distribute ubiquitously in

the human genome [1,2] and belong to the spectrum of

genetic variation ranging from 50 base pairs to larger

structural events [3]. As an important form of genetic vari-

ation complementary to single-nucleotide polymorphisms

(SNPs), CNVs have attracted extensive attentions and

unprecedented successes have been achieved in detection

of CNVs as well as segmental duplications (SDs) in the

human genome [4-7]. Multiple studies indicated that

CNVs have been associated with a variety of human

diseases [8-12]. Together with SNPs, CNVs are becoming

recognized as an important source of genetic variance

[13] and may account for some of the missing heritability

for complex traits [14].

Benefitting from the achievements of pioneering CNV

studies in humans, substantial progress has been made in

the discovery and characterization of CNVs in livestock

genomes. In the past few years, a significant amount of

research on genome-wide CNV identification was con-

ducted in various domestic animal species, including cattle

[15,16], dog [17-19], sheep [20], goat [21], chicken [22],

turkey [23] and pig [24,25]. A suite of genes with copy

number alteration were exploited contributing to variation

of either Mendelian phenotypes [26-28] or complex

production traits [29]. Based on these findings, it was

expected that CNV studies could advance the studies
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of genetic diversity, evolution, functional genomics as

well as genome assisted prediction.

However, a potential issue with majority of previous

CNV studies in livestock species displayed as a lack of

power and accuracy for CNV identification due to the

technical limitations of two most frequently used detection

platforms, i.e., SNP chips and array comparative genome

hybridization (aCGH) [3,6,15,30]. This obviously highlights

the need to pursue more powerful and sensitive tools for

construction of high resolution CNV map. To achieve this

goal, Bickhart et al. [15] performed CNV detections in

individual cattle genomes using the next-generation

sequencing (NGS) technique combined with mrFAST/

mrsFAST and whole-genome shotgun sequence detection

(WSSD) analytical methods [5,6,31] based on the findings

of SD detection [32]. Their work demonstrated that the

NGS has superiority over SNP chip and aCGH in CNV

deteciton in livestock genomes. Besides the platforms

employed in CNV detection, the other crucial factor

determining the abundance of detected CNV is the

experimental population investigated. Findings from

several studies [17,24,33] indicated that a considerable

proportion of CNVs likely segregate among distinct

breeds, such that a sufficiently high-resolution CNV

map would require the survey of multiple breeds/

populations [34].

In the past few years, much effort has been taken to

detect CNVs in pig genome using three main genome-wide

CNV identification technologies, i.e., aCGH [35-37], SNP

genotyping array [24,25,38-40] and genome re-sequencing

based on the next generation sequencing [41-43]. However,

compared to humans and other model organisms, relatively

few studies have investigated CNVs in pigs and little is

known about how CNVs contribute to normal phenotypic

variation and to disease susceptibility in this species. Since

CNVs play a vital role in genomic studies, and pigs act as

one of the most economically important livestock world-

wide as well as popular model for various human diseases

[44], it is an imperative need to develop a comprehensive,

more accurate and higher resolution porcine CNV map

and in-depth characterize CNVs across pig genomes for

follow-up CNV functional investigation. To achieve the

aforementioned goal, we performed the current study to

systematically exploit features of SDs and CNVs present in

the pig genome using high throughput NGS data of diverse

pig breeds in the framework of the pig draft genome

sequence (Sscrofa10.2) [45]. We designed the studies

considering the following two aspects: (1) CNVs mostly

occurred with different probabilities among different popu-

lations; and (2) A number of Chinese local breeds conferred

much larger variability and higher average heterozygosity

than European breeds [46].

Beyond the definition of CNVs, some CNVs may be

fixed in the population and (if they are in state of gain)

can also be detected across the genome as SDs [47]

which are generally defined as >1 kb stretches of

duplicated DNA with 90% or higher sequence identity

[48]. It was also believed that an SD-rich region

would generate more CNVs than other regions [48],

showing a close association with CNVs near or around it.

Considering the potential link between SDs and CNVs

across the genome, we employed the NGS data of

genomes of experimental individuals as well as the refer-

ence genome of Duroc 2–14 to construct individualized

SD and CNV maps and in-depth characterize global

CNVs via the commonly used analytical approaches, i.e.,

whole-genome assembly comparison (WGAC) and whole-

genome shotgun sequence detection (WSSD) [6,7,49].

To pursue a reliable CNV map, in the present study,

we employed individual genomes from multiple popula-

tions, including all six types of Chinese indigenous breeds,

one Asian wild sow, as well as three commercial breeds.

Additionally, we have improved the original read depth

(RD) method in WSSD analyses through adjusting the bias

in CNV calling due to fragmented sequences in the process

of hard masking of reference genome. This enhanced the

detection power, lowered the false positive findings and

increased copy number estimation accuracy, especially for

NGS data with long sequencing reads. Our work is of

importance to researchers working with swine genomics

and would lay a solid foundation for future CNV functional

researches in the pig genome.

Results
Sequencing data set statistics

Based on Illumina HiSeq 2000, we obtained NGS data of 13

pig individuals, which were selected to cover a broad repre-

sentation of pig diversity of both modern commercial pigs

and Chinese domestic and wild pigs. The sequencing data

set statistics have also been summarized in Table 1. The

depth of coverage for each animal varied from 10.4× to

17.4×, which is sufficient for genome-wide CNV detection

using RD method according to the previous studies [5,6,15].

SD map construction for the reference genome

Using WGAC, we initially detected a total of 902,068

pairwise alignments with an aligned length of >1 kb and

identity of >90%, which showed an excess of SD

contents compared to previous results in other species

[32,49,50]. After removal of high-copy repeats, the filtered

detections consisted of 28,509 pairwise alignments, of

which 10,128 (35.5%) involved unplaced scaffolds

(presented in Additional file 1: Table S1). Furthermore,

77.9% (22,214 of 28,509) of these alignments had an

identity of >99% that may contain numerous artificial

duplications due to local assembly errors [49]. The

remaining alignments (6,295 of 28,509) had identities

varying from 90% to 99%. The distribution profile of
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the identities for these 6,295 alignments was presented in

Additional file 2: Figure S1, which showed an approximately

uniform distribution within the interval of 0.90-0.98 while

exhibiting a sharp increase in alignment frequency within

the interval of 0.98-0.99. We further merged all of 28,509

alignments into 43,071 non-overlapping sequence intervals.

The total length of these intervals reached 542.6 Mb,

amounting to 19.3% of the reference genome, which

indicated an excessive content of duplicated bases.

Specially, 8,620 of 43,071 intervals were mapped to

unplaced scaffolds, accounting for 121.0 Mb (57.1% of all

the unplaced scaffolds). Among the 3,882 unplaced

scaffolds >1 kb in size, 2,396 (61.7%) contained SD

and 1,478 (38.1%) had >70% of duplicated bases

(Additional file 2: Figure S2). The high content of SD in

unplaced scaffolds was considered to be related to the

difficulty in placing the scaffolds into the assembly [49].

In WSSD analyses, a total of 1,714 unique intervals

(67.3 Mb) were predicted as listed in Additional file 1:

Table S2. Similar to the strategy of Bailey et al. [7], we

further filtered the WGAC alignments of ≥94% identity

with SD calls by WSSD to remove artifactual duplications.

After filtering, the final WGAC dataset consisted of 5,534

pairwise alignments (Additional file 1: Table S3), out of

which 131 were mapped to unplaced scaffolds, and

five were mapped to pig mitochondrion. Of the 20

chromosomes (1–18, X and Y), 4,529 of 5,398 (83.9%)

pairwise alignments were intrachromosomal and most

pairwise alignments were within the distance of 1 Mb

between each other (Figure 1). The profile of the SD

map with WGAC is presented in Figure 2 and the

features of SDs across different chromosomes are also

detailed in Table 2, which is similar to the duplication

pattern of mouse [51], dog (22) and cattle [7,18,32,51]

while quite different from the interspersed segmental

duplication pattern that predominates in human

[7,18,32,51]. Previous studies (8,47) suggested that

abundant interspersed segmental duplications may be

specific for human and great apes genomes and play a

vital role during the evolution of their gene families.

The final pig SD database was constructed through

integrating low-identity WGAC (<94%), filtered high-

identity WGAC (≥94%) and the WSSD estimates.

Overlapping segments by either WGAC or WSSD

were simply merged into one single SD, the endpoints

of which are outermost bases of the overlapping segments.

Excluding unplaced scaffolds and mitochondrion, the pig

SD database contained 2,860 intervals which totaled

73.5 Mb in size and 2.8% of all the chromosomes (1–18,

X, Y) (Additional file 1: Table S4). The proportion of

duplicated bases varied from 1.2% to 6.9% across dif-

ferent chromosomes as showed in Additional file 2:

Figure S3. Compared to previous studies on other species

[7,18,32,51], the estimates of pig SD are relatively

conservative. One possible reason may be due to exclusion

of the unplaced scaffolds in our WSSD analysis.

Individualized CNV discovery

Using our improved strategy, a total number of 13,517

segmental duplication/deletion calls were predicted from

all the 13 individuals after artifact removal. The number

of CNV events varied across different pig individuals,

Table 1 The sequencing dataset statistics of the 13 analyzed pigs

Sample
name

Breed Sex # of raw
reads

Raw depth of
coverage

Breadth of
coverage (%)a

# of mapped
reads

# of total
mapping

Portion of mapped
reads (%)

Average mapping
count per read

A1 Asian wild
population

Female 425059598 15.14 98.34 77911417 89797365 18.3 1.15

C3 Landrace Female 299035346 10.65 98.67 54229309 62204847 18.1 1.15

D4 Duroc Female 292290044 10.41 98.36 55895203 63458148 19.1 1.14

DN1 Diannan
small-ear pig

Male 314388424 11.19 98.37 54588436 62544697 17.4 1.15

DN5 Diannan
small-ear pig

Female 326384034 11.62 98.30 54440210 61948105 16.7 1.14

M2 Min pig Female 335827092 11.96 98.29 61906969 71840511 18.4 1.16

MS7 Meishan pig Female 311280060 11.08 98.38 52927456 60310779 17.0 1.14

MS8 Meishan pig Female 327056954 11.65 98.37 57503480 65568705 17.6 1.14

R2 Rongchang
pig

Male 489283828 17.42 98.37 84867123 96794730 17.3 1.14

W1 Daweizi pig Female 319026072 11.36 98.31 55717064 63780180 17.5 1.14

Y2 Yorkshire Female 310756334 11.06 98.52 57747078 66761766 18.6 1.16

Z2 Tibetan pig Female 306511910 10.91 98.41 51705709 59208309 16.9 1.15

Z5 Tibetan pig Female 306714914 10.92 98.68 55755070 64929977 18.2 1.16
aCalculation of covered percentage of genome is based on ungapped length of whole genome.
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ranging from 870 (Yorkshire) to 1,311 (Duroc) with

an average of 1,040 per individual (see Table 3). The

overall profile of these identified segmental duplications/

deletions across the genome for each individual is

illustrated in Additional file 2: Figure S4, as well as

detailed in Additional file 3: Table S5.

Accordingly, all detected CNV segments were further

merged into 3,131 unique CNVRs across all experimental

animal genomes following the criteria that the union of

overlapping CNVs across individuals are considered as a

CNVR [4]. Concerning copy number status, the numbers

of gain, loss and both events (loss and gain within the

same region) were 1702 (54.36%), 1366 (43.63%) and 63

(2.01%), respectively. Gain events were more common

than loss events in CNVRs, and had slightly larger sizes

than losses on average (36.15 kb vs. 23.99 kb). The CNVRs

totaled 102.8 Mb in length with an average of 32.8 kb,

amounting to 4.0% of the 20 chromosomes based on

the porcine genome (Sscrofa 10.2). The distribution

and the status of these identified CNVRs are plotted

in Additional file 2: Figure S4, and a full list of

CNVRs and corresponding features are provided in

Additional file 3: Table S6. We further summarized the

numbers and the lengths of CNVRs on different chromo-

somes in Additional file 3: Table S7, which illustrated non-

uniform patterns across the genome. This is consistent

with previous reports on heterogeneous distributions of

CNVs in human and other species [4,15].

Figure 3 demonstrates the spectrum of sizes of all

detected CNVRs across the genome. It shows that most

CNVRs fell into the interval between 10 kb and 20 kb,

and the frequency of CNVRs tends to decrease with the

increase of the length. It is notable that in our RD ana-

lyses, CNVs were called using the criterion that at least

Figure 1 Distribution of pairwise alignments within different distance ranges for SDs of the pig reference genome. (a) The number of
pairwise alignments of SDs varies from >3,500 to <100 against different distance ranges. (b) The total aligned bases of pairwise alignments
against different distances varies from >25 Mb to <1 Mb. The total aligned bases is simply the sum of aligned bases of all pairwise alignments
within different distances, probably counting multiple times for some regions covered by different pairwise alignments.
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Figure 2 Map of SDs (>5 kb) detected by WGAC method and filtered by WSSD results. Intrachromosomal pairwise alignments are
collected by blue line, and the interchromosomals are marked with short red lines. The map was drawn using the program parasight
v7.6 (http://eichlerlab.gs.washington.edu/jeff/parasight/index.html).
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Table 2 SD distribution on different pig chromosomes

Chr.
name

Chr.
length

Pairwise alignments # of pairwise alignments within different distances Length of pairwise alignments within different distances (bp)a

# Total length (bp) <1 Mb 1-5 Mb 5-10 Mb 10-20 Mb ≥20 Mb Interchrom. <1 Mb 1-5 Mb 5-10 Mb 10-20 Mb ≥20 Mb Interchrom.

1 315321322 591 3401742 222 32 2 39 26 270 2276538 246929 13940 295496 184744 1228308

2 162569375 704 5101992 507 2 1 32 162 3902938 20557 2826 689210 931033

3 144787322 295 2014549 136 1 9 2 147 1564008 4376 152465 11584 911669

4 143465943 287 1294886 235 6 1 45 1186413 49251 2684 111127

5 111506441 151 1053226 101 3 47 806564 148002 215744

6 157765593 386 1395733 215 3 1 21 146 1126648 14458 8377 97078 220477

7 134764511 796 5214940 457 63 3 1 166 106 3585639 1101644 22484 3239 2E + 06 847577

8 148491826 119 995588 66 6 2 1 44 853267 35624 8115 4117 98206

9 153670197 374 1888550 280 2 92 1595039 8290 311899

10 79102373 282 1981250 126 20 4 2 26 104 1262050 286602 18420 10717 395811 548851

11 87690581 135 999435 87 13 35 918600 151163 55653

12 63588571 165 803476 134 3 4 24 737632 14381 10696 49824

13 218635234 231 1238900 161 2 3 65 1080461 6220 11273 142648

14 153851969 351 1595288 289 1 1 60 1425665 2202 4606 168661

15 157681621 401 1640639 286 4 1 110 1458101 23471 9431 340589

16 86898991 332 620789 205 127 546490 163337

17 69701581 229 1089155 144 43 19 4 19 660648 434075 166802 19169 78385

18 61220071 65 275384 21 44 161453 130231

X 144288218 368 2254851 254 16 2 4 4 88 1847734 93124 22251 70387 66276 247951

Y 1637716 5 34635 2 3 28541 6094
aPairwise alignments were merged into non-overlapping intervals which are used for measurements of the length.
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6 of 7 sequential long sliding windows showed RD

values significantly deviating from the RD average; thus,

CNVs >10 kb in length were kept in the final dataset. This

indicates that our RD analyses are prone to detection of

large structural variation events, and a significant amount

of variation in length <10 kb would be precluded from the

final findings. This filtering process is a routine strategy in

recent similar studies [5,6,15] to assure high confident

positive findings in RD detection.

We investigated further to see if potential population/

breed specific CNVs exist. Specifically, of the 3,131 total

CNVRs, 1,679 (53.6%) were merely identified in a single

breed/population, confirming that segregating CNVs exist

across various breeds. Additionally, out of the 3,131

CNVRs, 612 (19.5%) were called merely in the three mod-

ern commercial breeds, while 1,513 CNVRs (48.3%) were

detected specific in the nine Chinese indigenous pigs as

well as the wild sow. These potential population/breed

specific CNVRs can be considered as good candidates for

determining breed-specific characteristics, although it is

necessary to confirm phenotypic effects of these CNVs

using more experimental samples. On the other hand,

we scanned all CNVRs and merely found nine of them

(4 duplications, 5 deletions) ubiquitously existing in

the same state among the 13 animals. Except these nine

potentially fixed SDs/deletions, the states of other

SDs/deletions are variable across all 13 individuals.

This clearly demonstrates CNVs are widely present in

genomes across different population/breeds. We compared

the length as well as the numbers of SDs/deletions

identified between each pair of individuals. As given

in Additional file 3: Table S8 and S9, the number of

Table 3 Summaries of SD/deletion calls of the 13 analyzed pigs on the number, total length and average length

Sample Number Total length (Mb) Mean size (kb)

# of total calls # of duplications # of deletions All calls Duplications Deletions All calls Duplications Deletions

A1 1064 763 301 48.5 40.9 7.6 45.6 53.7 25.2

C3 930 744 186 44.6 40.1 4.5 47.9 53.9 24.0

D4 1311 1130 181 48.8 44.8 3.9 37.2 39.7 21.8

DN1 951 684 267 45.3 38.9 6.4 47.6 56.9 23.8

DN5 1060 765 295 48.2 40.7 7.6 45.5 53.1 25.6

M2 1135 816 319 47.2 40.0 7.2 41.6 49.0 22.6

MS7 1052 795 257 49.6 43.6 6.0 47.1 54.8 23.4

MS8 958 711 247 44.9 38.5 6.4 46.9 54.2 25.9

R2 1099 766 333 44.7 37.2 7.5 40.7 48.5 22.6

W1 993 756 237 46.7 40.7 6.0 47.0 53.8 25.4

Y2 870 728 142 42.4 39.1 3.3 48.8 53.7 23.3

Z2 1025 753 272 46.2 39.7 6.5 45.0 52.7 23.9

Z5 1069 798 271 47.1 40.9 6.2 44.1 51.3 22.9

On average 1040 785 254 46.5 40.4 6.1 45.0 51.9 23.9

Figure 3 The spectrum of the sizes of all detected CNVRs.
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common intervals shared by the pairwise individuals

ranges from 625 to 851, with the total overlapping

length from 32.8 Mb to 40.1 Mb. This suggests that

most CNVs occurred widely across the genomes of

individuals.

Quality assessment of CNVs by using aCGH data and

qPCR

Using two complementary methods, aCGH and qPCR,

we performed experimental validation to confirm individual

copy number variants.

One custom-designed 2.1 M aCGH (Roche-NimbleGen)

based on the Sscrofa10.2 porcine assembly was used to

assess the CNVs by RD. In aCGH hybridizations, the

individual D4 (Duroc) was used as the reference,

while the other 12 individuals as the test samples. We

employed a method initially proposed by Alkan et al. [6]

to assess the RD called CNVs with aCGH data using the

individual D4 (Duroc) as the reference sample. Overall,

the Pearson’s correlation coefficient between variables,

defined as the log2(copy number-ratio) value and the

mean of probe log2 ratios varied from 50.0% (C3) to 80.9%

(R2) for each of the test animals, with an average of 62.5%

(Additional file 4: Table S10). The degrees of consistency

of quality assessment herein are similar with those in

human and cattle [6,15]. Additionally, we found that the

level of correlation coefficient for the CNVs validation is

highly dependent on the copy number differences of CNV

intervals between the reference sample and the test

sample, i.e., the less difference of copy number, the lower

the calculation of correlation coefficient. The trend of this

dependence has also been clearly exemplified in Figure 4.

This may be because the aCGH data is not sensitive to

detect small copy number difference between test sample

and reference sample due to the impact of noise signals,

especially in highly duplicated regions.

In the qPCR confirmation, based on the copy numbers

of every individual predicted by RD and qPCR method,

we systematically assessed performance of the RD-called

CNVs through three evaluation criteria in the process of

validation, including the overall agreement rate of RD

with qPCR results, the prediction power of RD and the

positive prediction rate of RD. All the primers used and

qPCR results are listed in Additional file 4: Table S11

and S12. Overall, the agreement rate, detection power

and the positive prediction rate for the RD validation

are 74.9%, 71.2% and 95.1%, respectively. The result

demonstrated that qPCR experiments agreed well

with the prediction by RD method. The discrepancies

between the qPCR and results identified by RD method

may be caused by potential SNPs and small indels, which

influence the hybridization of the qPCR primers in some

individuals, resulting in unstable quantification values or

lowering primer efficiency.

Additionally, we performed qPCR validation for the

CNV findings based on the original detection strategy

within the same regions for comparing with those based

on our improved strategy. The qPCR validation results

showed that the corresponding agreement rate, detection

power and the positive prediction value were 68.7%, 63.1%

and 94.6%, respectively. The comparison between the two

different CNV calling strategies clearly showed the credible

evidences on the advantage of the improved strategy

proposed herein over the original.

Comparison with previous studies

We also compared CNVRs in this study with previous

pig CNV studies [24,25,35,36,39,41,42]. After merging

the results of recent reports, a total of 849 out of

3,131 CNVRs (27.75%) with the length of 33.02 Mb

in our study overlapped with those previously reported

(see Table 4). This indicates about one-third of CNVRs

identified in our study was validated by previous studies,

and most are firstly detected herein. Besides different

algorithms for CNV calling, a difference between these

NGS data-based CNV studies and the current study lies in

that merely the current study employed SD information of

the reference genome in the process of CNV detections,

such that the short-read artifacts were removed from the

detections in current study. Additionally, compared with

the study by Rubin et al. [42], the different point is that

the current study is based on individualized sequencing

while that of Rubin et al. is based on sequencing of pooled

samples. As a consequence the current study has a better

power to detect CNVs with rare frequency, while the

study of Rubin et al. is prone to find common CNVs.

Association of CNVRs with SD and other genomic features

It has been reported that CNVs may be facilitated by

ancestral SDs through the occurrence of non-allelic

homologous recombination (NAHR) [52], showing

enrichment around ancestral SDs. To further confirm if

the similar CNV formation mechanism occurs in the

swine genome, we picked out SDs with <95% identity

(Additional file 1: Table S3) that was postulated as the

ancestral SDs that happened at earliest ~5 million years

ago when Sus scrofa just emerged in South East Asia

[45] according to the traditional sequence divergence rate

of 2% per million years [53]. These putative ancestral SDs

were then merged into non-overlapping regions that would

be used in the enrichment analysis. Simulation results clear

demonstrated the strong statistical evidence (13.9-fold

enrichment; P < 0.001) according to the empirical distribu-

tion, indicating that the CNVRs are significantly associated

with ancestral SD regions of the reference genome.

Furthermore, we also tested the correlation between

CNV hotspots and ancestral SDs. Accordingly, we picked

out 659 regions as CNV hotspots from 3,131 putative
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CNV regions (CNVRs) using the criteria that at least two

of the three commercial pigs and at least two of ten

Chinese pigs should be detected as having duplication/

deletion within the CNVR (Additional file 4: Table S13).

The simulation tests showed that 1,313 ancestral SDs

overlapped with CNV hotspots while only 41 in random

situation (32.0-fold; P < 0.001). The 32.0 fold SD

enrichment for CNV hotspots was much larger than the

13.9-fold enrichment for all CNVRs, implying the special

effect of ancestral SDs on evolution of CNV hotspots [52].

In addition, we explored if CNV breakpoints were

enriched for GC-rich regions which were likely to show

high rate of homologous recombination [54]. Based on

the criteria of Berglund et al. [55], the breakpoints were

defined by the CNVR boundaries covering a 2-kb length

segment. Accordingly, we found a significantly higher

GC content in these locations (44.0%; P < 1.0E-6) than

that in the genomic background (41.6%). As reported by

Berglund et al. [55], a GC-peak can be determined when

a 500-bp sliding window centered in a 10 kb background

Figure 4 The correlation between RD estimates and experimental aCGH results. (a) For individual C3, the log2 values of ratios of RD
predicted copy numbers (horizontal axis) were compared with probe log2 ratios from whole-genome aCGH (vertical axis), showing a correlation
of 0.50.. (b) Another sample, M2, shows a correlation of 0.78. (c) For individual C3 (Landrace), CNV intervals were divided into three groups according
to different level of copy number difference between C3 and the reference sample (D4, Duroc). Every group of CNV intervals was used to calculate the
correlation between RD estimates and experimental aCGH results, respectively. It is clear that the higher the copy number difference of each interval,
the larger the correlation between RD estimates and experimental aCGH results. (d) For another individual (M2, Min pig), impact of copy number
difference on the correlation shows similar trend with that in Figure 3c.
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Table 4 Comparison between CNVRs detected in the study with those in the previous reports

Study CNVR detected in the previous studies Overlaps with this study

Methods Sample CNVR Range (kb) Median (kb) Mean (kb) Total (Mb) Count Count
percentage (%)

Total
length (kb)

Length
percentage (%)

Fadista et al., 2008 [35] aCGH (385 k) 12 37 1.74-61.92 6.89 9.32 0.43 3 0.0958 21.435 0.0208

Ramayo-Caldas et al., 2010 [24] SNP chip (60 k) 55 49 44.65-10715.82 170.96 754.59 36.97 3 0.0958 408.541 0.3974

Wang et al., 2012 [25] SNP chip (60 k) 474 382 5.03-2702.75 142.90 250.69 95.76 61 1.9483 1845.698 1.7953

Li et al., 2012 [36] aCGH (720 k) 12 259 2.30-1550 98.74 65.07 16.85 77 2.4593 2197.924 2.1379

Chen et al., 2012 [39] SNP chip (60 k) 1693 565 50.39-8102.06 252.71 247.55 139.87 284 9.0706 15386.182 14.9658

Wang et al., 2013 [40] SNP chip (60 k) 14 63 3.20 -827.21 97.85 158.37 9.98 24 0.7665 2302.633 2.2397

Rubin et al., 2012 [42] Genome sequencing 117 1,928 0.12-175.50 3.00 5.23 10.08 305 9.7413 6777.8 6.5926

Paudel et al., 2013 [41] Genome sequencing 16 3,118 6.00-96.00 10.00 12.74 39.72 479 15.298 16537.356 16.086

All the above — — — — — — 849 27.116 33018.169 32.116

Note: The comparison was based on Sscrofa 10.2 assembly (http://www.ensembl.org/Sus_scrofa/Info/Index). For CNVRs based on the other porcine assembly, we firstly converted the data to current genome

coordinates using the UCSC LiftOver tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver).
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sliding window has a 1.5-fold increase in GC content,

we searched for GC-peaks across the pig genome. After

performing a randomization test, we found a 1.7-fold

GC-peaks enrichment in CNV breakpoints (P < 1.0E-6).

Besides previous reports in dogs [55], the findings herein

further confirmed the strong association between CNV

and GC-peaks. However, the proportion of breakpoints

within a 1-kb region of GC peak merely reached 3.1%

in present study, which is mainly due to the sparse

distribution of GC peaks across the pig genome (4.6 per

Mb in average). This clues us the difference of CNV

formation mechanisms among distinct species, and

GC-peaks may be just one of potential CNV formation

mechanisms of pig CNVs.

Genomic effects of CNVs

To test the genomic effects of CNVs identified in the

study, we compared the CNVRs identified in this study

with the reported quantitative trait locus (QTL) regions

collected in the pig QTL database (http://www.animal-

genome.org/cgi-bin/QTLdb/SS/index, Apr 20, 2013) and

human disease gene orthologs in Online Mendelian

Inheritance in Man annotations (OMIM, http://omim.org/,

2013-6-19). Consequentially, some CNVRs were identified

overlapping with a suite of pig QTLs (Additional file 5:

Table S14) and human disease gene orthologs (Additional

file 5: Table S15), providing the evidence that CNVs may

be associated with or affect animal health and production

traits under recent selection. Since some QTLs have too

large confidence interval, we focused on the 3,789 QTLs

with confidence interval less than 5 Mb. Out of the 3,789

QTLs, 1,077 (28.4%) overlapped with the CNVRs identified

in this study, which are involved in a wide range of traits,

such as growth, meat quality, reproduction, immune

capacity and disease resistance. For the human disease

gene orthologs, we found 102 CNVRs identified in the

study overlapped 210 genes associated with human

diseases, such as Stiff skin syndrome, Leukemia, polycy-

themia vera, autism, and Complement factor H deficiency.

This demonstrates that, in accordance with previous

studies, CNVs play an important role in phenotypic vari-

ation and are often related with disease susceptibility [9,56].

Out of the 23,641 porcine genes locating in the 20 chro-

mosomes, a total of 3,644 porcine genes (Additional file 6:

Table S16) were completely or partially overlapped with

CNVRs, including 2,773 protein-coding genes, 821 pseudo

genes, 3 tRNA genes, 17 miscRNA genes and 30

genes with other types. It is notable that these genes

are distributed merely in 1,820 CNVRs (58.1%) of all

identified CNVRs, i.e., the remaining 41.9% CNVRs

do not contain any annotated genes. The distribution

of genes among CNVRs from the present studies is

similar with those in other studies [4,15,25]. To test if

the genes are enriched in these CNVRs, an empirical

distribution of genes among CNVRs were constructed

through 10,000 simulations. Consequentially, we found

that the genes trended to enrich within the CNVRs

(1.8-fold enrichment; P < 0.001), especially for the protein-

coding genes (1.6-fold enrichment; P < 0.001), reflecting

that porcine CNVs occurred in gene-rich regions in

the genome.

In order to provide insight into the functional enrich-

ment of the CNVs, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

analyses were performed for the genes in CNVRs with

the DAVID bioinformatics resources. The GO and

pathway analyses revealed that there were 12 significant

terms (Additional file 6: Table S18) and 8 significant

pathways after Benjamini correction. Our results are

consistent with previous studies in other mammals that

CNVRs are particularly enriched in genes related to

immunity, sensory perception of the environment

(e.g. smell, sight, taste), response to external stimuli and

neurodevelopmental processes [57].

Copy number variable genes in the CNVRs

According to the copy windows, we estimated the CNs

for all genes in the CNVRs identified by RD. In

total, there were 2,223 genes assigned copy numbers

(Additional file 6: Table S16). The results showed

that some of genes with high copy numbers belong to some

multiple-member gene families, such as olfactory receptor

(OR), protein FAM22G, UDP-glucuronosyltransferase,

ATP-binding cassette subfamily G, butyrophilin subfamily

1 member A1, leukocyte immunoglobulin-like receptor

subfamily, melanoma-associated antigen, tumor necrosis

factor receptor superfamily member, and cytochrome

P450. This is consistent with previous studies that high

copy number genes often belong to multiple-member gene

families [5,15].

Excepting the above mentioned copy number variable

gene families and those uncharacterized genes, there

were 123 protein-coding genes with copy number

range more than 2.0 among the individuals investigated

(Additional file 6: Table S19). Further probing the potential

functions of these 123 copy number variable genes, we

found a suite of genes related to the immune response,

meat quality, sexual and reproduction ability, nutrients

metabolism and coat color, which representing a valuable

resource for future studies on the relation between CNV

genes and phenotype variation.

In particular, the KIT gene is the most obvious copy

number variable gene with functional significance, which

has been confirmed that gene duplication and a splice

mutation leading the skipping of exon 17 is responsible

for the dominant white phenotype [58,59]. In our

studies, we estimated the copy numbers of the KIT, and

obtained the copy number of the KIT gene of 4.50 and
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3.81 in the solid white breeds Yorkshire and Landrace,

respectively, while about two copies (ranged from 1.71 to

1.97) in all other pigs having colored phenotypes

(see Additional file 2: Figure S5 for read depth of all

samples within the region). This is consistent with

the causative relation between KIT duplication and

dominant white coat color identified before [58,59].

In particular, no CNVs were found in the KIT gene

of the Rongchang pig (copy number = 1.94), which is

the Chinese indigenous breed that is characterized for its

solid white coat color on body and some black patches

around the eyes and ears. The result confirmed the previ-

ous finding that the white coat colors in Chinese pigs were

not caused by the dominant white allele of KIT [60].

Among these 123 copy number variable genes, some

genes were existed in specific breed or population. For

instance, kynurenine/alpha-aminoadipate aminotransferase

(AADAT) and zinc finger protein 622 (ZNF622) have

extremely high copy numbers in the re-sequenced Meishan

individuals (above 5.0 and 9.0 for AADAT and ZNF622,

respectively) compared to the other individuals. To further

explore copy number distributions of them at population

levels across multiple breeds and mine potential function

contributing to formation of particular breed features, we

determined the absolute copy numbers of these two genes

via qPCR. A total of 174 unrelated individuals from six pig

breeds (Meishan, Tibetan, Daweizi, Yorkshire, Landrace

and Duroc) were employed in the confirmation study. The

primers used, average copy number estimates for

these two genes in each breed are presented in Figure 5

and Additional file 6: Table S20. The validation outcomes

showed the consistent tendency with that in RD analyses,

i.e., both AADAT and ZNF622 have above 8.0 in average

in Meishan breeds, being approximately 2- to 4- folds

higher than those in the other five breeds. In mouse, the

activity of the rat and mouse’s AADAT gene is associated

with the transamination of alpha-aminoadipic acid, which

is the final step in the major pathway (the saccharopine

pathway) for the catabolism of L-lysine (AADAT NCBI

reference). ZNF622 pertains to the zinc finger gene family

and has been proved involved in embryonic development

[61]. Concerning potential function of AADAT and

ZNF622, we can speculate that extraordinary high copy

numbers of AADAT and ZNF622 likely account for the

typical features, such as high fertility, roughage-resistance,

lower growth rate in Meishan pigs.

b

a

Figure 5 Box plot of gene copy number quantification for AADAT (a) and ZNF622 (b). The gene copy number was measured by qPCR
assays across six pig breeds, including Meishan pig, Daweizi pig, Tibetan pig, Duroc pig, Landrace pig and Yorkshire pig. Boxes indicate the
interquartile range between the first and third quartiles, and the bold line indicates the median. Whiskers represent the minimum and maximum
within 1.5 times the interquartile range from the first and third quartiles. Outliers outside the whiskers are shown as circles.
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Discussion
In current study, we developed a SD map of reference

genome with 2,860 intervals and systemically performed

the first genome-wide analysis of recent SDs using the

newest build of porcine genome (Sscrofa 10.2) by both

WGAC and WSSD methods. The construction of SD

map herein presented essential SD features of pig

genome, like inter-/intra-chromosomal patterns of SDs

and the identity of pairwise alignments, etc., aiding

understanding of genome innovation, genomic rearrange-

ments, and occurrences of CNV hotspots within species

[4,18,51,62]. It has been reported [52,63] that SDs may

contribute to the formation of some CNVs through the

occurrence of NAHR mechanisms. Certain ancestral SDs

that were transmitted to their descendants may facilitate

separate NAHR in them, leading to the genesis and

maintenance of CNVs. The impact of SD on the CNVs has

also been reflected by our findings that there are significant

association between the ancestral SDs and CNVRs and

CNV hotspots. From the practical perspective, the

reference genome SD database generated in our study also

provides a very useful calibration for filtering short-read

artifacts, which is necessary for duplication/deletion

detection in WSSD analyses of individual NGS data.

Besides the SD map of the pig reference genome, we also

constructed a CNV picture involving 3,131 unique regions

using WSSD through re-sequencing 13 highly representa-

tive individuals from ten distinct breeds or populations. To

our knowledge, this is the highest resolution CNV map so

far in the pig genome. The abundance of CNV outcomes

in our study further confirmed our initial expectation

that individuals from multiple breeds, especially Chinese

indigenous breeds, can greatly contribute to the CNV iden-

tification. The alteration of copy numbers of these genes

within CNVRs may be responsible for the genetic diversity

among diverse breeds with distinctive natures, especially

for those entailed in various Chinese indigenous breeds.

Additionally, we further confirmed the previous findings

that the duplication of KIT gene is responsible for the

dominant white phenotypic breeds like Landrace and

Yorkshire, while with the exception of Chinese indigenous

solid white breeds like Rongchang pig surveyed. In our

study, besides those multiple-member gene families and

uncharacterized genes, a total number of 123 copy

number variable genes have been mined within CNVRs

across 13 individuals with different genetic backgrounds

from ten distinct breeds, which merit functional validation

in depth in follow-up studies. Especially, the two genes,

AADAT and ZNF622, entail obviously high copy numbers

merely in Meishan pigs, which can be considered as

promising candidate functional genes in CNV-related

association studies in the future.

In CNV detection, we adopted the read depth specific

analytical tool mrsFAST to map sequence reads to the

reference genome. Compared with other read depth

methods considering merely one mapping location

per read, mrsFAST can map sequence reads to all

possible locations for a sequence read, demonstrating

advantages of detection power in searching for SD regions.

Highlights in our analyses involve three aspects:

Firstly, we proposed an enhanced strategy to determine

three different types of sliding windows to adjust the bias

in CNV calling due to fragmented sequences in the

process of hard masking of the reference genome, espe-

cially for NGS data with long sequence reads. We defined

sliding windows based on unique hits where short-reads

can be forward aligned with the reference sequence rather

than non-masked bases employed in the original mrCaNa-

VaR. This could largely conquer the inaccuracy of read

depth calculation for each type of sliding windows arising

from hard masking of the reference genome. Accordingly,

we could use more reliable read depth statistics to infer

duplication/deletion and estimate copy number, leading to

better sensitivity and specificity of duplication/deletion

detection as well as increased accuracy of copy number

estimation. The performance gain of the enhanced

strategy over the original has been verified by qPCR

as well as through simulation analyses.

Secondly, we probed formation signatures of both SDs

of the pig reference genome and individualized CNVs in

an integrated fashion. Based on the identified CNVs and

SDs, we systemically explored associations of CNVRs

with various genome features, building a comprehensive

profile of genome-wide CNVs in swine.

Finally, we exploited CNVs across the pig genome

among ten distinct breed populations and dug out

corresponding genes within these specific regions, which

may be considered as the most important copy number

variable genes responsible for genetic diversity and specific

breed features. Furthermore, we predicted absolute copy

number of completely all genes within CNVRs across the

genome and sifted out 123 protein-coding genes. Most of

these specific CNVs and CNV-related genes are firstly

reported by our studies.

The WGAC and WSSD methods employed in this

study have demonstrated obvious advantages. However,

some limitations still exist in detecting SDs and CNVs.

Specifically, WGAC can identify whole-genome SDs

with the length of >1 kb and determine accurate SD

breakpoints, but it does depend on the whole genome

assembly of the individual investigated. It is also difficult

for WGAC to dissect high-identity SDs, which should

be further filtered by WSSD. The WSSD method has

inevitable weakness in determining breakpoint due to

its nature of relying on pre-defined sliding windows.

Considering the sliding length (generally set as 1 kb), the

WSSD method can merely identify a rough position of

CNV breakpoint.
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The inaccuracy of CNV breakpoint determination

limited our view about the CNV formation. In this

study we specially focused on recurrent CNVs instead

of non-recurrent ones. Recurrent CNVs show recurrent

breakpoints in SDs, arising by meiotic unequal or

non-allelic homologous recombination [64]. In contrast,

non-recurrent CNVs have unique breakpoints that are not

dependent on SDs, possibly arising by nonhomologous

end-joining (NHEJ), microhomology-mediated end-joining

(MMEJ), fork stalling and template switching (FoSTeS),

or microhomology-mediated break-induced replication

(MMBIR) [64]. Our study showed a significant association

between CNVs and ancestral SDs in pig genome, giving

evidence on the abundance of recurrent CNVs in our

results. Though it is possible to distinguish recurrent

and non-recurrent CNVs based on their differences in

breakpoint distribution (common versus variable) and

association with SDs (dependent versus independent)

[64], the ambiguity of CNV breakpoints due to the

shortness of the WSSD method made it unfeasible to

achieve this goal.

Conclusion
In the present study, we proposed an enhanced strategy

to determine three different types of sliding windows

to adjust the bias in CNV calling due to fragmented

sequences in the process of hard masking of the reference

genome, and then exploited both segmental duplications

(SDs) and individualized CNVs across the pig genome

among ten distinct breed populations and dug out corre-

sponding genes within these specific regions. Our studies

lay out one way for characterization of CNVs in the pig

genome, provide insight into the pig genome variation

and prompt CNV mechanisms studies when using pigs as

biomedical models for human diseases.

Methods
Ethics statement

The whole procedure for collection of the ear tissue

samples of all animals was carried out in strict accordance

with the protocol approved by the Institutional Animal

Care and Use Committee (IACUC) of China Agricultural

University.

Selection of pig breeds and experimental animals

In this study, a total number of 13 pig samples originated

from ten distinct populations were chosen for sequencing.

These samples comprised one Asian wild pig, three

modern commercial pigs (1-Landrace, 1-Duroc and

1-Yorkshire), and nine pigs selected from six Chinese

indigenous breeds (2-Tibetan pig, 2-Diannan small-ear

pig, 2-Meishan pig, 1-Min pig, 1-Daweizi pig, and

1-Rongchang pig). Duroc, Yorkshire and Landrace are

considered as the representatives of modern commercial

breeds, while the six Chinese indigenous breeds, each

belonging to a specific population type, are considered as

the representatives of Chinese indigenous population. The

illustration of the features of six Chinese indigenous

breeds were detailed elsewhere [65]. Furthermore, to

explore the phylogeny relationships among them, the 13

individuals were genotyped by Porcine SNP60 BeadChip

(Illumina). SNPs with 100% call rate (n = 55,438) from

these 13 samples were used to construct the Neighbor-

joining tree using MEGA version 5.0 [66]. As shown in

Additional file 2: Figure S6, the experimental samples can

well represent diverse populations of the commercial

breeds and Chinese indigenous breeds.

Re-sequencing and data acquisition

Genomic DNA of 13 individuals was extracted from the ear

tissue using Qiagen DNeasy Tissue kit (Qiagen, Germany).

All DNA samples were analyzed by spectrophotometry and

agarose gel electrophoresis and sequenced using the

Illumina HiSeq 2000 technology. All paired-end reads

reached the length of 100 bp, with an average insert

size of 460–490 bp and the standard deviation of 11–14 bp

estimated for all samples. The reads which contain more

than 50% low quality bases (quality value ≤5) or more than

10% N bases were removed. The Q20 bases rate of reads of

each individual is above 90%.

For the sequenced Duroc sow 2–14, we downloaded

its draft genome sequence (i.e. Sus scrofa 10.2 refer-

ence assembly) from ftp://ftp.ensembl.org/pub/release-

67/fasta/sus_scrofa/dna/ and corresponding NGS data

from DDBJ (ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/

fastq/ERA009/ERA009086/) for the use of sequence align-

ment and SD map construction.

Developing an enhanced strategy in WSSD analyses

In RD approach for WSSD analyses, hard masking of

genome sequences is a routine process for generating

more accurate read depth statistics of long window, short

window and copy window. However, hard masking may

produce biases in both duplication and deletion detection,

especially for long sequence reads (e.g., ≥100 bp). We

define here this kind of bias as the fragmentation effect,

which received seldom attention preciously since it does

not matter due to the length of reads is merely 36 bp in

most of earlier studies [5,6,15]. To reduce potential

fragmentation effects, we modified mrCaNaVaR to

optimize the way in defining the three windows, i.e., long

window, short window and copy window. Specifically, the

sizes of windows are based on the number of unique hits

where short-reads can be forward aligned with the refer-

ence sequence rather than the accumulative counts of non-

masked characters employed in the original mrCaNaVaR.

Accordingly, the biases in duplication/deletion detec-

tion and CN estimation due to fragmentation effects
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can be largely corrected. A more intuitive illustration on

the so-called fragmentation effect and our improved strat-

egy were also given in Figure 6. The more details on our

enhanced strategy were given in the supplementary

method, Section 1 of Additional file 7. To further validate

the performance of the enhanced strategy herein, exten-

sive simulation analyses were conducted to systematically

compare the detection power, accuracy of copy number

estimates between the original and the enhanced strategy

herein (for details, see Additional file 7, Section 2).

Construction of SD map for the reference genome

We performed both WGAC and WSSD analyses to map

SDs based on Sus scrofa 10.2 genome assembly (Sscrofa

10.2). These two analytical algorithms were initially

performed in human genome [7,49], which can provide

comprehensive and complementary SD findings with

different levels of sequence identity and resolution.

The specific process for porcine SD map development

by WGAC and WSSD approaches is detailed in the

supplementary method, Section 1 of Additional file 7.

After finishing both WGAC and WSSD analyses for the

reference genome, to further remove artifactual duplica-

tions, we filtered the WGAC alignments of ≥94% identity

with the WSSD dataset following the criteria proposed by

[7]. We finally developed a pig SD database based on the

union of low-identity WGAC (<94%), filtered high-identity

WGAC (≥94%) and the WSSD estimates.

Detection of duplication/deletion for re-sequenced

individuals

Based on the SD findings in the pig reference genome,

we employed RD method to detect both SDs/deletions

for the re-sequenced samples through running mrsFAST

and our improved mrCaNaVaR program. The specific steps

for SDs/deletions calling are given in the supplementary

method, Section 1 of Additional file 7.

Validation of pig CNVs using aCGH and qPCR

We employed aCGH with a custom-designed 2.1 M

oligonucleotide array (Roche-NimbleGen) based on

the Sscrofa10.2 porcine assembly for CNV validation.

The array contained 2,167,769 oligonucleotide probes

(50–75 mers), with an average interval of 889 bp between

probes, covering 18 autosomes and two sex chromosomes.

Details for aCGH analyses are presented in the supplemen-

tary method, Section 1 of Additional file 7, Section 1.

Besides aCGH, qPCR was used to validate CNVRs

identified by NGS data in the study. The control region

is determined within the region of the glucagon gene

Figure 6 Illustration of the modified method of windows definition. As showed in the top of the graph, on a 4 kb genome sequence, black
regions represent A/T/C/G characters and grey regions denote N characters. Due to hard masking, 50 bp N blocks are uniformly distributed on
the first 2 kb sequence, resulting in no any 100 bp reads being mapped there. According to copy window definition by the original method that
every 1,000 bp of non-masked characters are defined as one copy window, the whole 4 kb long masked genome sequence is divided into three
copy windows and the first 2 kb long sequence is defined as one copy window. The three copy windows have read counts of 0, 4 and 5, respectively.
Thus the hard masked sequence of the first 2 kb may be considered as deletion. In contrast, the modified method we proposed herein defines every
1,000 unique locations where short reads can be mapped as one copy window, so the masked genome sequence is accordingly divided into two
copy windows with read counts of 4 and 5, respectively, avoiding false prediction of deletion for the hard masked region.
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(GCG), which is highly conserved between species and

has been proved to have a single copy in animals [67].

The specific process of qPCR analyses and the criteria

for quantifying the performance of RD-based CNV

calling are detailed in the supplementary method,

Section 1 of Additional file 7.

Gene content and functional analyses

Pig CNVRs were annotated using NCBI gene informa-

tion (ftp://ftp.ncbi.nih.gov/genomes/Sus_scrofa/mapview/

seq_gene.md.gz; ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/

GENE_INFO/Mammalia/Sus_scrofa.gene_info.gz). Those

genes overlapping with CNVRs completely or partially

were considered as copy number variable and picked out

for further analyses. Copy number of each variable

gene was estimated as the median of copy numbers

corresponding to copy windows within the region of the

gene. To provide insight into the functional enrichment of

copy number variable genes, annotation analyses were

performed with the DAVID (http://david.abcc.ncifcrf.gov/)

for Gene Ontology (GO) terms and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses. Since only

a limited number of genes in the pig genome have been

annotated, we firstly converted the pig EntrezGene

IDs to orthologous human RefSeq genes by BioMart

(http://www.biomart.org/) ahead of GO and pathway

analyses. Statistical significance was assessed using a

modified Fisher’s exact test while considering multiple

testing correction based on Benjamini’s method.

Pig CNV distribution and association with SDs and other

genomic features

We performed simulations to probe if the identified

CNVs are associated with SD regions and other genomic

features, such as protein-coding genes (ftp://ftp.ncbi.nih.

gov/genomes/Sus_scrofa/mapview/seq_gene.md.gz). Spe-

cifically, for SD region association analyses, we randomly

assigned each of identified CNVRs a putative position

with no overlap with each other in the genome. The

number of SDs overlapping with CNVRs was calculated in

each simulation, and finally we created empirical distribu-

tion of the hits via 10,000 independent replications. Thus

the significance of pig CNV enrichment/depletion in SD

regions could be determined by the thresholds based on

the empirical distribution. Similarly the association ana-

lyses were further conducted for other genomic features

investigated, i.e., genes and protein-coding genes.

Data access

The complete SNP array data and aCGH data have been

submitted to the Gene Expression Omnibus (http://www.

ncbi.nlm.nih.gov/geo/) and released under the accession

number GSE46733 and GSE46847, respectively.
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