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ABSTRACT

We use the GALPROP code for cosmic-ray (CR) propagation to calculate the broadband luminosity spectrum
of the Milky Way related to CR propagation and interactions in the interstellar medium. This includes γ -ray
emission from the production and subsequent decay of neutral pions (π0), bremsstrahlung, and inverse Compton
scattering, and synchrotron radiation. The Galaxy is found to be nearly a CR electron calorimeter, but only if
γ -ray emitting processes are taken into account. Synchrotron radiation alone accounts for only one-third of the
total electron energy losses with ∼10%–20% of the total synchrotron emission from secondary CR electrons
and positrons. The relationship between far-infrared and radio luminosity that we find from our models is
consistent with that found for galaxies in general. The results will be useful for understanding the connection
between diffuse emissions from radio through γ -rays in “normal” (non-active galactic nucleus dominated)
galaxies as well as for estimating the broadband extragalactic diffuse background from these kinds of galaxies.

Key words: cosmic rays – Galaxy: general – gamma rays: galaxies – gamma rays: general – radiation mechanisms:
non-thermal – radio continuum: galaxies

Online-only material: color figures

1. INTRODUCTION

Cosmic rays (CRs) fill up the entire volume of galaxies, pro-
viding an important source of heating and ionization of the
interstellar medium (ISM), and may play a significant role
in the regulation of star formation and evolution of galaxies
(Ferrière 2001; Cox 2005; Socrates et al. 2008; Sironi & Socrates
2010). Diffuse emissions from radio to high-energy γ -rays
(>100 MeV) arising from various interactions between CRs and
the ISM, interstellar radiation field (ISRF), and magnetic field,
are currently the best way to trace the intensities and spectra of
CRs in the Milky Way (MW) and other galaxies. Gamma rays are
particularly useful in this respect since this energy range gives
access to the dominant hadronic component in CRs via the ob-
servation of π0-decay radiation produced by CR nuclei inelasti-
cally colliding with the interstellar gas. Understanding the global
energy budget of processes related to the injection and propaga-
tion of CRs, and how the energy is distributed across the elec-
tromagnetic spectrum, is essential to interpreting the radio/far-
infrared relation (de Jong et al. 1985; Helou et al. 1985; Murphy
et al. 2006), galactic calorimetry (e.g., Völk 1989), and predic-
tions of extragalactic backgrounds (e.g., Thompson et al. 2007;
Murphy et al. 2008), and for many other studies.

The MW is the best studied non-active galactic nucleus
dominated star-forming galaxy, and the only galaxy that direct
measurements of CR intensities and spectra are available.
However, because of our position inside, the derivation of
global properties is not straightforward and requires detailed
models of the spatial distribution of the emission. Nevertheless,
constructing a model for the global properties of such a galaxy
is tractable with the variety of data available.

In this Letter, we calculate the injected CR power and
corresponding broadband luminosity spectrum from radio to

γ -rays for CR propagation models consistent with current CR,
radio, and γ -ray data. Earlier estimates focusing on the MW
γ -ray luminosity only (e.g., Strong et al. 2000) were based on
modeling EGRET data. The launch of the Large Area Telescope
(LAT) on the Fermi Gamma-ray Space Telescope (hereafter
Fermi-LAT) has provided a wealth of new γ -ray data up to,
and beyond, 100 GeV. Analysis of the Fermi-LAT data has
not confirmed the anomalous “EGRET GeV-excess” (Abdo
et al. 2009a, 2009c) and has led to an improved model of CR
propagation and diffuse γ -ray emission thus enabling a better
estimate of the CR and γ -ray luminosities of the Galaxy.

2. THE MODELS

We use a model based on the GALPROP code6 for the
CR-related processes in the Galaxy that has been adjusted to
fit many types of data including direct measurements of CRs,
non-thermal radio emission, hard X-rays, and γ -rays. Studies
of the diffuse Galactic emission and CRs using this code prior
to the launch of the Fermi-LAT can be found in Moskalenko
& Strong (1998), Strong & Moskalenko (1998), Strong et al.
(2000, 2004a, 2004b), Moskalenko et al. (2002), and Porter
et al. (2008). An extensive review of CR propagation, models,
data, and literature is given by Strong et al. (2007).

We calculate diffuse emissions from radio to γ -rays, produced
by CR protons, helium, and electrons/positrons. The contri-
butions by discrete sources and line emissions (e.g., 511 keV
annihilation radiation) are not included. Since the propagation
parameters are not uniquely determined from the observations,
we consider an illustrative range of parameters for diffusive
reacceleration (DR ) and plain diffusion (PD) propagation mod-
els. The main uncertainty we consider is the CR confinement

6 http://galprop.stanford.edu
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Table 1

GALPROP Model Parameters

Model Parameter/GALDEF ID Diffusive Reacceleration Plain Diffusion

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

z02LMS z04LMS z10LMS z02LMPDS z04LMPDS z10LMPDS

Halo height, kpc 2 4 10 2 4 10

Galaxy radius, kpc 20 20 20 20 20 20

Diffusion coefficienta D0 2.9 5.8 10.0 1.8 3.4 6.0

Diffusion coefficienta δ 0.33 0.33 0.33 0.5 0.5 0.5

Reacceleration vA, km s−1 30 30 30 · · · · · · · · ·

CR sources distribution Pulsars (Lorimer 2004)b

Magnetic field strengthc B = 7e−(R−R0)/RB−z/zB µG

Injection spectrum (nuclei)

Index below break 1.98 1.98 1.98 1.80 1.80 1.80

Index above break 2.42 2.42 2.42 2.25 2.25 2.25

Break energy, GeV 9 9 9 9 9 9

Normalization energy, GeV 100 100 100 100 100 100

Proton normalization intensityd,e 5 5 5 5 5 5

Injection spectrum (primary electrons)

Index below break 1.60 1.60 1.60 1.80 1.80 1.80

Index above break 2.42 2.42 2.42 2.25 2.25 2.25

Break energy, GeV 4 4 4 4 4 4

Normalization energy, GeV 34.5 34.5 34.5 34.5 34.5 34.5

Normalization intensityd 0.32 0.32 0.32 0.32 0.32 0.32

Notes.
a Dxx = 1028βD0(ρ/ρ0)δ cm2 s−1, ρ0 = 4 GV, β = v/c, constant below ρ0 for PD model.
b Modified to have the value at R = 10 kpc across the range R = 10–15 kpc and to be zero beyond 15 kpc.
c R0 = 8.5 kpc, RB = 50 kpc, zB = 3 kpc.
d 10−9 cm−2 s−1 sr−1 MeV−1 (nucleon−1 for nuclei).
e Normalization energy 100 GeV for protons corresponds to a rigidity ∼100 GV. Helium normalization is 0.068 relative to protons at the same

rigidity.

volume and associated propagation model parameters, e.g., the
diffusion coefficient. Other effects to consider would include
different propagation modes, e.g., convection, the distribution
of CR sources, etc. However, these are beyond the scope of the
current Letter and we defer these considerations to future work.
The output of a typical GALPROP run includes CR distribu-
tions, γ -ray/synchrotron sky maps, and emissivity distributions.
The luminosities of the different components are computed by
integrating the respective emissivities over the total Galactic
volume: for inverse Compton (IC) and synchrotron radiation
the volume emissivity is directly calculated, while for π0-decay
and bremsstrahlung the emissivity is calculated per hydrogen
atom, so we weight the calculated volume emissivities by the
distributions of atomic, molecular, and ionized hydrogen in-
cluded in the GALPROP code (Strong & Moskalenko 1998;
Moskalenko et al. 2002; Strong et al. 2004b).

We obtain the input CR luminosity for each of our models by
integrating the model CR source spectra and spatial distribution
over the Galaxy. The injected luminosity, instead of emergent,
is the relevant quantity because we are interested in how the CR
power is transferred to the electromagnetic channels. In addition
to CR protons and helium, and primary electrons, we also
calculate the luminosities of secondary positrons and electrons
resulting from CR–gas interactions in the ISM. The diffuse
emissions from these secondary CR species are also calculated
and included in the total synchrotron, bremsstrahlung, and IC
spectra.

We use DR and PD propagation models where the spatial dif-
fusion coefficient Dxx and its momentum dependence, together
with the DR characterized by an Alfvén speed, vA, assuming a
Kolmogorov spectrum of interstellar turbulence (if used), and

the size of the CR confinement volume, zh, are obtained by fit-
ting the CR secondary/primary ratios for B/C and 10Be/9Be; for
details see Strong et al. (2007). The CR source injection spectra
are taken as broken power laws in momentum, with different
parameters for nuclei and primary electrons. These are chosen
to reproduce the directly observed CR spectra after propagation
for the adopted models.

The calculations are based on model parameters that repro-
duce the Fermi-LAT electron spectrum (Abdo et al. 2009a) and
γ -ray data (Abdo et al. 2009a, 2009b, 2010a, 2010b). The spa-
tial distribution of the CR sources is based on pulsars as tracers
of supernova remnants (SNRs) used in Strong et al. (2004b),
but constant beyond the solar circle as indicated by analysis of
the Fermi-LAT data for the 2nd Galactic quadrant (Abdo et al.
2010a).

The synchrotron calculation uses the same CR electron model
and a magnetic field model that reproduces radio surveys at
frequencies from 100 MHz to 23 GHz (A. W. Strong et al.
2011, in preparation). DR and PD propagation models are used
for three halo sizes, zh = 2, 4, and 10 kpc, respectively, with
corresponding self-consistently derived diffusion coefficients
Dxx(ρ) = D0β(ρ/ρ0)δ , where β = v/c is the dimensionless
particle velocity, ρ is the particle rigidity, and D0, ρ0, δ are
constants. These halo sizes cover the range consistent with
available CR data for B/C and 10Be/9Be (Engelmann et al. 1990;
Yanasak et al. 2001; de Nolfo et al. 2006, and references therein).
The parameters and values for the models are summarized in
Table 1.

The optical to far-infrared (FIR) luminosity spectrum is
derived from the model of the ISRF used for the propagation
calculations (the “maximum metallicity gradient” model from



L60 STRONG ET AL. Vol. 722

log (Energy, MeV)

-15 -10 -5 0 5

-1
 M

e
V

-1
 s2

G
a
la

c
ti

c
 l
u

m
in

o
s
it

y
, 
M

e
V

43
10

4410

45
10

46
10

galdef ID 54_z04LMS

x10-4

log (Energy, MeV)

-15 -10 -5 0 5

-1
 M

e
V

-1
 s2

G
a
la

c
ti

c
 l
u

m
in

o
s
it

y
, 
M

e
V

43
10

4410

45
10

46
10

galdef ID 54_z04LMPDS

x10-4

Figure 1. Global CR-induced luminosity spectra of the MW for DR propagation model (left panel) and PD propagation model (right panel) with zh = 4 kpc. Line
styles: ISRF, including optical and infrared scaled by a factor 10−4 (magenta solid), and components for model 2 are cosmic rays (dotted lines), protons (red),
helium (blue), primary electrons (green), secondary electrons (cyan), and secondary positrons (magenta); CR-induced diffuse emissions (solid lines), IC (green),
bremsstrahlung (cyan), π0-decay (red), synchrotron (black, the left side of figure), and total (black, the right side of figure).

(A color version of this figure is available in the online journal.)

Porter et al. 2008). The emergent luminosity for the ISRF is
computed by surface integration over a region large enough to
encompass the total flux from the stellar luminosity distribution
and the starlight reprocessed by dust (∼30 kpc radius about
the Galactic center). In the present work, the input bolometric
stellar luminosity is ∼4 × 1010 L⊙ apportioned across the
stellar components boxy bulge/thin disc/thick disc/halo with
fractions ∼0.1/0.7/0.1/0.1, and ∼20% reprocessed by dust
and emitted in the infrared. The uncertainties related to the
distribution of the ISRF interior to the integration boundary
include the relative luminosities of the bulge component and the
disk, the metallicity gradient, and other details. However, these
uncertainties are dominated by the overall uncertainty in the
input stellar luminosity. A higher input stellar luminosity will
increase the CR electron/positron losses via IC scattering and
hence the overall output in γ -rays, requiring a higher injected
CR power and increasing the overall calorimetric efficiency (see
below). Estimates available in the literature illustrating the range
for the MW stellar luminosity are, e.g., 6.7×1010 L⊙ (Kent et al.
1991) and 2.3 × 1010 L⊙ (Freudenreich 1998).

3. RESULTS AND DISCUSSION

Figure 1 shows the broadband luminosity spectrum of the
Galaxy, including the input luminosity for CRs for a 4 kpc
halo for a DR and PD model, respectively.7 Figure 2 illustrates
the detailed energy budget for the DR model with 4 kpc halo
size. Figure 3 shows the broadband luminosities for DR and
PD models for the three halo sizes, and Table 2 summarizes the
spectrally integrated luminosity for the various components for
each of our models. The peak injected CR luminosities differ
by a factor ∼2 for different propagation modes, but the total
injected CR luminosities are close, only differing at the ∼few

7 Spectra for all models and components will be made available in numerical
form via the German Virtual Observatory, http://www.g-vo.org.

Figure 2. Luminosity budget of the MW for DR propagation model with
zh = 4 kpc. The percentage figures are shown with respect to the total injected
luminosity in CRs, 7.9 × 1040 erg s−1. The percentages in brackets show the
values relative to the luminosity of their respective lepton populations (primary
electrons, secondary electrons/positrons).

percent level. The injected CR spectra differ between DR and
PD models to compensate the momentum dependence of the
diffusion coefficient in each propagation model so that the local
CR spectra are reproduced. Independent of propagation mode,
the relative decrease in the injected CR proton and helium
luminosities is ∼10% for halo sizes 2–10 kpc. For smaller halo
sizes, the CRs escape quicker requiring more injected power
to maintain the local CR spectrum. In addition, for larger halo
sizes CR sources located at further distances can contribute
to the local spectrum, which is our normalization condition,
hence less power is required. In contrast to nuclei, the injected
primary CR electron luminosity increases with zh, reflecting the
increased input power of these particles required to counter the

http://www.g-vo.org
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Figure 3. Global CR-induced luminosity spectra of the MW for a range of halo sizes for DR propagation model (left panel) and PD propagation model (right panel).
Line styles: zh = 2 kpc (solid), zh = 4 kpc (dotted), and zh = 10 kpc (dot-dashed). Components as in Figure 1.

(A color version of this figure is available in the online journal.)

energy losses from the larger confinement region and escape
time.

The CR nuclei luminosities can be directly compared with
the well-known approximate estimate from CR “grammage”
as described by, e.g., Dogiel et al. (2002), which shows that
these can be estimated from the observed secondary/primary
ratios. The values in Table 2 are within a factor of 2 of the
∼1041 erg s−1 derived in that paper, providing a consistency
check on our more detailed modeling. Taking the CR luminosi-
ties and adopting a supernova rate of (1.9±1.1)/century (Diehl
et al. 2006), we obtain a CR energy input per SNR of (0.3–1) ×
1050 erg, comparable to standard estimates of a 5%–10% effi-
ciency for CR acceleration in SNRs.

For the DR model, the injected CR lepton luminosity is close
to the total of synchrotron, IC, and bremsstrahlung luminosities
for the 10 kpc halo (Model 3), showing that the Galaxy is
approximately a lepton calorimeter (∼79% efficiency) in this
case, with the bulk of the energy lost via IC emission (only
about one-third is lost via synchrotron emission). Smaller halos
still constitute fair calorimeters but are less efficient: ∼51% for
the case of a 2 kpc halo with ∼17% of the energy loss due to
synchrotron radiation, and ∼59% for the case of a 4 kpc halo
with ∼19% of the energy loss due to synchrotron radiation.
For PD models the calorimetric efficiencies are decreased, but
the same trend of higher efficiency with increasing halo size is
evident.

Our calculations show that calorimetry holds for CR leptons
in MW-like galaxies independent of propagation mode provided
the size of the CR confinement volume is large enough to al-
low for sufficient cooling and if γ -ray production is included. A
large fraction of the IC luminosity is at energies below 100 MeV,
extending to hard X-rays, and includes a significant secondary
electron/positron component (Strong et al. 2004a; Porter et al.
2008). The contribution to the synchrotron emission from sec-
ondary electrons and positrons is ∼10%–20% for our Galaxy-
like models, being largest for small halo sizes. For DR mod-
els, the secondary lepton emission is 20%, 16%, and 16% for
2, 4, and 10 kpc, respectively. For PD models, the secondary

lepton emission is 12%, 10%, and 10% for 2, 4, and 10 kpc,
respectively.

Using the standard definition of the FIR/radio relation,
q = log10(SFIR/3.75 × 1012 Hz) − log10(S1.4 GHz), where SFIR

(W m−2) is the FIR flux from 42.5 to 122.5 µm and S1.4 GHz

(W m−2 Hz−1) is the radio flux at 1.4 GHz (Helou et al. 1985),
we calculate this ratio for our luminosity models (see Table 2
under “radio–FIR relation”). The range of values 2.26–2.69 is
consistent with that for the correlation over normal and starburst
galaxies: 2.34 ± 0.26 (Yun et al. 2001) and near to the value
for M33 (2.50) given in that paper. Note, here we have used the
FIR luminosity from the ISRF model described earlier, 1.9 ×
1043 erg s−1 (see Table 2). However, the FIR luminosity of the
Galaxy is uncertain by at least a factor of 2 and this will affect q.
Using COBE/DIRBE data, Sodroski et al. (1997) give a total
IR luminosity 4.1 × 1043 erg s−1 and IR luminosity >40 µm,
IR>40 µm, of 2.8 × 1043 erg s−1. This yields an FIR luminosity

of 1.4 × 1043 erg s−1 from FIR/IR>40 µm = 0.51 for the ISRF
used in this Letter. Meanwhile, Paladini et al. (2007) give a
much higher value for IR>60 µm, 1.1 × 1044 erg −1, yielding

an FIR luminosity 6.6 × 1043 erg s−1 (R. Paladini 2010, private
communication). This higher value for the FIR luminosity would
increase all q values in Table 2 by 0.53.

The luminosity spectra for our models contain significant
IC γ -ray emission, the contribution at high energies depend-
ing on details of the propagation model. Above ∼10 GeV the
contribution by IC is non-negligible compared to π0-decay. Es-
timates of the isotropic background using models for the diffuse
γ -ray emission of normal star-forming galaxies invoking only
π0-decay as the dominant mode for high-energy production,
e.g., Ando & Pavlidou (2009), and ignoring details of the prop-
agation will underestimate the contribution per galaxy by these
classes of objects.

The present estimates are intended to be illustrative, using a
particular set of models; the level of uncertainty is suggested
by the range covered by the models, which are far from
exhaustive. In any case the general conclusions from this work
are robust.
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Table 2

Luminosity of the Galaxy for Various Processes, 1038 erg s−1

Component Diffusive Reacceleration Plain Diffusion

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Cosmic rays (0.1–100 GeV): 805 790 698 780 723 660

Protons 737 724 633 718 662 601

Helium 56 55 48 52.4 48.3 43.9

Leptons 12.2 14.5 16.9 10.04 12.91 15.15

Primary e− 8.8 11.1 13.4 8.65 10.5 12.7

Secondary e− 0.78 0.77 0.83 0.63 0.64 0.65

Secondary e+ 2.6 2.6 2.7 1.76 1.77 1.80

γ -rays (0.01–100 MeV): 2.32 3.34 6.22 1.47 2.20 3.50

π0-decay 0.24 0.23 0.23 0.14 0.13 0.13

Inverse Compton 1.80 2.81 5.63 1.09 1.79 3.04

Primary e− 1.31 2.20 4.41 0.91 1.54 2.67

Secondary e± 0.49 0.61 1.22 0.18 0.25 0.37

Bremsstrahlung 0.27 0.30 0.36 0.24 0.28 0.33

Primary e− 0.11 0.15 0.19 0.15 0.19 0.24

Secondary e± 0.16 0.15 0.17 0.09 0.09 0.09

γ -rays (0.1–100 GeV): 8.86 9.12 10.3 6.72 7.18 7.79

π0-decay 6.75 6.46 6.59 4.99 4.90 4.79

Inverse Compton 1.25 1.76 2.59 1.27 1.77 2.43

Primary e− 1.15 1.66 2.43 1.20 1.68 2.33

Secondary e± 0.10 0.10 0.16 0.07 0.09 0.10

Bremsstrahlung 0.87 0.88 1.08 0.46 0.51 0.57

Primary e− 0.51 0.58 0.74 0.33 0.39 0.45

Secondary e± 0.36 0.30 0.34 0.13 0.12 0.12

Radio (0.001–100 GHz): 2.07 2.76 3.72 1.48 2.03 2.50

Primary e− 1.65 2.31 3.10 1.30 1.81 2.26

Secondary e± 0.42 0.45 0.62 0.18 0.22 0.24

Conversion efficiencies:

γ -rays/CR leptonsa 0.34 0.40 0.57 0.28 0.34 0.42

Synchrotron/CR leptonsb 0.17 0.19 0.22 0.13 0.16 0.17

Lepton calorimetric efficiencyc 0.51 0.59 0.79 0.41 0.49 0.59

Optical–FIR (0.3–3000 THz): 24.8 × 1043 erg s−1

Opticald 19.6 × 1043 erg s−1

Total IRe 5.2 × 1043 erg s−1

FIRf 1.9 × 1043 erg s−1

Radio–FIR relation:

Synchrotron (1.4 GHz)g 1.68 2.18 2.85 1.06 1.49 1.82

qFIR 2.49 2.38 2.26 2.69 2.54 2.45

Notes.
a (IC+bremsstrahlung)/(total leptons).
b (Synchrotron)/(total leptons).
c (IC+bremsstrahlung+synchrotron)/(total leptons).
d 0.1–8 µm; 38–3000 THz.
e 8–1000 µm; 0.3–38 THz.
f 42.5–122.5 µm; 2.45–7.06 THz.
g 1028 erg s−1 Hz−1.

A.W.S. and T.A.P. would like to thank the organizers of the
Infrared Emission, Interstellar Medium, and Star Formation
Workshop (http://www.mpia-hd.mpg.de/IR10/) and the partici-
pants for the many stimulating talks and discussions. We would
also like to thank George Helou and Heinz Völk for useful
comments. T.A.P. acknowledges support from NASA Grant
No. NNX10AE78G. I.V.M. acknowledges support from NASA
Grant No. NNX09AC15G.

REFERENCES

Abdo, A. A., et al. 2009a, Phys. Rev. Lett., 102, 181101
Abdo, A. A., et al. 2009b, ApJ, 703, 1249
Abdo, A. A., et al. 2009c, Phys. Rev. Lett., 103, 251101

Abdo, A. A., et al. 2010a, ApJ, 710, 133

Abdo, A. A., et al. 2010b, Phys. Rev. Lett., 104, 101101

Ando, S., & Pavlidou, V. 2009, MNRAS, 400, 2122

Cox, D. P. 2005, ARA&A, 43, 337

de Jong, T., et al. 1985, A&A, 147, L6

de Nolfo, G. A., et al. 2006, Adv. Space Res., 38, 1558

Diehl, R., et al. 2006, Nature, 439, 45

Dogiel, V. A., et al. 2002, ApJ, 572, 157

Engelmann, J. J., et al. 1990, A&A, 233, 96

Ferrière, K. M. 2001, Rev. Mod. Phys., 73, 1031

Freudenreich, H. T. 1998, ApJ, 492, 495

Helou, G., et al. 1985, ApJ, 298, 7

Kent, S. M., et al. 1991, ApJ, 378, 131

Lorimer, D. R. 2004, in IAU Symp. 218, Young Neutron Stars and Their
Environments, ed. F. Camilo & B. M. Gaensler (Cambridge: Cambridge
Univ. Press), 105

http://www.mpia-hd.mpg.de/IR10/
http://dx.doi.org/10.1103/PhysRevLett.102.181101
http://adsabs.harvard.edu/abs/2009PhRvL.102r1101A
http://adsabs.harvard.edu/abs/2009PhRvL.102r1101A
http://dx.doi.org/10.1088/0004-637X/703/2/1249
http://adsabs.harvard.edu/abs/2009ApJ...703.1249A
http://adsabs.harvard.edu/abs/2009ApJ...703.1249A
http://dx.doi.org/10.1103/PhysRevLett.103.251101
http://adsabs.harvard.edu/abs/2009PhRvL.103y1101A
http://adsabs.harvard.edu/abs/2009PhRvL.103y1101A
http://dx.doi.org/10.1088/0004-637X/710/1/133
http://adsabs.harvard.edu/abs/2010ApJ...710..133A
http://adsabs.harvard.edu/abs/2010ApJ...710..133A
http://dx.doi.org/10.1103/PhysRevLett.104.101101
http://adsabs.harvard.edu/abs/2010PhRvL.104j1101A
http://adsabs.harvard.edu/abs/2010PhRvL.104j1101A
http://dx.doi.org/10.1111/j.1365-2966.2009.15605.x
http://adsabs.harvard.edu/abs/2009MNRAS.400.2122A
http://adsabs.harvard.edu/abs/2009MNRAS.400.2122A
http://dx.doi.org/10.1146/annurev.astro.43.072103.150615
http://adsabs.harvard.edu/abs/2005ARA&A..43..337C
http://adsabs.harvard.edu/abs/2005ARA&A..43..337C
http://adsabs.harvard.edu/abs/1985A&A...147L...6D
http://adsabs.harvard.edu/abs/1985A&A...147L...6D
http://dx.doi.org/10.1016/j.asr.2006.09.008
http://adsabs.harvard.edu/abs/2006AdSpR..38.1558D
http://adsabs.harvard.edu/abs/2006AdSpR..38.1558D
http://dx.doi.org/10.1038/nature04364
http://adsabs.harvard.edu/abs/2006Natur.439...45D
http://adsabs.harvard.edu/abs/2006Natur.439...45D
http://dx.doi.org/10.1086/341882
http://adsabs.harvard.edu/abs/2002ApJ...572L.157D
http://adsabs.harvard.edu/abs/2002ApJ...572L.157D
http://adsabs.harvard.edu/abs/1990A&A...233...96E
http://adsabs.harvard.edu/abs/1990A&A...233...96E
http://dx.doi.org/10.1103/RevModPhys.73.1031
http://adsabs.harvard.edu/abs/2001RvMP...73.1031F
http://adsabs.harvard.edu/abs/2001RvMP...73.1031F
http://dx.doi.org/10.1086/305065
http://adsabs.harvard.edu/abs/1998ApJ...492..495F
http://adsabs.harvard.edu/abs/1998ApJ...492..495F
http://dx.doi.org/10.1086/184556
http://adsabs.harvard.edu/abs/1985ApJ...298L...7H
http://adsabs.harvard.edu/abs/1985ApJ...298L...7H
http://dx.doi.org/10.1086/170413
http://adsabs.harvard.edu/abs/1991ApJ...378..131K
http://adsabs.harvard.edu/abs/1991ApJ...378..131K
http://adsabs.harvard.edu/abs/2004IAUS..218..105L


No. 1, 2010 LUMINOSITY AND ENERGY BUDGET OF THE MILKY WAY L63

Moskalenko, I. V., & Strong, A. W. 1998, ApJ, 493, 694
Moskalenko, I. V., et al. 2002, ApJ, 565, 280
Murphy, E. J., et al. 2006, ApJ, 638, 157
Murphy, E. J., et al. 2008, ApJ, 678, 828
Paladini, R., et al. 2007, A&A, 465, 839
Porter, T. A., et al. 2008, ApJ, 682, 400
Sironi, L., & Socrates, A. 2010, ApJ, 710, 891
Socrates, A., et al. 2008, ApJ, 687, 202
Sodroski, T. J., et al. 1997, ApJ, 480, 173

Strong, A. W., & Moskalenko, I. V. 1998, ApJ, 509, 212
Strong, A. W., et al. 2000, ApJ, 537, 763
Strong, A. W., et al. 2004a, ApJ, 613, 962
Strong, A. W., et al. 2004b, A&A, 422, L47
Strong, A. W., et al. 2007, Ann. Rev. Nucl. Part. Sci., 57, 285
Thompson, T. A., Quataert, E., & Waxman, E. 2007, ApJ, 654, 219
Völk, H. J. 1989, A&A, 218, 67
Yanasak, N. E., et al. 2001, ApJ, 563, 768
Yun, M. S., et al. 2001, ApJ, 554, 803

http://dx.doi.org/10.1086/305152
http://adsabs.harvard.edu/abs/1998ApJ...493..694M
http://adsabs.harvard.edu/abs/1998ApJ...493..694M
http://dx.doi.org/10.1086/324402
http://adsabs.harvard.edu/abs/2002ApJ...565..280M
http://adsabs.harvard.edu/abs/2002ApJ...565..280M
http://dx.doi.org/10.1086/498636
http://adsabs.harvard.edu/abs/2006ApJ...638..157M
http://adsabs.harvard.edu/abs/2006ApJ...638..157M
http://dx.doi.org/10.1086/587123
http://adsabs.harvard.edu/abs/2008ApJ...678..828M
http://adsabs.harvard.edu/abs/2008ApJ...678..828M
http://dx.doi.org/10.1051/0004-6361:20065835
http://adsabs.harvard.edu/abs/2007A&A...465..839P
http://adsabs.harvard.edu/abs/2007A&A...465..839P
http://dx.doi.org/10.1086/589615
http://adsabs.harvard.edu/abs/2008ApJ...682..400P
http://adsabs.harvard.edu/abs/2008ApJ...682..400P
http://dx.doi.org/10.1088/0004-637X/710/2/891
http://adsabs.harvard.edu/abs/2010ApJ...710..891S
http://adsabs.harvard.edu/abs/2010ApJ...710..891S
http://dx.doi.org/10.1086/590046
http://adsabs.harvard.edu/abs/2008ApJ...687..202S
http://adsabs.harvard.edu/abs/2008ApJ...687..202S
http://dx.doi.org/10.1086/303961
http://adsabs.harvard.edu/abs/1997ApJ...480..173S
http://adsabs.harvard.edu/abs/1997ApJ...480..173S
http://dx.doi.org/10.1086/306470
http://adsabs.harvard.edu/abs/1998ApJ...509..212S
http://adsabs.harvard.edu/abs/1998ApJ...509..212S
http://dx.doi.org/10.1086/309038
http://adsabs.harvard.edu/abs/2000ApJ...537..763S
http://adsabs.harvard.edu/abs/2000ApJ...537..763S
http://dx.doi.org/10.1086/423193
http://adsabs.harvard.edu/abs/2004ApJ...613..962S
http://adsabs.harvard.edu/abs/2004ApJ...613..962S
http://dx.doi.org/10.1051/0004-6361:20040172
http://adsabs.harvard.edu/abs/2004A&A...422L..47S
http://adsabs.harvard.edu/abs/2004A&A...422L..47S
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123011
http://adsabs.harvard.edu/abs/2007ARNPS..57..285S
http://adsabs.harvard.edu/abs/2007ARNPS..57..285S
http://dx.doi.org/10.1086/509068
http://adsabs.harvard.edu/abs/2007ApJ...654..219T
http://adsabs.harvard.edu/abs/2007ApJ...654..219T
http://dx.doi.org/10.1086/323842
http://adsabs.harvard.edu/abs/2001ApJ...563..768Y
http://adsabs.harvard.edu/abs/2001ApJ...563..768Y
http://dx.doi.org/10.1086/323145
http://adsabs.harvard.edu/abs/2001ApJ...554..803Y
http://adsabs.harvard.edu/abs/2001ApJ...554..803Y



