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Abstract

Due to its many applications, curve simplification is a long-studied problem in computational

geometry and adjacent disciplines, such as graphics, geographical information science, etc. Given a

polygonal curve P with n vertices, the goal is to find another polygonal curve P ′ with a smaller

number of vertices such that P ′ is sufficiently similar to P . Quality guarantees of a simplification

are usually given in a local sense, bounding the distance between a shortcut and its corresponding

section of the curve. In this work we aim to provide a systematic overview of curve simplification

problems under global distance measures that bound the distance between P and P ′. We consider

six different curve distance measures: three variants of the Hausdorff distance and three variants of

the Fréchet distance. And we study different restrictions on the choice of vertices for P ′. We provide

polynomial-time algorithms for some variants of the global curve simplification problem, and show

NP-hardness for other variants. Through this systematic study we observe, for the first time, some

surprising patterns, and suggest directions for future research in this important area.
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1 Introduction

Due to its many applications, curve simplification (also known as line simplification) is a

long-studied problem in computational geometry and adjacent disciplines, such as graphics,

geographical information science, etc. Given a polygonal curve P with n vertices, the goal

is to find another polygonal curve P ′ with a smaller number of vertices such that P ′ is
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δInput curve

Figure 1 For a target distance δ, the red curve (middle) is a global simplification of the input

curve (left), but it is not a local simplification, since the first shortcut does not closely represent its

corresponding curve section (right). The example works for both Hausdorff and Fréchet distance.

sufficiently similar to P . Classical algorithms for this problem famously include a simple

recursive scheme by Douglas and Peucker [16], and a more involved dynamic programming

approach by Imai and Iri [21]; both are frequently implemented and cited. Since then,

numerous further results on curve simplification, often in specific settings or under additional

constraints, have been obtained [1, 2, 6, 11, 12, 14, 8, 18, 20].

Despite its popularity, the Douglas-Peucker algorithm comes with no provable quality

guarantees. The method by Imai and Iri, though slower, was introduced as an alternative

which does supply guarantees: it finds an optimal shortest path in a graph in which potential

shortcuts are marked as either valid or invalid, based on their distance to the corresponding

sections of the input curve. However, Agarwal et al. [2] note that the Imai-Iri algorithm

does not actually globally optimize any distance measure between the original curve P and

the simplification P ′. This work initiated a more formal study of curve simplification; van

Kreveld et al. [24] systematically show that both Douglas-Peucker and Imai-Iri may indeed

produce far-from-optimal results.

This raises a question of what it means for a simplification to be optimal. We may view

it as a dual-optimization problem: we wish to minimize the number of vertices of P ′ given

a constraint on its similarity to P . This depends on the distance measure used; popular

curve distance measures include the Hausdorff and Fréchet distances (variants and formal

definitions are discussed in Section 2.1). However, the difference in interpretation between

Agarwal et al. and Imai and Iri lies not so much in the choice of distance measure, but rather

what exactly it is applied to. In fact, the Imai-Iri algorithm is optimal in a local sense: it

outputs a subsequence of the vertices of P such that the Hausdorff distance between each

shortcut and its corresponding section of the input is bounded: each shortcut approximates

the section of P between the vertices of the shortcut.

In this work, we underline this difference by using the term global simplification when

a bound on a distance measure must be satisfied between P and P ′ (formal definition in

Section 2.3), and local simplification when a bound on a distance measure must be satisfied

between each edge of P ′ and its corresponding section of P . Clearly, a local simplification

is also a global simplification, but the reverse is not necessarily true, see Figure 1. Both

local and global simplifications have their merits: one can imagine situations where it is

important that each segment of a simplified curve is a good representation of the curve

section it replaces, but in other applications (e.g., visualization) it is really the similarity of

the overall result to the original that matters. Most existing work on curve simplification

falls in the local category. In this work, we focus on global curve simplification.

1.1 Existing Work on Global Curve Simplification

Surprisingly, only a few results on simplification under global distance measures are known [2,

7, 10, 24]; consequently, what makes the problem difficult is not well understood.
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Agarwal et al. [2] first consider the idea of global simplification. They introduce what

they call a weak simplification: a model in which the vertices of the simplification are not

restricted to be a subset of the input vertices, but can lie anywhere in the ambient space.1

Interestingly, they compare this to a local simplification where vertices are restricted to be

a subset of the input. We may interpret a combination of two of their results (Theorem

1.2 and Theorem 4.1) as an approximation algorithm for global curve simplification with

unrestricted vertices under the Fréchet distance: for a given curve P and threshold δ one can

compute, in O(n log n) time, a simplification P ′ which has at most the number of vertices of

an optimal simplification with threshold δ/8.

Bereg et al. [7] first explicitly consider global simplification in the setting where vertices

are restricted to be a subsequence of input vertices, but using the discrete Fréchet distance:

a variant of the Fréchet distance which only measures distances between vertices (refer

to Section 2.1). They show how to compute an optimal simplification where vertices are

restricted to be a subsequence in O(n2) time, and they give an O(n log n) time algorithm for

the setting where vertices may be placed freely.

Van Kreveld et al. [24] consider the same (global distance, but vertices should be a

subsequence) setting, but for the continuous Fréchet and Hausdorff distances. They give

polynomial-time algorithms for the Fréchet distance and directed Hausdorff distance (from

simplification curve to input curve), but they show the problem is NP-hard for the directed

Hausdorff distance in the opposite direction and for the undirected Hausdorff distance.

Recently, Bringmann and Chaudhury [10] improved their result for the Fréchet distance to

O(n3), and also give a conditional cubic lower bound.

Finally, we mention there is earlier work which does not explicitly study simplification

under global distance measures, but contains results that may be reinterpreted as such.

Guibas et al. [19] provide algorithms for computing minimum-link paths that stab a sequence

of regions in order. One of the variants, presented in Theorems 10 and 14 of [19], computes

what may be seen as an optimal simplification under the Fréchet distance with no vertex

restrictions, i.e., the same setting that was studied by Agarwal et al., in O(n2 log2 n) time.

2 Classification

We aim to provide a systematic overview of curve simplification problems under global

distance measures. To this end, we have collected known results and arranged them in a table

(Table 1), and provide several new results to complement these (refer to Section 2.4). This

allows us for the first time to observe some surprising patterns, and it suggests directions for

future research in this important area. We first discuss the dimensions of the table.

2.1 Distance Measures

For our study, we consider six different curve distance measures: three variants of the

Hausdorff distance and three variants of the Fréchet distance. These are among the most

popular curve distance measures in the algorithms literature. The Hausdorff distance captures

the maximum distance from a point on one curve to a point on the other curve. The variants

of the Hausdorff distance we consider are the directed Hausdorff distance from the input to

the output, the directed Hausdorff distance from the output to the input, and the undirected

1 We choose not to adopt the terms weak and strong in this context because we will also distinguish an
intermediate model, and to avoid confusion with the weak Fréchet distance; refer to Section 2.2.

ESA 2019
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Figure 2 Globally simplified curves under Fréchet distance (left) and Hausdorff distance (right).

The vertex-restricted case (in red) requires 5 vertices for Fréchet distance and 8 vertices for the

Hausdorff distance. The curve-restricted case (in blue) requires 4 vertices for Fréchet distance and 6

vertices for the Hausdorff distance. The non-restricted case (in green) requires only 3 vertices for

Fréchet distance and only 5 vertices for the Hausdorff distance. The δ-neighborhoods for the original

curves are shown in yellow.

(or bidirectional) Hausdorff distance. The Fréchet distance captures the maximum distance

between a pair of points traveling along the two curves simultaneously. We now formally

define all six distance measures.

Let P = 〈p1, p2, · · · , pn〉 be the input polygonal curve. We treat P as a continuous map

P : [1, n]→ R
d, where P (i) = pi for integer i, and the i-th edge is linearly parametrized as

P (i + λ) = (1− λ)pi + λpi+1. We write P [s, t] for the subcurve between P (s) and P (t) and

denote the shortcut, i.e., the straight line connecting them, by 〈P (s)P (t)〉.
The Fréchet distance between two polygonal curves P and Q, with n and m vertices,

respectively, is F(P, Q) = inf(σ,θ) maxt ‖P (σ(t)) − Q(θ(t))‖, where σ and θ are continuous

non-decreasing functions from [0, 1] to [1, n] and [1, m], respectively. If σ and θ are continuous

but not necessarily monotone, the resulting infimum is called the weak Fréchet distance.

Finally, the discrete Fréchet distance is a variant where σ and θ are discrete functions from

{1, . . . , k} to {1, . . . , n} and {1, . . . , m} with the property that |σ(i)− σ(i + 1)| ≤ 1.

The directed Hausdorff distance between two polygonal curves (or more generally, compact

sets) P and Q is defined as
−→
H (P, Q) = max

p∈P
min
q∈Q
‖p− q‖. The undirected Hausdorff distance

is then simply the maximum over the two directions: H(P, Q) = max{−→H (P, Q),
−→
H (Q, P )}.

2.2 Vertex Restrictions

Once we have fixed the distance measure and agreed that we wish to apply it globally,

one important design decision still remains to be made. Traditional curve simplification

algorithms consider the (polygonal) input curve P to be a sequence of points, and produce
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Table 1 Known and new results (in blue) for the GCS problem under global distance measures.

Distance Vertex-restricted (V) Curve-restricted (C) Non-restricted (N )

←−
H (P, δ) strongly NP-hard [24] weakly NP-hard (Thm 5) ?

−→
H (P, δ)

O(n4) [24]

O(n3 log n) (Thm 3)
weakly NP-hard (Thm 5) poly(n) [23]

H(P, δ) strongly NP-hard [24] strongly NP-hard (Cor 14)
strongly NP-hard (Thm 13)

F(P, δ)
O(mn5) [24]

O(n3) [22]

O(n3) [10]

O(n) in R
1 (Thm 7)

weakly NP-hard in R
2 (Thm 5)

O(n2 log2 n) in R
2 [19]

O(n log n) (1, 8)-approx [2]

O∗(n2 log n log log n)

(2, 1 + ε)-approx (Thm 11)

dF(P, δ) O(n2) [7] O(n3) (Thm 6) O(n log n) [7]

wF(P, δ) O(n3) (Thm 2) weakly NP-hard (Thm 5) (2, 1 + ε)-approx (Cor 12)

as output P ′ a subsequence of this sequence. However, if we measure the distance globally,

there may be no strong reason to restrict the family of acceptable output curves so much:

the distance measure already ensures the similarity between input and output curves, so

perhaps we may allow a more free choice of vertex placement. Indeed, several results under

this more relaxed viewpoint exist, as discussed in Section 1.1. Here, we choose to investigate

three increasing levels of freedom: (1) vertex-restricted (V), where vertices of P ′ have to be a

subsequence of vertices of P ; (2) curve-restricted (C), where vertices of P ′ can lie anywhere

on P but have to respect the order along P ; and (3) non-restricted (N ), where vertices of P ′

can be anywhere in the ambient space. Figure 2 illustrates the difference between the three

models. The third category does not make sense for local curve simplification, but is very

natural for global curve simplification. Observe that when the vertices of a simplified curve

have more freedom, the optimal simplified curve never has more, but may have fewer, vertices.

2.3 Global Curve Simplification Overview

We are now ready to formally define a class of global curve simplification problems. When

D(·, ·) denotes a distance measure between curves (e.g., the Hausdorff or Fréchet distance),

the global curve simplification (GCS) problem asks what is the smallest number k such

that there exists a curve P ′ with at most k vertices, chosen either as a subsequence of the

vertices of P (variant V), as a sequence of points on the edges of P in the correct order

along P (variant C), or chosen anywhere in R
d (variant N ) and such that D(P, P ′) ≤ δ, for

a given threshold δ. In all cases, we require that P and P ′ start at the same point and end

at the same point.

Table 1 summarizes results for the different variants of the GCS problem obtained by

instantiating D with the Hausdorff or Fréchet distance measures and by applying a vertex

restriction R. Here R ∈ {V, C,N}, and D is either the undirected Hausdorff distance H, the

directed Hausdorff distance
←−
H (P, δ) from P to P ′, the directed Hausdorff distance

−→
H (P, δ)

from P ′ to P , the Fréchet distance F, the discrete Fréchet distance dF, or the weak Fréchet

distance wF. Throughout the paper we use DR(P, δ) to denote a curve P ′ that is the optimal

R-restricted simplification of P with D(P, P ′) ≤ δ.

ESA 2019
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Since GCS is a dual-optimization problem, we call an algorithm an (α, β)-approximation

if it computes a solution with distance at most βδ and uses at most α times more shortcuts

than the optimal solution for distance δ.

2.4 New Results

In order to provide a thorough understanding of the different variants of the GCS problem

we provide several new results. In some cases these are straightforward adaptations of known

results, in other cases they require deeper ideas. Additional lemmas, theorems, and proofs

are available in the full version of this paper [22]. We give polynomial time algorithms for

finding wFV(P, δ), the vertex-restricted GCS under the weak Fréchet distance (Section 3,

Theorem 2), and wFV(P, δ), the vertex-restricted GCS under the strong Fréchet distance (see

[22]). In Section 4 we consider the vertex-restricted problem under the directed Hausdorff

distance from P ′ to P (that is, to find
−→
H V(P, δ)), originally considered by van Kreveld et

al. [24], and we provide an algorithm with an improved runtime of O(n3 log n) (Theorem 3).

In Section 5 we prove that solving the curve-restricted GCS is NP-hard for almost all distance

measures considered in this paper except for the discrete Fréchet distance (Theorem 6) and

strong Fréchet distance in R
1 (Theorem 7) for which we present polynomial time algorithms.

To the best of our knowledge, these are the first results in the curve-restricted setting

under global distance measures. Finally, in Section 8, we give a (2, 1 + ε)-approximation

algorithm for FN (P, δ), the non-restricted GCS under the Fréchet distance, which runs in

O∗(n2 log n log log n) time, where O∗ hides factors polynomial in 1/ε (Theorem 11). The same

result also holds for wFN (P, δ) (Corollary 12). In Section 9 we show that the non-restricted

GCS problem becomes NP-hard when we consider the Hausdorff distance (Theorem 13).

2.5 Discussion

With both the existing work and our new results in place, we now have a good overview of

the complexity of the different variants of the GCS problem, see Table 1.

Observe that the curve-restricted variants seem to generally be harder than both the vertex-

restricted and the non-restricted variants. That means that, on the one hand, broadening

the search space from the vertex-restricted to the curve-restricted case makes the problem

harder. But on the other hand it does not give unrestricted freedom of choice, which in turn

enables the development of efficient algorithms for the unrestricted case.

Another interesting pattern can be observed for the Hausdorff distance measures. The

direction of the Hausdorff distance makes a significant difference in whether the corresponding

GCS problem is NP-hard or polynomially solvable. The GCS problem for the undirected

Hausdorff distance is at least as hard as for the directed Hausdorff distance from the input

curve to the simplification.

Drawing upon the above observations we make the following conjecture:

◮ Conjecture 1. The curve-restricted and non-restricted GCS problems for
←−
H (P, δ) are

strongly NP-hard.

3 Freespace-Based Algorithms for Fréchet Simplification

We use the free space diagram between P and its shortcut graph G to solve the vertex-

restricted GCS problem under the weak and strong Fréchet distances in O(n3) time and

space. This is related to map-matching [4, 9], however in our case we need to compute

shortest paths in the free space that correspond to simple paths in G. While map-matching

for closed simple paths is NP-complete [25], we exploit the DAG property of G to develop

efficient algorithms. The proof for the strong Fréchet distance can be found in [22].
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Figure 3 A free space diagram FSDδ(P, G) with strips and spines.

3.1 Shortcut DAG and Free Space Diagram

Let G = (V, E) be the shortcut DAG of P , where V = {1, . . . , n} and E = {(u, v) | 1 ≤
u < v ≤ n}. Each v ∈ V is embedded at pv and each edge e = (u, v) ∈ E as a straight line

shortcut is linearly parameterized as e(t) = (1 − t)pu + tpv for t ∈ [0, 1]. We consider the

parameter space of G to be E × [0, 1].

Now, let δ > 0, and consider the joint parameter space [1, n] × E × [0, 1] of P and G.

Any (s, e, t) ∈ [1, n]×E × [0, 1] is called free if ‖P (s)− e(t)‖ ≤ δ, and the union of all free

points is referred to as the free space. For brevity, we write (s, e(t)) instead of (s, e, t), and

if e(t) = v ∈ V we write (s, v). The free space diagram FSDδ(P, G) consists of all points in

[1, n] × E × [0, 1] together with an annotation for each point whether it is free or not. In

the special case that the graph is a polygonal curve Q with m vertices, then FSDδ(P, Q)

consists of (n − 1) × (m − 1) cells in the domain [1, n] × [1, m]. A monotone path from

(1, 1) to (n, m) that lies entirely within the free space corresponds to a pair of monotone

reparameterizations (σ, θ) that witness F(P, Q) ≤ δ. Such a reachable path can be computed

using dynamic programming in O(mn) time [5]. If one drops the monotonicity requirement

for the path, one obtains a witness for wF(P, Q) ≤ δ.

The free space diagram FSDδ(P, G) consists of one cell for each edge in P and each

edge in G. The free space in such a cell is convex. The boundary of a cell comprises four

line segments that each contain at most one free space interval. FSDδ(P, G) is composed

of spines and strips. For any v ∈ V and e ∈ E we call SP(v) = [1, n] × v a spine and

ST(e) = [1, n] × e × [0, 1] a strip. We denote the free space within spines and strips as

SPδ(v) = {(s, v) | 1 ≤ s ≤ n, ||P (s)− pv|| ≤ δ} and STδ(e) = {(s, e(t)) | 1 ≤ s ≤ n, 0 ≤ t ≤
1, ||P (s)− e(t)|| ≤ δ}. For (u, v) ∈ E, both spines centered at the vertices of the edge are

subsets of the strip: SP(u), SP(v) ⊆ ST(u, v), and SP(u) is a subset of all strips with respect

to edges incident on u. See Figure 3 for an illustration.

3.2 Weak Fréchet Distance wFV(P, δ) in Polynomial Time

Let P ′ = wFV (P, δ) and let n′ = #P ′ be the number of vertices in P ′. Then P ′ is a path

in G, and P ′ visits an increasing subsequence of vertices in P (or V ). From the fact that

wF(P, P ′) ≤ δ we know that there is a path P = (σ, θ) from (1, 1) to (n, n′) in FSDδ(P, P ′)

that lies entirely within free space. And since FSDδ(P, P ′) is a subset of FSDδ(P, G), the

path P = (σ, θ) is also a path in FSDδ(P, G). Here, σ is a reparameterization of P , and θ is

a reparameterization of P ′, and P ′ is simple. We call (s, d) in FSDδ(P, G) weakly reachable if

ESA 2019



67:8 Global Curve Simplification

there exists a path P = (σ, θ) from (1, 1) to (s, d) in FSDδ(P, G) that lies in free space such

that θ is a reparameterization of a simple path from p1 to some point on an edge in G. We

denote the number of vertices on this simple path by #P, and we call P weakly reachable.

We define the cost function φ : [1, n]× V → N as φ(z, v) = minP #P, where the minimum

ranges over all weakly reachable paths to (z, v) in the free space diagram. If no such path

exists then φ(z, v) =∞. Note that all points in a free space interval (on the boundary of a

free space cell) have the same φ-value.

◮ Observation 1. There is a weakly reachable path P in FSDδ(P, G) from (1, 1) to (n, n)

with #P = #wFV(P, δ) if and only if φ(n, n) = #wFV(P, δ).

Since φ is the length of a shortest path, it seems as if one could compute it by simply

using a breadth-first propagation. However, one has to be careful because a weakly reachable

path P is only allowed to backtrack along the path in G that it has already traversed. We

therefore carefully combine two breadth-first propagations to compute the φ values for all

I ∈ I, where I is the set of all (non-empty) free space intervals on all spines SP(v) for all

v ∈ V . For the primary breadth-first propagation, we initialize a queue Q by enqueuing the

interval I ⊆ SPδ(1) that contains (1, 1). Once an interval has been enqueued it is considered

visited, and it can never become unvisited again. Then we repeatedly extract the next interval

I from Q. Assume I ⊆ SPδ(u). For each v from u + 1 to n we consider ST(u, v) and we

compute all unvisited intervals J ⊆ SPδ(u)∪ SPδ(v) that are reachable from I with a path in

STδ(u, v). These J can be reached using one more vertex, therefore we set φ(J) = φ(I) + 1,

we insert J into Q, and we store the predecessor π(J) = I. For each J ∈ SPδ(u) we then

launch a secondary breadth-first traversal to propagate φ(J) to all unvisited intervals J ′ ∈ I
that are reachable from J within the free space of FSDδ(P, G(π(J))). Here, G(π(J)) denotes

the projection of the predecessor DAG rooted at π(J) onto G, i.e., each interval I in the

predecessor DAG is projected to u if I ⊆ SPδ(u). This allows P to backtrack along the path in

G that it has already traversed, without increasing φ. This secondary breadth-first traversal

uses a separate queue Q′, and sets φ(J ′) = φ(J) and π(J ′) = J . When this secondary

traversal is finished, Q′ is prepended to Q, and then the primary breadth-first propagation

continues. Once Q is empty, i.e., all intervals have been visited, φ(I) = #wFV(P, δ), where

I ⊆ SPδ(n) is the interval that contains (n, n). Backtracking a path P from n to 1 in the

predecessor DAG rooted at π(I), and projecting P onto G, yields the simplified curve P ′.

This algorithm visits each interval in I once using nested breadth-first traversals. Since there

are O(n3) free space intervals this takes O(n3) time and space.

◮ Theorem 2. Given a polygonal curve P with n vertices and δ > 0, an optimal solution to

the vertex-restricted GCS problem under the weak Fréchet distance can be computed in O(n3)

time and space.

4 Vertex-Restricted GCS under Directed Hausdorff from P ′ to P

In this section we revisit the GCS problem for
−→
H V(P, δ) considered by Kreveld et al. [24].

We improve on the running time of their O(n4) time algorithm. First we thicken the input

curve P by width δ. This induces a polygon P with h = O(n2) holes. Now all we need is

to decide whether each shortcut 〈pipj〉 for all 1 ≤ i < j ≤ n lies entirely within P or not.

To this end, we preprocess P into a data structure such that for any straight line query

ray ρ originating from a point inside P one can efficiently compute the first point on the

boundary of P hit by ρ. We use the data structure proposed by [13] of size O(N) which

can be constructed in time O(N
√

h + h3/2 log h + N log N) and which answers queries in
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Figure 4 Sketch of the template curve.
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Figure 5 Pinhole gadgets π for FC(P, δ)

(left) and
←−
H C(P, δ) (right). The pinhole is

shown in red.

O(
√

h log N) time. We have Θ(n2) shortcuts 〈pipj〉 to process and need to examine whether

each shortcut lies inside P or not. If a shortcut lies inside P then we include it in the edge

set of the shortcut graph proposed by Imai and Iri [20]. Otherwise we eliminate the shortcut.

We originate a ray at pi and compute the first point x on the boundary of P hit by the ray

in O(
√

h log N) time. If ‖pi − x‖ ≥ ‖pi − pj‖ then the shortcut lies inside P, otherwise it

does not. Once the edge set of the shortcut graph is constructed, we compute the shortest

path in it. As a result we have the following theorem:

◮ Theorem 3. Given a polygonal curve P with n vertices and δ > 0, an optimal solution to

the curve-restricted GCS problem for
−→
H V(P, δ) can be computed in O(n3 log n) time using

O(n2) space.

5 NP-Hardness of Several Curve-Restricted Variants

In this section we construct a template that we use to prove NP-hardness of the curve-

restricted GCS problems for most of the distance measures discussed in this paper. The

template takes inspiration from the NP-hardness proofs of minimum-link path problems [23].

We believe that this template can be adapted to show hardness of other similar problems.

The template reduces from the Subset Sum problem. Given a set of m integers

A = {a1, a2, . . . , am} and an integer M , we will construct an instance of the curve-restricted

GCS problem such that there exists a subset B ⊂ A with the total sum of its integers equal

to M if and only if there exists a simplified polygonal curve with at most 2m + 1 vertices.

The input curve P we construct has a zig-zag pattern. It has m split gadgets at every

other bend of the pattern, m + 1 enumeration gadgets at the other bends, and 2m pinhole

gadgets halfway through each zig-zag segment (refer to Figure 4).

The construction forces any optimal simplification P ′ to follow a zig-zag pattern with a

vertex on each split and enumeration gadget and no other vertices. The pinhole gadget is

named as such because any segment of P ′ that goes through it is forced to pass through a

specific point, called the pinhole. This limits the placements of P ′’s vertices. The choice of

where to place the vertex on each split gadget then corresponds to the choice of including

or excluding a given integer in the subset B and the x-coordinate of the vertex on each

enumeration gadget encodes the sum of integers in B up to that point. We ensure that the

endpoint of P is reachable with at most 2m + 1 vertices only if B sums to exactly M .

The split and enumeration gadgets always have the same shape, but the shape of the

pinhole gadget depends on the distance measure. Pinhole gadgets must be chosen so that

the following properties hold:
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1. Any segment of P ′ starting before a pinhole gadget and ending after the pinhole gadget

must pass through the pinhole gadget’s pinhole.

2. It must be impossible to have a segment of P ′ traverse multiple pinhole gadgets at once.

3. Any segment of P ′ where the starting vertex u is on a split or enumeration gadget, the

segment goes through a pinhole, and the ending vertex v is on the next enumeration or

split gadget, must have distance ≤ δ to P [u, v].

4. P must be polynomial in size. Specifically, only a polynomial number of polyline segments

can be used and all vertices must have rational coordinates.

In Figure 5 we show pinhole gadgets for Fréchet distance and directed Hausdorff distance

directed from P ′ to P . The gadget for Fréchet distance also works for weak Fréchet distance,

undirected Hausdorff distance and directed Hausdorff distance in the other direction. For

these latter three distance measures, we note that the pinhole gadget here does not force P ′

to go through the pinhole but to pass close enough by it instead. This results in there being

reachable intervals on the split and enumeration gadgets rather than reachable points. This

leads to an expanded version of the first property:

1. The endpoint of any segment of P ′ starting before a pinhole gadget and ending after the

pinhole gadget must have distance less than 0.5
2m to the endpoint of the segment with

the same starting point that passes exactly through the pinhole and ends on the same

segment of P .

If this property holds (as it does for the gadget in Figure 5 (left) under weak Fréchet and

Hausdorff distance) the reachable intervals on the gadgets are so small they never overlap, so

the reduction still holds. This leads to the following theorems:

◮ Theorem 4. Given a curve distance measure, if there exists a pinhole gadget that can be

inserted in the described template such that the listed properties hold, the curve-restricted

GCS problem for that distance measure is NP-hard.

◮ Theorem 5. The GCS problem for
←−
H C(P, δ),

−→
H C(P, δ), HC(P, δ), FC(P, δ), wFC(P, δ) is

NP-hard.

Theorem 4 implies this template may be used to prove curve-restricted simplification under

other distance measures NP-hard as well in the future. Since the template reduces from

Subset Sum it proves the above problems weakly to be NP-hard. For undirected Hausdorff

distance, we also prove strong NP-hardness in Corollary 14.

6 Curve-Restricted GCS under Discrete Fréchet Distance

Next we present an O(n3)-time algorithm for the GCS problem for dFC(P, δ). Observe that,

given an input curve P , there is only a discrete set of candidate points we need to consider

for vertices of the output curve. Let A be the arrangement of n disks of radius δ centered on

the vertices of P , and let C = 〈c1, . . . , cm〉, with m ∈ O(n2), be the sequence of intersections

between P and A, in order along P . Observe that under the discrete Fréchet distance, if there

exists a curve-restricted simplification P ′ = 〈q1, . . . , qk〉 of P , then there exists a subsequence

of C of length k which is a simplification of P .

Although the approach of Bereg et al. [7] to compute the minimal vertex-restricted

simplification of A does not apply in our case, we can design a dynamic programming

algorithm in a similar fashion. Define K(i, j) to be the minimum value k such that there

exists a subsequence 〈c1, . . . , cj〉 of length k that has discrete Fréchet distance at most δ

to the sequence 〈p1, . . . , pi〉. We will design a dynamic program to calculate all nm values
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Figure 6 The time-stamped traversals made by the man m and the dog d. The red lines indicate

the dog’s jumps.

K(i, j). Specifically, if pi−1 and cj are within distance δ, then

K(i, j) = min

(

K(i− 1, j), min
1≤j′<j

(K(i− 1, j′) + 1)

)

,

and K(i, j) = ∞ otherwise. This definition immediately gives an O(n4) algorithm to

compute K(n, m). We can improve on this by maintaining a second table with prefix minima

M(i, j) = min
1≤j′≤j

K(i, j), which can be calculated in constant time per table entry and overall

saves a linear factor. The full proof of the following theorem can be found in [22].

◮ Theorem 6. Given a polygonal curve P with n vertices and δ > 0, an optimal solution to

the dFC(P, δ) can be computed in O(n3) time and O(n2) space.

7 GCS Fréchet Distance in One Dimension

In this section we provide a greedy algorithm for the curve-restricted GCS problem in R
1

under the Fréchet distance. We describe our algorithm using the man-dog terminology that is

often used in the literature on Fréchet distance: Initially a man and his dog start at p1. The

man walks along P until his distance to the dog exceeds δ. Now if there is a turn between

the man and the dog, the dog marks its current position and jumps over the turn and stays

at distance exactly δ away from the man. If there is no turn in between, the dog just follows

the man at distance exactly δ and stops when the man arrives at the next turn or the end.

Once they both end the walk at pn we report the positions marked by the dog as P ′. See

Figure 6. More details are given in [22].

◮ Theorem 7. Given a polygonal curve P in R
1 with n vertices and δ > 0, an optimal

solution to the curve-restricted GCS problem under the Fréchet distance can be computed in

linear time.

8 Approximation of Non-Restricted GCS under Fréchet Distance

In this section we present an approximation algorithm for the non-restricted GCS problem

that discretizes the feasible space for the vertices of the simplified curve. The idea is to

compute a polynomial number of shortcuts in the discretized space, and (approximately)

validate for each shortcut whether it is within Fréchet distance δ to a subcurve of P . For every

subcurve of P we incrementally add the valid shortcuts to the edge set of a graph G until all

the shortcuts have been processed. Once G is built, we compute the shortest path in G and
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Algorithm 1 Non-restricted GCS problem for the Fréchet distance.

1 forall i ∈ {1, · · · , n} do Compute Ci(δ,
(

εδ/(4
√

d)
)

and Gi ;

2 E ← ∅, V ← ∅, C1 ← p1 ∪ C1, Cn ← pn ∪ Cn;

3 forall Ci and Cj, with 1 ≤ i ≤ j ≤ n do

4 forall c1 ∈ Ci and c2 ∈ Cj do

5 if Validate(〈c1c2〉, P [i, j]) = true then E ← E ∪ 〈c1c2〉, V ← V ∪ {c1, c2};

6 return the shortest path between p1 and pn in G = (V, E).

return P ′. To speed up the validation for each shortcut, we use a data structure to decide

whether the Fréchet distance between a shortcut and a subcurve of P is at most δ. For a better

understanding of our algorithm, we introduce some notation. Consider a ball B(o, r) of radius

r > 0 centered at o ∈ R
d. Let Prt(Rd, l) be a partitioning of Rd into a set of disjoint cells

(hypercubes) of side length l that is induced by axis parallel hyperplanes placed consecutively

at distance l. For any 1 ≤ i ≤ n we call Ci = Ci(r, l) = {c ∈ Prt(Rd, l) | c ∩ B(pi, r) 6= ∅} a

discretization of B(pi, r). Let Gi be the set of corners of all cells in Ci.

As we can see, Algorithm 1 is a straightforward computation of valid shortcuts and shortest

path in the graph G. The Validate procedure takes a shortcut 〈c1c2〉 and a subcurve P [i, j]

as arguments and decides (approximately) if F(〈c1c2〉, P [i, j]) ≤ δ. In particular, it returns

true if F(〈c1c2〉, P [i, j]) ≤ (1 + ε/2)δ and false if F(〈c1c2〉, P [i, j]) > (1 + ε)δ. We implement

the Validate procedure (line 5) using the data structure in [17]. Let #P ′ denote the number

of vertices of the polygonal curve P ′. The following lemmas imply Theorem 11. More details

and proofs are provided in [22].

◮ Lemma 8. The shortest path P ′
alg returned by Algorithm 1 exists and F(P, P ′

alg) ≤ (1 + ε)δ.

◮ Lemma 9. Let P ′ = FN (P, δ) and let P ′
alg be the curve returned by Algorithm 1. Then

#P ′
alg ≤ 2(#P ′ − 1).

◮ Lemma 10. Algorithm 1 runs in O
(

ε−dn log n
(

log2(1/ε) log n + ε−(d+2)n log log n
)

)

time

and uses O
(

(ε−d log2(1/ε))n
)

space.

◮ Theorem 11. Let P be a polygonal curve with n vertices in R
d, δ > 0, and P ′ = FN (P, δ).

For any 0 < ε ≤ 1, one can compute in O∗(n2 log n log log n) time and O∗(n) space a non-

restricted simplification P ∗ of P such that #P ∗ ≤ 2(#P ′− 1) and F(P, P ∗) ≤ (1 + ε)δ. Here,

O∗ hides factors polynomial in 1/ε.

◮ Corollary 12. Theorem 11 also holds for the non-restricted GCS under the weak Fréchet

distance.

9 Strong NP-Hardness for Non-Restricted GCS under Undirected

Hausdorff Distance

Van Kreveld et al. [24] showed that the vertex-restricted GCS problem is NP-hard for

undirected Hausdorff distance by a reduction from Hamiltonian cycle in segment intersection

graphs. Their proof can be extended to the curve-restricted and non-restricted case; however,

because of the increased freedom in vertex placement we must take care when exact embedding

the segment graph: e.g., segments that intersect at arbitrarily small angles could potentially

cause coordinates with unbounded bit complexity. For this reason, we here reduce from a
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more restricted class of graphs: orthogonal segment intersections graphs. Czyzowicz et al. [15]

show that Hamiltonian cycle remains NP-complete in 2-connected cubic bipartite planar

graphs, and Akiyama et al. [3] prove that every bipartite planar graph has a representation

as an intersection graph of orthogonal line segments. Hence, Hamiltonian cycle in orthogonal

segment intersection graphs is NP-complete.

We sketch the adapted proof; the full proof can be found in [22]. Let S be a set of n

horizontal or vertical line segments in the plane with integer-coordinate endpoints such that
⋃

S forms one connected component. Furthermore, assume that all intersections of segments

in S are proper, that is no endpoints of segments in S coincide. Let the input polygonal

curve P consist of the subsegments of S, and let P cover all the segments of S (possibly

multiple times). That is, the vertices of P are chosen from the set of endpoints and the

intersection points of segments in S, and the union of all the links of P equals to the union of

the segments in S. Set δ = 1
8 , and let D ⊂ R

2 be the Minkowski sum of S and a closed ball

of radius δ. A simplification P ′ with Hausdorff distance at most δ to P must visit the δ-disks

around all endpoints of S, while staying inside D. A Hamiltonian path in the intersection

graph of S corresponds to a simplification P ′ with 3n − 1 vertices. Indeed, since no two

δ-disks around the endpoints of the segments in S are visible to each other within D (unless

they are endpoints of the same segment), an optimal solution visits the two endpoints of each

segment consecutively and has one extra bend to switch to the next segment. This results in

three links of P ′ per segment, except for the first and the last segment to be covered, for

which only two links each are needed.

◮ Theorem 13. The non-restricted GCS problem under undirected Hausdorff distance is

strongly NP-hard.

Since a solution to the reduction never benefits from placing vertices not on P , we also

immediately obtain an improvement over Theorem 5 for the case of HC(P, δ).

◮ Corollary 14. The curve-restricted GCS problem under undirected Hausdorff distance is

strongly NP-hard.
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