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Abstract
A defensive alliance in a graph G = (V,E) is a set of vertices S ⊆ V satisfying

the condition that for every vertex v ∈ S, the number of neighbors v has in S plus
one (counting v) is at least as large as the number of neighbors it has in V − S.
Because of such an alliance, the vertices in S, agreeing to mutually support each
other, have the strength of numbers to be able to defend themselves from the vertices
in V − S. A defensive alliance S is called global if it effects every vertex in V − S,
that is, every vertex in V − S is adjacent to at least one member of the alliance S.
Note that a global defensive alliance is a dominating set. We study global defensive
alliances in graphs.

∗Research supported in part by the South African National Research Foundation and the University
of Natal.

the electronic journal of combinatorics 10 (2003), #R47 1



1 Introduction

Alliances in graphs were first defined and studied by Hedetniemi, Hedetniemi, and Kris-
tiansen in [4]. In this paper we initiate the study of global defensive alliances (listed as an
open problem in [4]), but first we give some terminology and definitions. Let G = (V, E)
be a graph with |V | = n and |E| = m. An endvertex is a vertex which is only adjacent
to one vertex. An endvertex in a tree T is also called a leaf, while a support vertex of T
is a vertex adjacent to a leaf. For a nonempty subset S ⊆ V , we denote the subgraph
of G induced by S by 〈S〉. For any vertex v ∈ V , the open neighborhood of v is the set
N(v) = {u: uv ∈ E}, while the closed neighborhood of v is the set N [v] = N(v)∪{v}. For
a subset S ⊆ V , the open neighborhood N(S) = ∪v∈SN(v) and the closed neighborhood
N [S] = N(S)∪S. A set S is a dominating set if N [S] = V , and is a total dominating set or
an open dominating set if N(S) = V . The minimum cardinality of a dominating set (re-
spectively, total dominating set) of G is the domination number γ(G) (respectively, total
domination number γt(G)). The concept of domination in graphs, with its many varia-
tions, is now well studied in graph theory (see [2, 3]). For other graph theory terminology
and notation, we follow [1] and [2].

In [4] Hedetniemi, Hedetniemi, and Kristiansen introduced several types of alliances,
including defensive alliances that we consider here. A non-empty set of vertices S ⊆ V is
called a defensive alliance if for every v ∈ S, |N [v] ∩ S| ≥ |N(v) ∩ (V − S)|. In this case,
by strength of numbers, we say that every vertex in S is defended from possible attack
by vertices in V − S. A defensive alliance S is called strong if for every vertex v ∈ S,
|N [v]∩S| > |N(v)∩V −S|. In this case we say that every vertex in S is strongly defended.

In this paper, any reference to an alliance will mean a defensive alliance. Any two
vertices u, v in an (strong) alliance S are called allies (with respect to S); we also say that
u and v are allied. An (strong) alliance S is called critical if no proper subset of S is an
(strong) alliance. The alliance number a(G) is the minimum cardinality of any critical
alliance in G, and the strong alliance number â(G) is the minimum cardinality of any
critical strong alliance in G.

An alliance S is called global if it effects every vertex in V −S, that is, every vertex in
V −S is adjacent to at least one member of the alliance S. In this case, S is a dominating
set. The global alliance number γa(G) (respectively, global strong alliance number γâ(G))
is the minimum cardinality of an alliance (respectively, strong alliance) of G that is also
a dominating set of G. The entire vertex set is a global (strong) alliance for any graph
G, so every graph G has a global (strong) alliance number. Note that a global alliance
of minimum cardinality is not necessarily a critical alliance, and a critical alliance is not
necessarily a dominating set. It is observed in [4] that any critical (strong) alliance S in
a graph G must induce a connected subgraph of G. This is obvious, since any component
of the induced subgraph 〈S〉 is a strictly smaller alliance (of the same type). However,
for a global alliance this is not necessarily true. For example, the two endvertices of the
path P4 form a global alliance. We refer to a minimum dominating set of G as a γ(G)-
set. Similarly, we call a minimum global alliance (respectively, a minimum global strong
alliance) of G a γa(G)-set (respectively, γâ(G)-set).
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Many applications of alliances, including national defense, are listed in [4]. Global
alliances have similar applications in cases where all the vertices of the graph are involved.
In the context of computing networks, a dominating set S represents a set of nodes, each
of which has a desired resource, or service capacity, such as a large database, and each
node which does not have this resource, or desires this service, can gain access to it by
accessing a node at distance at most one from it. However, if all of the nodes in V − S
which are adjacent to a particular node v ∈ S desire simultaneous access to the resource
at v, then node v alone may not be able to provide such access. But if S is a global
alliance, then the neighbors of v in S would be sufficient in number to satisfy (within
distance two) the simultaneous demands of the neighbors of v in V − S.

Since every global strong alliance is a global alliance, and every global alliance is both
an alliance and dominating, our first observation is immediate.

Observation 1 For any graph G,
(i) 1 ≤ γ(G) ≤ γa(G) ≤ γâ(G) ≤ n,
(ii) 1 ≤ a(G) ≤ γa(G) ≤ n, and
(iii) 1 ≤ a(G) ≤ â(G) ≤ γâ(G) ≤ n.

2 Examples

We first give the global alliance and global strong alliance numbers for complete graphs
and complete bipartite graphs.

Proposition 2 For the complete graph Kn,
(i) γa(Kn) =

⌊
n+1

2

⌋
, and

(ii) γâ(Kn) =
⌈

n+1
2

⌉
.

Proof. Let S be a γa(Kn)-set and let v ∈ S. Then S contains at least b(deg v)/2c =
b(n − 1)/2c neighbors of v, and so γa(Kn) ≥ b(n + 1)/2c. The set consisting of v and
b(n − 1)/2c of its neighbors is a global alliance, and so γa(Kn) ≤ b(n + 1)/2c. This
establishes (i).

Let D be a γâ(Kn)-set and let v ∈ D. Then D contains at least d(deg v)/2e =
d(n − 1)/2e neighbors of v, and so γâ(Kn) ≥ d(n + 1)/2e. The set consisting of v and
d(n−1)/2e of its neighbors is a global strong alliance, and so γâ(Kn) ≤ d(n+1)/2e. This
establishes (ii). 2

Proposition 3 For the complete bipartite graph Kr,s,

(i) γa(K1,s) =
⌊

s
2

⌋
+ 1,

(ii) γa(Kr,s) =
⌊

r
2

⌋
+

⌊
s
2

⌋
if r, s ≥ 2, and

(iii) γâ(Kr,s) =
⌈

r
2

⌉
+

⌈
s
2

⌉
.
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Proof. We first establish (i). The result is immediate when s = 1. Suppose s ≥ 2
and S is a γa(K1,s)-set. Since S is a dominating set, the central vertex, v say, belongs
to S and therefore, S contains at least b(deg v)/2c = bs/2c neighbors of v. Hence,
γa(K1,s) ≥ bs/2c + 1. The set consisting of v and bs/2c of its neighbors is a global
alliance, and so γa(K1,s) ≤ bs/2c + 1. This establishes (i).

It is given in [4] that a(Kr,s) = br/2c + bs/2c and â(Kr,s) = dr/2e + ds/2e. Thus by
Observation 1, we have γa(Kr,s) ≥ br/2c + bs/2c and γâ(Kr,s) ≥ dr/2e + ds/2e.

The set consisting of br/2c vertices in the one partite set and bs/2c vertices in the
other partite set is a global alliance, and so γa(Kr,s) ≤ br/2c+bs/2c. This establishes (ii).
Similarly, the set consisting of dr/2e vertices in the one partite set and ds/2e vertices in
the other partite set is a global strong alliance establishing (iii). 2

We show that the global alliance and total domination numbers are the same for
graphs with minimum degree at least two and maximum degree at most three.

Lemma 4 For any graph G with δ(G) ≥ 2, γt(G) ≤ γa(G). Furthermore, if ∆(G) ≤ 3,
then γt(G) = γa(G).

Proof. For any γa(G)-set S and vertex v ∈ S, S contains at least b(deg v)/2c ≥ 1
neighbors of v, and so S is a total dominating set. Thus, γt(G) ≤ γa(G). Furthermore, if
∆(G) ≤ 3, then for any γt(G)-set D and vertex u ∈ D, |N [u]∩D| ≥ 2 ≥ |N(u)∩(V −D)|.
Hence, D is a global alliance, and so γa(G) ≤ γt(G). 2

As a special case of Lemma 4, if G is a cubic graph, then γt(G) = γa(G). Since every
total dominating set of a cycle is also a global strong alliance, we also have the following
immediate consequence of Lemma 4.

Proposition 5 For cycles Cn, n ≥ 3, γa(Cn) = γâ(Cn) = γt(Cn).

The minimum degree condition is necessary for Lemma 4 to hold. In fact, there exist
connected graphs G for which the difference γt(G) − γa(G) can be arbitrarily large. For
2 ≤ s ≤ k − 1 and k ≥ 3, consider the graph G obtained by attaching (with an edge)
s disjoint copies of P3 to each vertex of a complete graph Kk. For k = 3 and s = 2,
the graph G is shown in Figure 2. Since a support vertex must be in every γt(G)-set, it
follows that at least two vertices from each attached copy of P3 must be in every γt(G)-
set. Moreover, the set of support vertices of G along with their neighbors of degree two
totally dominate G. Hence, γt(G) = 2sk. But since s ≤ k − 1, the set of endvertices
together with the vertices of Kk form a global alliance of G of minimum cardinality, and
so γa(G) = (s + 1)k.

We show next that for any graph without isolated vertices, the total domination
number is bounded above by the global strong alliance number.

Lemma 6 For any graph G with no isolated vertices, γt(G) ≤ γâ(G).
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Figure 1: A graph G with γ(G) = 7, γa(G) = 9, and γâ = γt(G) = 12.

Proof. For any γâ(G)-set S and vertex v ∈ S, S contains at least d(deg v)/2e ≥ 1
neighbors of v, and so S is a total dominating set. Thus, γt(G) ≤ γâ(G). 2

The total domination number of paths Pn and cycles Cn is well known: For n ≥ 3,
γt(Pn) = γt(Cn) = bn/2c + dn/4e − bn/4c. For paths, we show that the global strong
alliance number equals the total domination number. However, the global alliance number
of a path is not necessarily equal to its total domination number.

Proposition 7 For n ≥ 3, γâ(Pn) = γt(Pn).

Proof. By Lemma 6, γt(Pn) ≤ γâ(Pn). For any γt(Pn)-set D and vertex u ∈ D, |N [u] ∩
D| ≥ 2 > |N(u)∩(V −D)|. Hence, D is a global strong alliance, and so γâ(Pn) ≤ γt(Pn). 2

Proposition 8 For n ≥ 2, γa(Pn) = γt(Pn) unless n ≡ 2 (mod 4), in which case
γa(Pn) = γt(Pn) − 1.

Proof. Let T = Pn. Since ∆(T ) ≤ 2, every total dominating set of T is also a global
alliance of T , and so γa(T ) ≤ γt(T ). Suppose n ≡ 2 (mod 4). If v denotes an endvertex
of T , then either n = 2, in which case γa(T ) = 1 = γt(T ) − 1, or n ≥ 6, in which case
γa(T ) ≤ |{v}| + γt(T − N [v]) = 1 + γt(Pn−2) = n/2 = γt(T ) − 1. Hence, γa(T ) ≤ γt(T )
and if n ≡ 2 (mod 4), then γa(T ) ≤ γt(T ) − 1.

On the other hand, let A be a γa(T )-set. Then A is a dominating set of T . If the
subgraph 〈A〉 induced by A contains an isolated vertex, then this vertex must be an
endvertex of T . Hence, 〈A〉 contains a most two isolated vertices. If 〈A〉 contains no
isolated vertex, then A is a total dominating set, and so γt(T ) ≤ |A|. If 〈A〉 contains
one isolated vertex v, then A − {v} is a total dominating set of T − N [v] = Pn−2, and
so γt(Pn−2) ≤ |A| − 1. If now n 6≡ 2 (mod 4), then γt(T ) = γt(Pn−2) + 1 ≤ |A|, while
if n ≡ 2 (mod 4), then γt(T ) = γt(Pn−2) + 2 ≤ |A| + 1. If 〈A〉 contains two isolated
vertices u and v, then either T = P4, in which case γt(T ) = 2 = |A|, or |A| ≥ 4, in
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which case A − {u, v} is a total dominating set of T − N [u] − N [v] = Pn−4. Therefore,
γt(Pn−4) ≤ |A| − 2, and so γt(T ) = γt(Pn−4) + 2 ≤ |A|. Since |A| = γa(T ), we have shown
that γa(T ) ≥ γt(T ) unless n ≡ 2 (mod 4), in which case γa(T ) ≥ γt(T ) − 1. The desired
result follows. 2

A double star is a tree that contains exactly two vertices that are not endvertices. If
one of these vertices is adjacent to r leaves and the other to s leaves, then we denote this
double star by S(r, s).

Proposition 9 For r, s ≥ 1, γa(Sr,s) = b(r − 1)/2c + b(s − 1)/2c + 2.

Proof. Let u and v be the two central vertices of Sr,s, where u is adjacent to r leaves.
Let S be a γa(Sr,s)-set. Since S is a dominating set, if u (respectively, v) is not in S, then
all the leaves adjacent to u (respectively, v) are in S. Hence we may assume {u, v} ⊆ S.
Then S contains at least b(r − 1)/2c leaves adjacent to u, and at least b(s − 1)/2c leaves
adjacent to v. Hence, γa(Sr,s) ≥ b(r − 1)/2c+ b(s− 1)/2c+ 2. The set consisting of u, v,
b(r − 1)/2c leaves adjacent to u, and b(s− 1)/2c leaves adjacent to v is a global alliance,
and so γa(Sr,s) ≤ b(r − 1)/2c + b(s − 1)/2c + 2. The desired result follows. 2

Using a similar proof to the one for Proposition 9, we obtain the global strong alliance
number of a double star.

Proposition 10 For r, s ≥ 1, γâ(Sr,s) = br/2c + bs/2c + 2.

3 Lower Bounds

Our aim in this section is to give lower bounds on the global alliance and global strong
alliance numbers of a graph in terms of its order.

3.1 General Graphs

Theorem 11 If G is a graph of order n, then

γa(G) ≥ (
√

4n + 1 − 1)/2,

and this bound is sharp.

Proof. Let γa(G) = k. For any γa(G)-set S and vertex v ∈ S, S contains at least
b(deg v)/2c neighbors of v. Hence, k = |S| ≥ |{v}| + b(deg v)/2c ≥ (deg v + 1)/2. Thus,
V − S contains at most d(deg v)/2e ≤ (deg v + 1)/2 ≤ k neighbors of v. Therefore, each
vertex in S has at most k neighbors in V −S, and so n−k = |V −S| ≤ k2, or, equivalently,
k2 + k − n ≥ 0. Hence, k ≥ (

√
4n + 1 − 1)/2.

That this bound is sharp may be seen as follows. Let F1 = K2 and for k ≥ 2, let Fk

be the graph obtained from the disjoint union of k stars K1,k by adding all edges between
the central vertices of the k stars. Then, G = Fk for some k ≥ 1 has order n = k(k + 1),
and so k = (

√
4n + 1− 1)/2. If k = 1, then γa(G) = 1 = (

√
4n + 1− 1)/2. If k ≥ 2, then
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the k central vertices of the stars form a global alliance, and so γa(G) ≤ (
√

4n + 1−1)/2.
Consequently, γa(G) = (

√
4n + 1 − 1)/2. 2

Using an argument similar to that used in the proof of Theorem 11 one can also obtain
the following result and corollary.

Proposition 12 If G is a graph of order n, then

γa(G) ≥ n

d r
2
e + 1

.

Corollary 13 If G is a cubic graph or a 4-regular graph of order n, then γa(G) ≥ n
3
.

Theorem 14 If G is a graph of order n, then

γâ(G) ≥
√

n,

and this bound is sharp.

Proof. Let γâ(G) = k. For any γâ(G)-set S and vertex v ∈ S, S contains at least
d(deg v)/2e neighbors of v. Hence, k = |S| ≥ |{v}| + d(deg v)/2e ≥ (deg v + 2)/2. Thus
V − S contains at most b(deg v)/2c ≤ (deg v)/2 ≤ k − 1 neighbors of v. Therefore, each
vertex in S has at most k − 1 neighbors in V − S, and so n− k = |V − S| ≤ k(k − 1), or,
equivalently, k ≥

√
n.

That this bound is sharp, may be seen as follows. Let G1 = K1, G2 = P4, and for
k ≥ 3, let Gk be the graph obtained from the disjoint union of k stars K1,k−1 by adding
all edges between the central vertices of the k stars. Then, G = Gk for some k ≥ 1 has
order n = k2, and so k =

√
n. If k = 1, then γâ(G) = 1 =

√
n, while if k = 2, then

γâ(G) = 2 =
√

n. If k ≥ 3, then the k central vertices of the stars form a global strong
alliance, and so γâ(G) ≤ √

n. Thus, γâ(G) =
√

n. 2

3.2 Bipartite Graphs

Theorem 15 If G is a bipartite graph of order n and maximum degree ∆, then

γa(G) ≥ 2n

∆ + 3
,

and this bound is sharp.

Proof. Let γa(G) = k. Let S be a γa(G)-set. Since G is a bipartite graph, so too is the
induced subgraph 〈S〉. Let L and R denote the bipartite sets of 〈S〉. Let ∆L denote the
maximum degree in G of a vertex in L, and let ∆R denote the maximum degree in G of
a vertex in R. We may assume (renaming if necessary) that ∆L ≥ ∆R.

Let u ∈ L and v ∈ R. Since S is a global alliance, S contains at least b(deg u)/2c
neighbors of u and at least b(deg v)/2c neighbors of v. Hence, V − S contains at most
d(deg u)/2e ≤ d∆L/2e ≤ (∆L + 1)/2 neighbors of u and at most d(deg v)/2e ≤ d∆R/2e ≤
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(∆R + 1)/2 neighbors of v. Therefore, each vertex in L has at most (∆L + 1)/2 neighbors
in V − S, while each vertex in R has at most (∆R + 1)/2 neighbors in V − S. Hence,
since n − k = |V − S| and k = |L| + |R|,

n − k ≤ |L| ·
(

∆L + 1

2

)
+ |R| ·

(
∆R + 1

2

)

≤
(

∆L + 1

2

)
(|L| + |R|)

≤
(

∆ + 1

2

)
k,

and so k ≥ 2n/(∆ + 3).
That this bound is sharp may be seen as follows. For k ≥ 1, let Hk be the bipartite

graph obtained from the disjoint union of 2k stars K1,k+1 with centers {x1, x2, . . . , xk, y1,
y2, . . . , yk} by adding all edges of the type xiyj, 1 ≤ i ≤ j ≤ k. Then, G = Hk for
some k ≥ 1 has maximum degree ∆ = 2k + 1 and order n = 2k(k + 2). The 2k central
vertices of the stars form a global alliance, and so γa(G) ≤ 2k = n/(k + 2) = 2n/(∆ + 3).
Consequently, γa(G) = 2n/(∆ + 3). 2

Theorem 16 If G is a bipartite graph of order n and maximum degree ∆, then

γâ(G) ≥ 2n

∆ + 2
,

and this bound is sharp.

Proof. Let γâ(G) = k. Let S be a γâ(G)-set. Using the notation employed in the
proof of Theorem 15, let u ∈ L and v ∈ R. Since S is a global strong alliance, S
contains at least d(deg u)/2e neighbors of u and at least d(deg v)/2e neighbors of v. Hence,
V − S contains at most b(deg u)/2c ≤ b∆L/2c ≤ ∆L/2 neighbors of u and at most
b(deg v)/2c ≤ b∆R/2c ≤ ∆R/2 neighbors of v. Therefore, each vertex in L has at most
∆L/2 neighbors in V − S, while each vertex in R has at most ∆R/2 neighbors in V − S.
Hence,

n − k ≤ |L| ·
(

∆L

2

)
+ |R| ·

(
∆R

2

)
≤

(
∆L

2

)
(|L| + |R|) ≤

(
∆

2

)
k

and so k ≥ 2n/(∆ + 2).
That this bound is sharp, may be seen as follows. For k ≥ 1, let Mk be the bipartite

graph obtained from the disjoint union of 2k stars K1,k with centers {x1, x2, . . . , xk, y1,
y2, . . . , yk} by adding all edges of the type xiyj, 1 ≤ i ≤ j ≤ k. Then, G = Mk for some
k ≥ 1 has maximum degree ∆ = 2k and order n = 2k(k + 1). The 2k central vertices of
the stars form a global strong alliance, and so γâ(G) ≤ 2k = n/(k + 1) = 2n/(∆ + 2).
Hence, γâ(G) = 2n/(∆ + 2). 2
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3.3 Trees

Theorem 17 If T is a tree of order n, then

γa(T ) ≥ n + 2

4
,

and this bound is sharp.

Proof. Let γa(G) = k and let S be a γa(T )-set. Let F = 〈S〉. Since F is a forest,∑
v∈S degF v = 2|E(F )| ≤ 2(|V (F )| − 1) = 2(k − 1). For each v ∈ S, V − S contains

at most degF v + 1 neighbors of v. Therefore, n − k = |V − S| ≤ ∑
v∈S(degF v + 1) ≤

2(k − 1) + k = 3k − 2, and so k ≥ (n + 2)/4.
That this bound is sharp, may be seen as follows. Let T be the tree obtained from a

tree F of order k by adding degF v + 1 new vertices for each vertex v of F and joining
them to v. Then, T has order n = |V (F )|+∑

v∈V (F )(degF v +1) = 2k +
∑

v∈V (F ) degF v =
2k + 2(k − 1) = 4k − 2. Since V (F ) is a global alliance of T , γa(T ) ≤ k = (n + 2)/4.
Consequently, γa(T ) = (n + 2)/4. 2

Theorem 18 If T is a tree of order n, then

γâ(T ) ≥ n + 2

3
,

and this bound is sharp.

Proof. Let γâ(G) = k and let S be a γâ(T )-set. Let F = 〈S〉. Then,
∑

v∈S degF v ≤
2(k − 1). For each v ∈ S, V − S contains at most degF v neighbors of v. Therefore,
n − k = |V − S| ≤ ∑

v∈S degF v ≤ 2(k − 1), and so k ≥ (n + 2)/3.
That this bound is sharp, may be seen as follows. Let T be the tree obtained from a

tree F of order k by adding degF v new vertices for each vertex v of F and joining them
to v. Then, T has order n = |V (F )| + ∑

v∈V (F ) degF v = k + 2(k − 1) = 3k − 2. Since
V (F ) is a global strong alliance of T , γâ(T ) ≤ k = (n + 2)/3. Thus, γâ(T ) = (n + 2)/3. 2

4 Upper Bounds

Our aim in this section is to give upper bounds on the global alliance and global strong
alliance numbers of a graph in terms of its order.

4.1 General Graphs

Proposition 19 For any graph G with no isolated vertices and minimum degree δ,
(i) γa(G) ≤ n − dδ/2e, and
(ii) γâ(G) ≤ n − bδ/2c,

and these bounds are sharp.
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Proof. Let v be a vertex of minimum degree, and let S be the set of vertices formed by
removing dδ/2e neighbors of v from V . Then, S dominates G. For each u ∈ S, |N(u) ∩
(V − S)| ≤ dδ/2e ≤ d(deg u)/2e, and so |N [u]∩ S| ≥ b(deg u)/2c+ 1 ≥ |N(u)∩ (V − S)|.
Thus, S is a global alliance, and so γa(G) ≤ |S|. This establishes (i). That this bound is
sharp follows from Proposition 2 (take G = Kn with n odd).

Let D be the set of vertices formed by removing bδ/2c neighbors of v from V . Then,
D dominates G. For each u ∈ D, |N(u) ∩ (V − D)| ≤ bδ/2c ≤ b(deg u)/2c, and so
|N [u]∩D| ≥ d(deg u)/2e+1 > |N(u)∩ (V −D)|. Thus, D is a global strong alliance, and
so γâ(G) ≤ |D|. This establishes (ii). That this bound is sharp follows from Proposition 2
(take G = Kn). 2

Corollary 20 For any graph G, γa(G) = n if and only if G = Kn.

4.2 Trees

In order to establish a sharp upper bound on the global alliance number of a tree and to
characterize the trees achieving this bound, we introduce some more notation. For a vertex
v in a rooted tree T , we let C(v) and D(v) denote the set of children and descendants,
respectively, of v, and we define D[v] = D(v)∪{v}. We also introduce a family T1 of trees
as follows: Let T = P5 or T = K1,4 or let T be the tree obtained from tK1,4 (the disjoint
union of t copies of K1,4) by adding t − 1 edges between leaves of these copies of K1,4 in
such a way that the center of each K1,4 is adjacent to exactly three leaves in T . Let T1

be the family of all such trees T .

Theorem 21 If T is a tree of order n ≥ 4, then

γa(T ) ≤ 3n

5
,

with equality if and only if T ∈ T1.

Proof. We proceed by induction on n ≥ 4. If n = 4, then either T = P4 or T = K1,3, and
so γa(T ) = 2 < 3n/5. Suppose, then, that for all trees T ′ of order n′, where 4 ≤ n′ < n,
γa(T

′) ≤ 3n′/5. Let T be a tree of order n. If T is a star, then, by Proposition 3,
γa(K1,n−1) = b(n − 1)/2c + 1 ≤ 3n/5 with equality if and only if n = 5, i.e., if and
only if T = K1,4 ∈ T1. If T is a double star, then it follows from Proposition 9 that
γa(T ) < 3n/5. If T = P5, then, by Proposition 8, γa(T ) = 3 = 3n/5. Hence we may
assume that diam(T ) ≥ 4 and that T 6= P5.

Among all support vertices of T of eccentricity diam(T )− 1, let v be one of minimum
degree. Let r be a vertex at distance diam(T ) − 1 from v and root T at r. Let u denote
the parent of v, and x the parent of u.

Let T ′ be the tree obtained from T by deleting v and its children, i.e., T ′ = T −D[v].
Let T ′ have order n′. Since diam(T ) ≥ 4 and T 6= P5, it follows from our choice of v that
n′ ≥ 4. Applying the inductive hypothesis to T ′, γa(T

′) ≤ 3n′/5. Let S ′ be a γa(T
′)-set.

Let |C(v)| = `, and so n = n′ + ` + 1.
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If u ∈ S ′, then adding v and b(` − 1)/2c children of v to S ′ produces a global alliance
of T , and so γa(T ) ≤ |S ′|+ (` + 1)/2 ≤ 3(n− `− 1)/5 + (` + 1)/2 < 3n/5. Hence we may
assume that u /∈ S ′ (for otherwise γa(T ) < 3n/5).

If deg v = 2, then adding the child of v to S ′ produces a global alliance of T , and so
γa(T ) ≤ |S ′| + 1 ≤ 3(n − 2)/5 + 1 < 3n/5. Hence we may assume that |C(v)| ≥ 2 (for
otherwise γa(T ) < 3n/5).

Suppose deg u ≥ 3. If u has a child v′ different from v that is a support vertex, then,
by our choice of v, |C(v′)| ≥ 2. But then we can always choose S ′ to contain u and v′,
contradicting our assumption that u /∈ S ′. Hence every child of u different from v must be
a leaf. If u is adjacent to more than one leaf, then we can choose u ∈ S ′, a contradiction.
Hence, deg u = 3 and the child v′ (say) of u different from v is a leaf. Thus, v′ ∈ S ′.
Deleting v′ from S ′, and adding u and v and b(` − 1)/2c children of v to S ′ produces a
global alliance of T , and so γa(T ) ≤ |S ′| + (` + 1)/2 < 3n/5. Hence we may assume that
deg u = 2 (for otherwise γa(T ) < 3n/5).

If diam(T ) = 4, then x is a support vertex (of degree at least deg v ≥ 3), and so
T − D[u] is a star K1,k with x as its center where k ≥ ` ≥ 2. The set consisting of
{x, u, v}, together with b(` − 1)/2c leaves adjacent to v and b(k − 1)/2c leaves adjacent
to x is a global alliance of T , and so γa(T ) ≤ (k + ` + 4)/2 = (n + 1)/2. Since n ≥ 7,
γa(T ) < 3n/5. Hence we may assume that diam(T ) ≥ 5.

Let T ∗ = T − N [v], i.e., T ∗ = T − D[u]. Let T ∗ have order n∗. Since diam(T ) ≥ 5,
it follows from our choice of v that n∗ ≥ 4. Applying the inductive hypothesis to T ∗,
γa(T

∗) ≤ 3n∗/5 with equality if and only if T ∗ ∈ T1.
Let S∗ be a γa(T

∗)-set. Adding u and v and b(` − 1)/2c children of v to S∗ produces
a global alliance of T . Hence if ` = 2, then γa(T ) ≤ |S∗| + 2 = 3(n − 4)/5 + 2 < 3n/5,
while if ` ≥ 3, then γa(T ) ≤ |S∗| + (` + 3)/2 ≤ 3(n − ` − 2)/5 + (` + 3)/2 ≤ 3n/5.
Furthermore, suppose γa(T ) = 3n/5. Then ` = 3 and γa(T

∗) = |S∗| = 3n∗/5. By the
inductive hypothesis, T ∗ ∈ T1. If T ∗ = P5, then T is a tree of order n = 10 obtained from
K1,4 by subdividing one edge five times. But then γa(T ) = 5 < 3n/5. Hence, T ∗ 6= P5. If
T ∗ = K1,4, then T ∈ T1. So we may assume T ∗ 6= K1,4. Thus, T ∗ is obtained from t ≥ 2
copies of K1,4 with t − 1 edges added as in the description of T1.

Suppose x is a central vertex of one of the copies of K1,4 in T ∗. Now S∗ contains at least
one child of x that is a leaf in T ∗. Deleting this child of x from S∗, and adding u, v and one
child of v, produces a global alliance of T of cardinality |S∗|+2 = 3(n− 5)/5+2 < 3n/5,
a contradiction. Hence, x must be a leaf of one of the copies of K1,4 in T ∗.

Let z be the center of the K1,4 in T ∗ that contains x. Let N(z) = {z1, z2, z3, x}.
Suppose first that x is a leaf in T ∗. Then in T , z is adjacent to exactly two leaves, z1

and z2 say. Now let D∗ be a γa(T
∗)-set that contains all the central vertices of the K1,4s

in T ∗, exactly one leaf adjacent to each central vertex and all the leaves of K1,4 that are
incident to added edges when constructing T ∗. In particular, z, z3 ∈ D∗. We may assume
x ∈ D∗. Let D = (D∗−{x, z, z3})∪{z1, z2, u, v, w}, where w is any child of v. Then, D is
a global alliance of T of cardinality γa(T

∗) + 2 < 3n/5, a contradiction. Hence, x cannot
be a leaf in T ∗.
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Suppose next that x is not a leaf in T ∗. Then x is adjacent to a vertex (a leaf) in a
copy of K1,4 in T ∗. Thus, z1, z2, and z3 are leaves in T ∗ and it follows that T ∈ T1. 2

Next we establish a sharp upper bound on the global strong alliance number of a tree
and characterize the trees achieving this bound. For this purpose, we introduce a family
T2 of trees as follows: Let T be the tree obtained from the disjoint union tK1,3 of t ≥ 1
copies of K1,3 by adding t − 1 edges between leaves of these copies of K1,3 in such a way
that the center of each K1,3 is adjacent to at least one leaf in T . Let T2 be the family of
all such trees T .

Theorem 22 If T is a tree of order n ≥ 3, then

γâ(T ) ≤ 3n

4
,

with equality if and only if T ∈ T2.

Proof. We proceed by induction on n ≥ 3. If n = 3, then T = P3 and γâ(T ) = 2 < 3n/4.
Suppose, then, that for all trees T ′ of order n′, where 3 ≤ n′ < n, γâ(T

′) ≤ 3n′/4. Let T
be a tree of order n.

If T is a star, then, by Proposition 3, γâ(K1,n−1) = d(n − 1)/2e + 1. If n = 3, then
γâ(K1,n−1) = 2 < 3n/4. If n ≥ 4, then γâ(K1,n−1) ≤ (n + 2)/2 ≤ 3n/4 with equality if
and only if n = 4, i.e., if and only if T = K1,3 ∈ T2. If T is a double star, then it follows
from Proposition 10 that γâ(T ) < 3n/4. Hence we may assume that diam(T ) ≥ 4.

Among all support vertices of T of eccentricity diam(T )− 1, let v be one of minimum
degree and let r be a vertex at distance diam(T )− 1 from v. Let T be rooted at r. Let u
denote the parent of v, and x the parent of u.

Let T ′ be the tree obtained from T by deleting v and its children, i.e., T ′ = T −D[v].
Let T ′ have order n′. Since diam(T ) ≥ 4, n′ ≥ 3. Applying the inductive hypothesis to
T ′, γâ(T

′) ≤ 3n′/4. Let S ′ be a γâ(T
′)-set. Let |C(v)| = `, and so n = n′ + ` + 1.

Suppose deg u ≥ 3. Then in T ′, u is a support vertex or is adjacent to a support
vertex. Since S ′ is a global strong alliance, every support vertex is in S ′ and at least one
neighbor of every support vertex is in S ′. In particular, we can choose S ′ to contain u.
Hence, adding v and b`/2c children of v to S ′ produces a global alliance of T . Thus if
` = 1, then γâ(T ) ≤ |S ′| + 1 ≤ 3(n − 2)/4 + 1 < 3n/4, while if ` ≥ 2, then γâ(T ) ≤
|S ′|+(`+2)/2 ≤ 3(n− `−1)/4+(`+2)/2 < 3n/4. Hence we may assume that deg u = 2
(for otherwise γâ(T ) < 3n/4).

Let T ∗ = T − N [v], i.e., T ∗ = T − D[u]. Let T ∗ have order n∗. If T = P5, then, by
Proposition 7, γâ(T ) = 3 < 3n/4. Hence we may assume T 6= P5. Thus it follows from
our choice of v that n∗ ≥ 3. Applying the inductive hypothesis to T ∗, γâ(T

∗) ≤ 3n∗/4
with equality if and only if T ∗ ∈ T2. Let S∗ be a γâ(T

∗)-set.
If ` = 1, then adding u and v to S∗ produces a global strong alliance of T , and so

γâ(T ) ≤ |S∗| + 2 ≤ 3(n − 3)/4 + 2 < 3n/4. Hence we may assume ` ≥ 2. Adding
u and v and b`/2c children of v to S∗ produces a global strong alliance of T , and so
γâ(T ) ≤ |S∗| + 2 + `/2 ≤ 3(n − ` − 2)/4 + (` + 4)/2 ≤ 3n/4. Furthermore, suppose
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γâ(T ) = 3n/4. Then ` = 2 and γâ(T
∗) = |S∗| = 3n∗/4. By the inductive hypothesis,

T ∗ ∈ T2. We show that T ∈ T2.
Suppose x is a central vertex of one of the copies of K1,3 in T ∗. It follows that x is

adjacent to at least one leaf in T ∗, and hence, x ∈ S∗. Now S∗ contains at least one
child of x, say x′. Note that x′ is either a leaf or all its neighbors in T ∗ are dominated
by support vertices in S∗. Adding u, v and one child of v to S∗ − {v′}, produces a global
strong alliance of T of cardinality |S∗| + 2 = 3(n − 4)/4 + 2 < 3n/4, a contradiction.
Hence, x must be a leaf of one of the copies of K1,3 in T ∗.

Let z be the center of the K1,3 in T ∗ that contains x. Let N(z) = {x, z1, z2}. Since
T ∗ ∈ T2, each central vertex of the K1,3s in T ∗ are support vertices in T ∗ and therefore
belong to S∗. Thus, S∗ contains all the central vertices of the K1,3s in T ∗ and two
(of the three) neighbors of each of these central vertices. We may assume without loss
of generality that S∗ contains the nonleaf neighbors of these central vertices. Suppose
neither z1 nor z2 are leaves in T ∗. Then {z1, z2} ⊆ S∗. Moreover, S∗−{z, z1, z2} dominates
{z1, z2}. But then (S∗ − {z, z1, z2}) ∪ {x, u, v, w}, where w is any child of v is a global
strong alliance of T of cardinality γâ(T

∗) + 1 < 3n/4, a contradiction. Hence either z1 or
z2 must be a leaf. Thus, z is a support vertex in T . It follows that T ∈ T2. 2
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