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ABSTRACT

Modern computational and experimental tools for aerodynamics and propulsion applications have

matured to a stage where they can provide substantial insight into engineering processes involving fluid

flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and

continuous development in aerospace engineering demands that new design concepts be regularly proposed

to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date,

the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search

algorithms. Global optimization methods can utilize the information collected from various sources and by

different tools. These methods offer multi-criterion optimization, handle the existence of multiple design

points and trade-offs via insight into the entire design space, can easily perlbrm tasks in parallel, and are

often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful

application of the global optimization method needs to address issues related to data requirements 'with an

increase in the number of design variables, and methods for predicting the model performance. In this

article, we review recent progress made in establishing suitable global optimization techniques employing

neural network and polynomial-based response surface methodologies. Issues addressed include techniques

for construction of the response surface, design of experiment techniques for supplying information in an

economical manner, optimization procedures and multi-level techniques, and assessment of relative

pertbrmance between polynomials and neural networks. Examples drawn from wing aerodynamics,

turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the

issues involved in an engineenng design context. Both the usefulness of the existing knowledge to aid

current design practices and the need tbr future research are identified.

Keywords: Global Optimization. Response Surface Methodology, Design of Experiments, Neural

Networks.
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1. INTRODUCTION AND SCOPE

Modern computational and experimental fluid dynamics tools have matured to a stage where they

can provide substantial insight into engineering processes involving fluid flows. This can help analyze the

fluid physics as well as improve the design of practical devices. In particular, rapid and continuous

development in the technology of fluid machinery demands that new design concepts be regularly proposed

to meet goals tbr increased pertbrmance, robustness and safety while concurrently decreasing cost.

Most aerospace system and component designs are conducted as open loop, feed-tbrward

processes. For example, for rocket engines, currently, one design iteration/'or a given set of engine balance

conditions takes up to several weeks with the blade geometry design sub-iteration phase taking several days

each. The quest tbr an acceptable blade surface velocity distribution is accomplished with many ad hoc

rules in what is really a manual trial-and-error process, A systematic approach capable of identifying

optimum design and comparing possible trade-offs can significantly improve the productivity and shorten

the design cycle.

Objective and efticient evaluation of advanced designs can be facilitated by development and

implementation of systematic optimization methods. To date, the majority of the effort in design

optimization of fluid dynamics has relied on gradient-based search algorithms (Baysal and Eleshaky [1],

Lambert et at.[271, Reuther et al. [54]). These methods work iteratively through a sequence of local sub-

problems, which approximate objective and constraint thnctions tbr a sub-region of the design space, e.g.,

by Iinearization using computed sensitivities. Major challenges tbr these optimization approaches are the

robust and speedy computation of sensitivity coefficients (Elbanna and Carlson [I 0], Dadone et a1.[61).

Local optimization methods based on derivatives are commonly used in such engineering system

design optimization problems (Sobieszczanski-Sobieski and Haftka [591). On the other hand, global



optimizationtechniquesalsohavebeencommonlyusedforengineeringdesignoptimizationproblems

especiallyformultidisciplinaryones.Initscurrentpractice,theglobaldesignoptimizationmethodinvolves

threeprimarysteps(Figure1):(a)Generationof individualdatasetswithinthedesignspace;(b)

Interpolationamongthesedatasetsviasomecontinuousfunctionalrepresentation;and(c)Optimizationof

theobjectivefunctionviaacertainsearchstrategy.Yetdespiterecentresearchadvances,formaldesign

optimizationhasyettoseepracticaluseinrealdesignscenarios.Thereasonsarelive-fold:

(1) Engineering design, even within a single discipline, typically involves many parameters (and

hence many degrees of freedom) rather than the handful demonstrated in most research papers. This

renders unrestricted "brute force" search schemes too resource-intensive.

(2) The objective functions are likely to be multi-modal or discontinuous over the broad design space,

rendering gradient search methods insufficient by themselves. Furthermore, the usual practice to combine

multiple goals into a single quantitative objective function is too restrictive. Qualitative goals are often

required to correctly characterize a problem. (E.g., maximizing a turbine blade's aerodynamic efficiency

with a smooth, monotonic surface velocity distribution. _,,hile spreading heat load as uniformly as possible.)

Furthermore, these goals may have arisen from diverse disciplines and are usually treated sequentially by

different groups.

(3) It is inadequate to think of the final product of a design process as a mere geometry. A "'design"

really encompasses a whole set of operating, manufacturing and project level decisions.

(4) As the interaction between numerical simulation and physical test data becomes stronger, the

future engineering knowledge base is likely to consist of all sorts of heterogeneous data sources including

test data, experimental data, past product experiences, semi-empirical modeling, and high fidelity

simulations. Some data are anecdotal; others cover only small "patches" of the physical domain but are still

useful for "reality checks". A unified framework needs to be constructed for representation, capturing and

mining of all these data types so the response functions can be continuously improved.

With the above observations, global optimization methods are attractive because they have several

advantages when compared to local gradient-based methods (Shyy et al. [58]):

(I) They do not require calculation of the local sensitivity of each design variable,

(2) They can utilize the inlbrmation collected from various sources and bv different tools,



(3) Theyoffermuhi-criterionoptimization,

¢,4) They can handle the existence of multiple design points and trade-offs,

(5) They easily perform tasks in parallel, and

(6) They can often effectively filter the noise intrinsic to numerical and experimental data.

Among global approximation techniques, the Response Surface Methodology (RSM) has gained

the most attention since it consists of a simple way of connecting codes from various disciplines

(Sobieszczanski-Sobieski and Haftka [59]). The RSM is a collection of mathematical and statistical tools

used in investigative experimentation by scientists and engineers (Bauer Jr. et al. [2]). The RSM approach

replaces the objective and constraint functions by simple functions, often polynorruals, which are fitted to

the carefully selected points. Since RSM can utilize int'ormation collected from various sources and by

different tools, it can also offer multi-criterion optimization, handle the existence of multiple design

selections and related trade-offs, and address the noises intrinsic to numerical and experimental data. A

main advantage of RSM is its robustness and intelligibility. Robustness and the smoothness of

approximations in noisy environments are achieved by performing extra analyses, compared to the number

of regression.coefficients. This is a distinct advantage over derivative-based search algorithms, which may

encounter difficuhies in the presence of spurious local optima iMadsen et al. [32]).

1.1 SCOPE

In this article, we first review the basic concepts and methodologies, then assess the current statue,

via case studies, of the global optimization techniques. Particular attention is paid to two different

techniques to generate intbrmation to construct the response surface (RS) namely; Neural Network (NN)

and polynomial-based Response Surface Methodology. Neural Networks are models that contain many

simple linear and non-linear elements operating in parallel and connected in patterns (Greenman [14]).

Polynomial-based RSM models the system with polynomials of assumed order and unknown coefficients.

The solution for the set of coefficients that best fits the training data is a linear least square problem,

making it trivial compared to the solution for NN, which involves a nonlinear training process. In this

article, two neural network types, namely, Back-Propagation NN (BPNN) and Radial Basis NN (RBNN),

are investigated.



TheBPNNconsistsofmulti-layernetworkswithdifferentiableactivationfunction.TheBPNNis

themostemployedNNtypein theoptimizationliterature(CarpenterandBarthelemy[4],Failerand

Schereck[11],Fanetal.[11],Greenman[14],Greenman,andRoth[15]& [16],Huangetal.[20],llli etal.

[21],Kangasetal.[24],Lavretsky[28],Lawrenceetal [29]& [30],Madavanetal.[31],Maghamiand

Sparks[34]& [35],Nikolaidisetal.[39],Norgaardetal.[40],RaiandMadavan[51],[52]& [53],Rosset

al.[55],SparksandMaghami[60],StepniewskiandJorgenson[61],andStepniewskietal [62])

RBNNisamorerecentlydevelopedmultilayernetworkwitha linearregressionprocessthat

makesthemathematicssimplerandcomputationalcostslower(Orr[41], [42]&[43]).RBNNtendstohave

manymoreneuronsthanBPNNbutcanbeconfiguredfasterforthesametrainingdata.Thebasicreason

forthisis thatback-propagationneuronscanhaveoutputsovera largeregionoftheinputspace,while

radial-basisneuronsrespondtorelativelysmallregionsoftheinputspace.Thus,largerinputspacesrequire

moreradial-basisneuronstbrtraining.MoredetailedevaluationofRBNNandBPNNwillbegiveninthe

followingsections.

Polynomial-basedresponsesurfacesandlinearregressiontechniqueshavebeenoriginally

developedtofilternoisefromexperimentaldata.Sophisticatedstatisticaltoolsareavailableforthese

purposes.Oneclassoftools,design of experiments, is often used to select points tbr training that minimize

the effect of noise on the fitted polynomial. A second set of tools, analysis of variance, is routinely used to

identify polynomial coefficients that are not well characterized by the data, and are therefore overly

sensitive to noise. Analysis of variance helps avoid overfitting of the data, v,'hich otherwise would result in

the mapping of thenoise. On the other hand, neural networks are much more flexible in functional form,

which means that they can be better suited to fit complex functions that are not easily approximated by

polynomials. For example, when the physical system changes fi-om one regime to another due to the

presence of critical parameters, NN performs better than RSM. This advantage is particularly useful when

there is very little numerical noise, and it is possible to obtain very accurate approximations to the

underlying function (Papila et a1.[49]). The relative strengths and weaknesses of NN and polynomial-based

RSM are summarized in Table I.

Table 2 summarizes the existing literature evaluating the relative performance of NN and

polynomial-based RSM approximation. For example, Carpenter and Barthelemy [41 used NN and



polynomial-basedapproximationstodevelopRSforseveraltestproblems.It isdemonstratedthattwo

methodsperformcomparablybasedonthenumberofundeterminedparameters.RaiandMadavan[51]

investigatedthefeasibilityofapplyingneuralnetworkstothedesignof turbomachineryairfoils.Neural

networkapproachisused/'orbothfunctionapproximationandprediction.It isfoundthatneuralnetworks

arequiteefficientin bothtasks.Anaerodynamicdesignprocedurethatemploysa strategycalled

parameter-basedpartitioningincorporatingtheadvantagesofbothtraditionalRSMandNNstocreatea

compositeresponsesurfaceisdescribedbyRaiandMadavan[521& [53].It isshownthatsuchmethodcan

handledesignproblemswithhigherdimensionalproblemsthanwouldbepossibleusingNNalone.

Nikolaidisetal.[39]usedNNsandresponsesurfacepolynomialstopredicttheperformancecharacteristics

ofautomotivejointsusinggeometricalparameters.It isshownthatbothmethodsperformedcomparably.

NN-basedaerodynamicdesignprocedureisappliedtotheredesignofatransonicturbinestagetoimprove

itsunsteadyaerodynamicpertbrmancebyMadavanetal.[31].It isillustratedthatusinganoptimization

procedurecombiningtheadvantagesofNNandpol?nomial-basedRSMcan be advantageous. Papila et al.

[49] investigated the relative merits of polynomial-based RSM, RBNN and BPNN in handling different

data characteristics. It is demonstrated that using RBNN rather than BPNN has certain advantages as data

size increases. Also, it is shown that RBNN gives more accurate results than polynomila-based RSM as the

nature of the experimental data becomes complex. Shyy et al. [57] have integrated neural network

techniques and polynomial-based RSM to obtain impro',ed optimization tools. In Rai and Madavan [531, a

composite NN & polynomial-based RS methodology is applied for a transonic turbine and it is

demonstrated that a systematic application of such method can enhance the effectiveness of the overall

optimization process. In the study by Vaidyanatban et al.[711, the application of NN and polynomial-based

RSM in preliminary design of two rocket engine components, gas-gas injector and supersonic turbine, with

modest amounts of data are discussed and it is demonstrated that NN and polynomial-based approximations

can perform comparably for modest data sizes.

In this article, we focus on the recent eflbrts in developing, improving, and optimizing appropriate

techniques tbr design optimization of airfoils and rocket engine components capable of being used in

applications like Reusable Launch Vehicles. Some of the physical components used as case studies are low



Reaerodynamics,2-Dturbulentplanardiffuser,theinjectorandthesupersonicturbinefor rocket

propulsion.

Specifically,thetbllowingissuesarediscussed:

(1) ThecapabilityoftheNNandpolynomial-basedRSMforhandlingdatawithvariablesizesandnoise,

(2) TheselectionofNNconfigurationthatissuitableforgivendesignproblems,

(3) TheeffectofthedesignparametersontheperformanceoftheNN,

(4) Theeffectofdistributionofthedataoverthedesignspaceintheconstructionoftheglobalmodel,

(5) Themeritof employinga multi-leveloptimizationstrategytoperformthetaskadaptivelyand

efficiently,

(6) Possibletrade-offsbetweencapacitydesignobjectivesandtheirimpactondesignselections.

2. REVIEW OF METHODOLOGIES

In response-surface-based global optimization, there are several key technical elements:

(1) Response surface with polynomials and statistical analysis

(2) Neural networks with BPNN and RBNN

(3) Design of experiments with lace centered composite design (FCCD), orthogonal arrays (OA) and D-

Optimal designs

(4) Optimization procedure including the multilevel approach.

In the following, we review these elements in sequence.

2.1 RESPONSE SURFACE METHOD (RSM)

The approach of RSM is to perform a series of experiments, based on numerical analyses or

physical experiments, for a prescribed set of design points, and to construct a global approximation of the

measured quantity over the design space (Figure 1). The polynomial-based RSM, used in all the case

studies referred to, constructs polynomials of assumed order and unknown coefficients based on regression

analysis. The number of coefficients to be evaluated depends on the order of polynomial and the number of

design parameters involved. For instance, a second-order polynomial of N design variables has

(N+I)(N+2)/(2i) coefficients. A cubic model has (N+I)(N+2)(N+3)/(3!) coefficients. In this article, the



polynomialapproximationsareconstructedbystandardleastsquareregressionusingJMP [23], a statistical

analysis software that provides a variety of statistical analysis functions in an interactive manner.

In the practical application of RSM, it is necessary to develop an approximate model for the true

response surface• The approximate model is based on observed data from the process or system and is an

empirical model. The second order (quadratic) response surface model tbr response variable y with k

regressors can be written as

k k k-I k

+ (l)v=//0+Y x,+Z//,,x,'- e
I=l I=l i=1 ]=2

The above equation can be written in matrix notation as follows

y = X//+ e (2)

wherey: (nxl) vector of observations, X: (n.xno) matrix of the levels of the independent variables,//: (npxl)

vector of the regression coefficients, e: (nxl) vector of random error, n: the number of observations, and n,:

the number of terms in the model.

The purpose is to find the vector of least square estimators, b, that minimizes

L = Ea"_ 2 = _"e= (y- Xfl)r(y- X//) (3)

which yields to the least squares estimator of//

b=(XIX) _Xrv (4)

The global fit and prediction accuracies of the response surfaces are assessed through statistical

measures such as the t-statistic, or t-ratio, root mean square error rms-error) variation (Myers and

Montgomogery [37])• The t-statistic is determined by

bj
t = --- (5)

se(bj )

• * 4h

where b; is the least squares esttmators otj regression coefficient and se(bj) is the standard error of bj and

it is given by

se(bj ) = rr _C-_;j (6)



where C.u is the diagonal element of (X r X )-_ corresponding to bj. Here _ is the adjusted rms-error (or rms-

error predictor) incurred while mapping the surface over the data set. The quality of the fit of the different

surfaces can be evaluated by comparing the adjusted rms-error value that is defined as:

o, = ,[ Ze': (7)

vn - n o

where e, is the error at ith point of the training data.

The accuracy of the models in representing the design space is gauged by comparing the values of

the objective function at test design points, different from those used to generate the fit, with the empirical

solution. The prediction rms-error, G, for the test set is given by:

G = e_,? (8)

y m

In this equation E_is the error at the i 'h test point and m is the number of test points.

The coefficient of multiple determination R 2 measures the proportion of the variation in the

response around the mean that can be attributed to terms in the model rather than to random error and it is

determined by

R'- = SS---L= 1- SS_ (9)

SS,_ SS,,

S&: is the sum of squares of the residuals (= _(.v,- _,): ) where _ is the predicted value by the fitted
r=l

n

model. SSR is the sum of squares due to regression (= _-_(_, _y)z ) where y is the overall average of y,.
_=1

SS,.,. is the total sum of squares about the mean given by

n

SS,, = SS_: + SS_ = __I Y. - Y / (10)
r=

where y is overall average of y,

R-' is an R-' value adjusted to account for the degrees of freedom in the model and is given by
a

R 2=[ SS_:/(n-P)_l_[,, ,/(l_R 2) (11)

' SS, �(n-l) \n p_-,



SinceR 2 increases as terms are added to the model, the overall assessment of the model may be better

judged from R_.

The polynorrual-based response surface techniques are effective in representing the global

characteristics of the design space. It can filter the noise associated with design data. Since, the solution for

the set of coefficients that best fits the training data is a linear least square problem, it is trivial compared to

the solution for the NN coefficients, which is often a non-linear least square problem. The linearity of the

polynomial-based RSM also allows us to use statistical techniques known as design of experiments (DOE)

to find efficient training sets. On the other hand, depending on the order of polynomial employed and the

shape of the actual response surface, the RSM can introduce a substantial error in certain region of the

design space. An optimization scheme requiring large amounts of data and a large evaluation time to

generate meaningful results is hardly useful.

2.2 NEURAL NETWORKS (NN)

Neural networks are massively parallel computational systems comprised of simple nonlinear

processing elements with adjustable interconnections. Neural networks simulate human functions such as

learning from experience, generalizing from previous to new data, and abstracting essential characteristics

from inputs containing irrelevant data {Greenman [ 14]). The processing ability of the network is stored in

the inter-unit connection strengths or weights obtained by a process of adaptation to, or learning from, a set

of training patterns. Training of a network requires repeated cycling through the data, each time adjusting

the values of the weights and biases to improve performance. Each pass through the training data is called

an epoch and the NN learns through the overall change in weights accumulating over many epochs.

Training continues until the error target is met or until the maximum number of neurons is reached. In

Figure 2, a neuron model with multiple inputs and bias is shown.

Accordingly, the input is transmitted through a connection that multiplies it with the weight

related to that connection. The bias is similar to a weight except that it has a constant input of 1. The effect

of the product weight and input and the bias are added at the summing junction to torm the net input tot the

transfer (or activation) function. In Figure 3, a multi-layer network is shown. A layer of network includes

the combination of weights, the multiplication and summing operations, the biases and the transfer



functions.Inalayeredneuralnetwork,neuronsineverylayerareassociatedwithneuronsintheprevious

layerinsuchawaythattheoutputsofanintermediatelayeraretheinputstothefollowinglayer.Thelayer

thatproducesthenetworkoutputiscalledanoutputlayer.Allotherlayersareknownashiddenlayers.

Eventhoughresearchonneuralnetworkstartedinearly1940s,NNbecamequitepopulararound

1980swiththeintroductionofmulti-layeredNN(Rumelhartetal.[56])inawiderangeofdisciplines,

includingengineering.Overthelastdecade,NNapproachhasbeenusedintheaerospacerelatedindustry.

llli etal.[21]examinedtheapplicationofNNtechnologytoanautomateddiagnosticandprognostic

systemforturbineenginemaintenance.PreliminaryresultsindicatedthatusingNNtomaintaindiagnostics

savestimeandimprovesperformance.Kangasetal.[24]usedBack-PropagationNNs(BPNN)tomonitor

turbineengineperformanceanddiagnosefailuresinreal-time.TheapplicationofNNtechnologyappears

toholdgreatpromiseforenhancingtheeffectivenessofarmymaintenancepractices.Huangetal.[20]

developedandevaluatedamulti-pointinverseairlbildesignmethodusingNNs.It isshownthatneural

networkpredictionsareacceptabletbrliftandmomentcoefficientpredictions.Timedependentmodelsthat

predictunsteadyboundarylayerdevelopment,separation,dynamicstallandreattachmentaredevelopedby

FailerandSchereck[11]usingNNs.It isdemonstratedthatNNscanbeusedtobothpredictandcontrol

unsteadyaerodynamicseffectively.Fanetal.[12]introducedanewapproachforactivelaminarflow

controlthatincorporatesBPNNintoasmartwaltinteractiveflowcontrolsystem.Convergenceofthe

BPNNisinvestigatedwithrespecttothecomplexityoftherequiredfunctionapproximation,thesizeofthe

networkinrelationtothesizeofoptimalsolutionandthedegreeofnoiseinthetrainingdatabyLawrence

etal.[29].Thetechniquesandprinciplesfortheimplementationofneuralnetworksimulatorsarealso

presentedbyLawrenceetal.[30].Methodsforensuringthecorrectnessofresultsavoidingduplication,

automatingcommontasks,usingassertionsliberally,implementingreversealgorithms,employingmultiple

algorithmslbr thesametask,andusingextensivevisualizationarediscussed.Efficiencyconcerns,

includingusingappropriategranularityobject-orientedprogramming,andpre-computingintbrmation

wheneverpossible,arealsostudied.Norgaardetal. [40]usedBPNNlbrmoreeffectiveaerodynamic

designsduringwindtunneltesting.FourdifferentNNsaretrainedtopredictcoefficientsoflift,drag,

momentofinertia,andliftdragratioICL,C_._,Cu and L/D) from angle of attack and flap settings. Hybrid

neural network optimization method is successlully applied to produce fast and reliable predictions of

10



aerodynamiccoefficientsandtofindoptimalflapsettings,andflapschedules.Rossetal. [55]applied

BPNNtominimizetheamountofdatarequiredtocompletelydefinetheaerodynamicpertbrmanceofa

windtunnelmodel.It isshownthatthetrainedNNhasapredictiveaccuracyequaltoorbetterthanthe

accuracyoftheexperimentalmeasurementsusingonly50%ofthedataacquiredduringthewindtunnel

test.BPNNisemployedforrapidandefficientd.,,namicsandcontrolanalysisofflexiblesystemsbySparks

andMaghami[60].It isdemonstratedthatNNcangiveverygoodapproximationstononlineardynamic

components,andbytheirjudicioususeinsimulations,allowtheanalystthepotentialtospeedupthe

analysisprocessconsiderablyonceproperlytrained.Thehigh-liftpertbrmanceofamulti-elementairfoilis

optimizedbyusingneural-netpredictionsbyGreenman[1,1.].

BPNNhavebeensuccessfullyintegrated,,_,ith a gradient-based optimizer to minimize the amount

of data required to completely define the design space of a three-element airfoil. It is shown that using NN

reduced the amount of computational time and resources needed in high-lift rigging optimization.

Greenman and Roth [15] also applied BPNN tbr high-lift performance of a muhi-element airlbil and it is

demonstrated that the trained NN predicted the aerodynamic coefficients within an acceptable accuracy

defined to be the experimental error. Stepniewski and Jorgenson [61 ] used a Singular Value Decomposition

based node elimination technique and enhanced implementation of the Optimal Brain Surgeon algorithm to

choose a proper NN architecture. It is demonstrated that combining both methods creates a powerful

pruning scheme that can be used lbr tuning feed-forward connectionist models. Maghami and Sparks [34]

& [35] also demonstrated that the methodology they de,,eloped based on statistical sampling theory

guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the

functional relationship. BPNN is used to fill in a design space of computational data in order to optimize

flap position for maximum lift for a multi element airtbil by Greenman and Roth [16]. A Genetic

Algorithm (GA) and gradient-based optimizer are used together with NN and it is found that the

demonstrated method has a higher fidelity and a reduction in CPU time when compared to an optimization

procedure that excludes GA. Approximation abilities of BPNN is addressed by Lavretsky [28]. A novel

matrix method tot multi-input-multi-output NN is introduced and it is shown that by allowing inner layer

connections as well as connections between any layers, ordered NN has superior interpolation ability when

compared to conventional t'eed-l'orward NN. Stepniewski et al. [62] presented a new hybrid method that
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combinesa bootstraptechniqueanda collectionof stochasticoptimizationmethodsuchasGAfor

designingaNN.Themethodminimizesgeneralizationerror.Itisdemonstratedthatthesolutionsproduced

bythismethodimprovethegeneralizationabilityontheaverageoffivetosixtimeswhencomparedto

prunedmethods.

All oftheabovelistedreferencespreferredtouseBPNNamongtheotherNNchoices_Dernuth

andBeale[8],Kosko[25],andJangetat.[22]).This is due to the fact that BPNN attempts to have small

number of neurons when compared to the other NNs. However, since BPNN is usually slower because at

each step the error is propagated back to all the weights in the system, other NNs could be more efficient

than BPNN for specific problems. This article reviews the works focusing on Radial-Basis NN (RBNN)

and BPNN models developed by using Matlab _Dernuth and Beale [8]). A comparative study for radial-

basis and back-propagation approaches is also included. Brief summaries of the two approaches are given

in the tbllowing sections.

2.2.1 Back-propagation Networks (BPN_)

Back-propagation networks are created by generalizing the Widrow-Hoff learning rule (Dernuth

and Beale [8] and Kosko[25]) to multiple-Ia.',er networks and nonlinear differentiable transfer functions.

These networks are multi-layer networks with hidden layers of sigmoid transfer function and a linear output

layer. The transfer function in the hidden layers should be differentiable and thus, either log-sigmoid or tan-

sigmoid functions are commonly used. In this article, a single hidden layer with a tan-sigmoid transfer

function, tansig (Figure 4), given as tanh(n), if n is the input is considered. The maximum and minimum

outputs of the function are 1 and -1, respectively.

The output of the function is given by

a =tansig(w×X +b) (12)

where tansig is the transfer function, w is the weight vector, X is the input and b is the bias. For BPNN, the

initial weights and biases are randomly generated and then the optimum weights and biases are evaluated

through an iterative process. The weights and biases are updated by changing them in the direction of down

slope with respect to the sum-squared error of the network, which is to be minimized. The sum-squared

error is the sum of the squared error between the network prediction and the actual values of the output. In
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BPNNIFigure4a)theweights,wi, and biases, b:, in the hidden tansig layer are not fixed as in the case of

RBNN. Hence, the weights have a nonlinear relationship in the expression between the inputs and the

outputs. This results in a nonlinear regression problem, which takes a longer time to solve than RBNN.

Depending upon the initial weights and biases, the convergence to an optimal network design may or may

not be achieved. Due to the randomness of the initial guesses, if one desires to mimic the process exactly

for some purpose, it is impossible to re-train the network with the same accuracy or convergence unless the

process is reinitiated exactly as before. The initial guess of the weights is a random process in Matlab.

Hence to re-train the network the initial guess has to be recorded.

The number of neurons in the hidden layer of a back-propagation network is a design parameter. It

should be large enough to allow the network to map the functional relationship, but not too large to cause

overfitting. As a rule of thumb to choose the number of neurons in the hidden layer, Greenman [14] used

2s+l where s is the summation of total number of inputs and total number of outputs and Carpenter and

Barthelemy [4] used m+l where m is the number of nodes in the output layer. Once the number of neurons

in the hidden layer is decided, the network design is reduced to adjusting the weighting coefficient matrices

and the weighting bias vectors. These parameters for BPNN are usually adjusted using a gradient method

such as the Levenberg-Marquardt technique (Greenman [14], Norgaard et al. [40], Ross et al. [55], Sparks

and Maghami [60], Stepniewski et al. [62]). In Matlab, BPNN can be trained by using three different

training functions, trainbp, trainbpx and trainlm. The first two are based on the steepest descent method.

Simple back-propagation with trainbp is usually slow since it requires small learning rates for stable

learning. Trainbpx, applying momentum or adaptive learning rate, can be considerably faster method than

trainbp but trainlm, applying Levenberg-Marquardt optimization, is the most efficient since it includes

improvement techniques to increase the speed and reliability of simple back-propagation networks. The

Levenberg-Marquardt update rule is

"_W = (jr j +,ul)-t j% (13)

where AW is the change in weight, J is the Jacobian matrix of the derivatives of each error with respect to

0e_

each weight, i.e., _, I is the identity matrix, /2 is a scalar and e is the error vector, if the scalar /2 is

large, the above expression approximates the steepest descent, while it it is small then the method reduces
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totheGauss-Newtonmethod.TheGauss-Newtonmethodis tasterandmoreaccuratenearanerror

minimum,sotheaimistoshifttowardstheGauss-Newtonmethodasquicklyaspossible.Therefore,/2 is

decreased after each successful step and increased only when a step increases the error. The design

parameters for trainlm are the number of neurons in the hidden layer, S_, a user defined sum square error

goal, and the maximum number of epochs. The training continues until either the error goal is reached, the

minimum error gradient occurs, the maximum value of/2 occurs, or the maximum number of epochs has

been met.

2.2.2 Radial-Basis Neural Networks (RBNN)

Radial-basis neural networks are two-layer networks with a hidden layer of radial-basis transfer

function and a linear output layer. The main advantage of this approach is the ability of keeping the

mathematics simple and computational costs low due to linear nature of RBNN (Orr [41]). Outline of

supervised learning, main application area for RBNNs and the least squares method used together with

supervised learning with linear models are explained in detail in Orr [41]. Optimum of the regularization

parameter of RBNN is also searched in this paper. A computational method for re-estimating the

regularization parameter of RBNN, based on generalized cross-validation, is explained by Orr [42]. RBNN

is designed in such a way that it can adapt the width of the basis function, and it is tk_und that it can predict

better than a similar RBNN with the fixed width basis function. Orr [43] explains improvements made tbr

to tbrward selection and ridge regression methods. A methodology that is a cross between regression trees

and RBNN is described. The size of RBNN is also optimized based on regularization parameter in Orr [42].

The transfer function tbr radial-basis neuron is radbas, which is shown in Figure 5. Radbas, given

as e -'_ , where n is the input, has maximum and minimum outputs of 1 and 0 respectively. The output of

the function is given by

a =radbas(dist(w,X)xb) (14)

where radbas is the transfer function, dist is the vector distance between the network's weight matrix, w,

and the input vector. X and b is the bias. Radial-basis transfer function radbas calculates its output

according to a = e":.
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Inaradialbasisnetwork(Figure 5a) each neuron in the radbas hidden layer is assigned weights,

w_ which are equal to the values of one of the training input design points. Therefore, each neuron acts as a

detector for a different input. The bias for each neuron in that layer, b_ is set to 0.8326/sc, where sc is the

spread constant, a value defined by the user. This defines the region of influence by each neuron. The

training process is then reduced to the evaluation of the weights, w2, and biases, b_,, in the output linear

layer, which is a linear regression problem. If the input to a neuron is identical to the weight vector, the

output of that neuron is t, since the effective input to the transfer function is zero. When a value of 0.8326

is,passed through the transfer function the output is 0.5. For a vector distance equal to or less than 0.8326/b,

the output is 0.5 or more. The spread constant defines the radius of the design space over which a neuron

has a response of 0.5 or more. Small values of sc can result in poor response in a domain not closely

located to neuron positions, that is, for inputs that are far from the training data as compared to the defined

radius, the response from the neurons will be negligible. Large values will result in low sensitivity of

neurons. Since the radius of sensitivity is large, neurons whose weights are different from the input values

by a large amount will still have high output thereby resulting in a flat network. The best value of the

spread constant for some test data can be tbund by comparing cr for networks with different spread

constants.

In Matlab, radial-basis networks can be designed using two different design procedures, solverbe

and solverb. Both procedures require a spread constant, sc, as a design parameter; i.e., the radius of the

basis in the input space to which each neuron responds. Solverbe designs a network with zero error on the

training vectors by creating as many radial-basis neurons as there are input vectors. Theretbre, solverbe

may result in a larger network than required and may fit the numerical noise. A more efficient design in

terms of network size is obtained from solverb, which creates one neuron at a time to minimize the number

of neurons required. At each epoch, neurons are added to the network until it satisfies a user specified error

goal. The design parameters for solverb are the spread constant, error goal, and the ma._imum number of

epochs whereas it is only the spread constant for solverbe.

Radial-basis networks may require more neurons than a comparable BPNN. However, RBNN can

be designed in a fraction of the time it takes to train the standard BPNN due to non-linear regression

process of back-propagation networks. Therefore, RBNN are more efficient to train when there is a large
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amountoftrainingdataavailable.In Papilaetal.[49],aneffortismadetocomparetheaccuracyand

computingrequirementsbetweentheradial-basisandback-propagationapproacheswithdifferentsizesof

trainingdata.Vaidyanathanetal.[71]alsoinvestigatedrelativeperformancesofRBNNandBPNNforgas-

gasinjectorandsupersonicturbine.Aswillbediscussedin thefollowingsections,it is illustratedthat

amongall theNNconfigurations,RBNNdesignedwithsolverb seems to be more consistent in

performance for different data sets and RBNN, even when designed efficiently with solverb, tend to have

many more neurons than a comparable BPNN with tan-sigmoid or log-sigmoid neurons in the hidden layer.

The basic reason for this is the fact that the sigmoid neurons can have outputs over a large region of the

input space, while radial-basis neurons only respond to relatively small regions of the input space.

Configuring a RBNN often takes less time than that required for a BPNN because the training process of

RBNN is a linear in nature.

2.3 DESIGN OF EXPERI_IENTS (DOE)

In RSM, selecting the representation of the design space is a critical step because it dictates the

distribution of the information available for constructing the response surface. It is well established that the

predictive capability of RSM is greatly intluenced by the distribution of sampling points in design space

tUnal et a1.[69] & [70]). In order to select design points tot training that minimizes the effect of noise on

the fitted polynomial, design of experiment (DOE) techniques can be applied. There are different t_pes of

design of experiments techniques in the literature as reported by Haftka et at. [19]. For example, Unal et al.

[70] discussed the D-optimal design for the representation of the design space tbr a wing-body

configuration of a launch vehicle. They showed that D-optimal design provides an efficient approach for

approximating model building and multidisciplinary optimization. Papila and Haflka [48] also applied face

centered composite design (FCCD) to select the experiment points in the design space when approximating

wing structural v,eight. Unal et al. [68] & [69] studied response surface modeling using orthogonal arrays

(OA) in computer experiments tbr reusable launch vehicles and illustrated that using this technique can

minimize design, development, test and evaluation cost. Unal and Dean [67] studied the robust design

method based on the Tagucbi method (Unal and Dean [66] and Dean [7]) to determine the optimum

configuration of design parameters tbr pertk)rmance, quality and cost. They demonstrated that using such a
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robustdesignmethodforselectionofdesignpointsisasystematicandefficientapproachfordetermining

theoptimumconfiguration.BriefsummariesofFCCD, OA, and D-Optimal designs are given below.

2.3.1 Face Centered Cubic Design (FCCD)

Face centered cubic design (FCCD) creates a design space composed of eight corners of a cube,

centers of the six faces and the center of the cube. Fim.xre 6 shows FCCD selections for three design

variables. The FCCD yields (2'_+2N+1) points, where N is the number of design variables. It is more

effective when the number of design variables is modest, say, not more than 5 or 6. The FCCD is used for

fitting second-order response surface.

2.3.2 Orthogonal Arrays (OA)

An orthogonal array (OA) is a fractional factorial matrix that assures a balanced comparison of

levels of any factor or interaction of factors. Consider A, a matrix with elements of a/ wherej shows the

row (j = 1,2... nr) and i shows the column (i = 1,2...nc) that a/belongs to, supposing that each a/_ Q =

{0, l...q-1}. A is called an orthogonal array of strength t _<n, if in each nr-row-by-t-column sub-matrix of

all qCpossible distinct rowrs occur A times iOwen [44]). Such an array is denoted by OA(nr, n,,q.t) by O_,en

[44].

Since the points are not necessarily at the vertices, the OA can be more robust than the FCCD in

interior design space and are less likely to fail the analysis tool. Based on the design of experiment theory,

orthogonal arrays can significantly reduce the number of experimental configurations.

2.3.3 D-Optimal Design

A D-Optimal design minimizes the generalized variance of the estimates, which is equivalent to

maximizing the determinant of the moment matrix, M/Myers and Montgomery [37]).

iMf_-Ixrxl ,15,
tl '%
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wheren is the number of observations and np is the number of terms in the model.

The D-Optimal Design approach makes use of the knowledge of the properties of polynomial

model in selecting the design points. This criterion tends to emphasize the parameters with the highest

sensitivity (Haftka et al. [19]).

2.4 OPTIMIZATION PROCESS

2.4.1 Search Procedure

The entire optimization process can be divided into two parts: (1) RS/NN phase for establishing an

approximation, and (2) Optimizer phase.

In the first phase, polynormals or NN models are generated with the available training data set. In

the second phase the optimizer uses the RS/NN during the search for the optimum until the final converged

solution is obtained. The initial set of design variables is randomly selected from within the design space.

The flowchart of the process is shown in Figure 7.

The optimization problem at hand can be formulated as min{f(x)}subject to Ib < x < ub, where lb

is the lower boundary vector and ub is the upper boundary vector of the design variables vector x. If the

goal is to maximize the objective function then )'?x_ can be written as -g(x), where g(x) is the objective

function. Additional linear or nonlinear constraints can be incorporated if required. The optimization

toolbox in Matlab is used here employs a sequential quadratic-programming algorithm.

2.4.2 Objective Function

When attempting to optimize two or more different objective functions, conflicts between them

arise because of the different relationships the,,' have with the independent parameters. An equation

expressing the relationship between opposing effects of performance and weight can be employed as a

criterion to guide the optimization task. Both NN and polynomial-based RS techniques can handle such

multi-criteria optimization tasks in a straightforv,'ard manner by building a composite response surface

from individual response surfaces. Such a task would have been impossible without response surface. This

composite response surface is referred to as the desirability function. The maximization of the composite
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functioneffectivelyprovidesacompromisebetweentheindividualfunctions.Anaverageofsomeformis

normallyusedto representthecompositefunction.A geometricmeanis a solution,whichgivesa

compositefunctionoftheform:

D- d, (16)

where D is the composite objective function, d, 's are normalized values of the objective functions and l is

the number of objective functions. Each of the d, are weighted depending upon the importance of the

specific objective function. Figure 8 shows a typical trend for a desirability function with respect to the

weighting factors.

Another way of constructing a composite function is to use a weighted sum of the objective

functions. The composite function can then be expressed as:

I

D= _ct f, (17)
i=l

where D is the composite objective function andf's are the non-normalized objective functions. The a_'s

are dimensional parameters that control the importance of each objective function.

3. DESCRIPTION OF THE CASE STUDIES

3.1 GAS-GAS INJECTOR ELEMENT FOR ROCKET PROPULSION

Development of an optimization scheme tbr injector design called method i (Methodology tbr

Optimizing the Design oflnjectors) has been reported by Tucker et al. [64] & [65] Method i is used to

generate appropriate injector design data and then guide the designer toward an optimum design subject to

his specified constraints. As reported, method i uses the polynomial based RSM to facilitate the

optimization. The RSM approach is to conduct a series of well-chosen experiments (empirical, numerical,

physical or some combination of the three) and use the resulting information to construct a global

approximation (response surface) of the measured quantity (response) over the design space. A standard

constrained optimization algorithm is then used to interrogate the response surface for an optimum design.

Neural network was also used in the design of shear co-axial injector element by Shyy et al. [57], and

Tucker et al [64] & [651 along with the polynomial-based RSM.. Three different injector types are
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considered,namely,shearco-axialinjectorelement,impinginginjectorelement,andswirlco-axialinjector

element.

3.1.1 Shear Co-a:dal Injector Element

The initial demonstration of mettzod i by Tucker et al. [64] focused on a simple optimization of a

shear co-axial injector element (Figure 9) with gaseous oxygen (GO,.) and gaseous hydrogen IGH,)

propellants. The goal is to maximize the energy release efficiency, ERE while minimizing the chamber wall

heat flux, Q This is achieved by maximizing a composite objective function given by:

D: (18)

where the normalized functions are defined as in Eqns (19) and (20). In the case where a response should

be maximized, such as ERE, the normalized function takes the form:

d (ERE-A_'
Let':_) for A <_ERE <_B (19)

where B is the target value andA is the lowest acceptable value, de.RE is set to 1 tbr any ERE > B and d,_-e,_-=

0 for ERE < A. The choice of s is made based on the subjective importance of this objective in the

composite desirability function. In the case _,here a response is to be minimized, such as Q, the normalized

function takes on the tbrm:

d_ :( E-Ol ' tbrC <Q< E (20)
kg-c)

where C is the target value and E is the highest acceptable value, d,2 is set to 1 for any Q < C and d_ = 0 for

Q > E. A. B, C, and E are chosen according to the designer's priorities or, as in the present article, simply

as the boundary values of the domain of ERE and Q. The value of t is again chosen to reflect the

importance of the objectives in the design. In the study carried out, A and B are equal to 95.0 and 99.9,

respectively. Values of C and E are equal to 0.48 and 1. I, respectively.

The design data was generated using an empirical design methodology developed by Calhoon et

al. [3]. These researchers conducted a large number of cold-flow and hot-fire tests over a range of

propellant mixture ratios, propellant velocity ratios and chamber pressure [br shear co-axial, swirl co-axial,
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impinging,andpremixedelements.Thedatawerecorrelateddirectlywithinjector/chamberdesign

parameters,whicharerecognizedfromboththeoreticalandempiricalstandpointsasthecontrolling

variables.Fortheshearco-axialelement,performance,asmeasuredbyenergyreleaseefficiency,ERE, is

obtained using correlations taking into account combustor length, Lomb (length from injector to throat) and

the propellant velocity ratio, V/V. The nominal chamber wall heat flux at a point just downstream of the
f o

injector, Q ...... is calculated using a modified Bartz equation and is correlated with propellant mixture ratio,

O/F, and propellant velocity ratio, V/V ° to yield the actual chamber wall heat flux, Q. The objective in the

initial demonstration of method i was to maximize injector performance while minimizing chamber wall

•heat flux (lower heat fluxes reduce cooling requirements and increase chamber life) and chamber length

(shorter chambers lower engine weight). The data used to generate the polynomials and train the network is

given in Table A3-A5. The quality of the response surface and neural networks are decided using 20

additional design points different from those used to generate the models ITable A6).

3.1.2 Impinging Injector Element

The empirical design methodology of Calhoon et al.[3] uses the oxidizer pressure drop, APo, fuel

pressure drop, APj, combustor length. L,,,_,, and the impingement half-afigle, 6c as independent variables.

For this injector design, the pressure drop range is set to 10-20% of the chamber pressure due to stability

considerations. The combustor length, defined as the distance from the injector to the end of the barrel

portion of the chamber, ranges from 2-8 inches. The impingement half angle is allowed to vary from 15-

50 °. Dependent variables include ERE (a measure of element performance), wall heat flux, Q_, injector heat

flux, Q,,j, relative combustor weight, W,_l, and relative injector cost. C,,1.

The conditions selected for this example are:

P_ = lO00psi

MR =6 (21)

m_;,_:= 0.251b/sec

mo_,: = O.0421bsec

The gaseous propellants are injected at a temperature of 540R. As noted above, the empirical

design methodology used to characterize the ERE and Q_ was developed bv Calhoon et al. [3]. This
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methodologyusesaquantitycalledthenormalizedinjectionmomentumratiotocorrelatethemixingatthe

differentdesignpointsforthetripletelement.The,.definethisquantityas

MR,,,= 23mu (22)
mru t sinct

The maximum mixing, and thus maximum ERE, occurs at an MR,, of 2.0. Since the propellant

mass flow rates are fixed, only the propellant velocities and the impingement half-angle influence the

normalized injection momentum ratio. The velocities are proportional to the square root of the respective

pressure drops across the injector, AP,, and AP r For the flow conditions and variable ranges considered in

this problem, MR,, ranges from 3.2 to 17.8. Accordingly, lowering APo, raising APf, increasing o; or some

combination of these actions will increase ERE. The wall heat flux is correlated with the propellant

momentum ratio as defined by

MR = _ (23)

mf U t

For the F-O-F triplet element, i.e. the impingement injector element, the maximum wall heat flux

occurs at a momentum ratio of approximately 0.4. High heat flux is the result of over-penetration of the

fuel jet, which produces a high O/F in the wall region. For the flow conditions and variable ranges

considered in this effort, MR ranges from 1.06 to 2.11. Hence, increasing the value of this ratio by either

increasing AP,, or decreasing AP., lowers the ,.'.all heat flux.

The heat flux seen by the injector lace. Q:_.. is qualitatively modeled by the impingement height,

H,,,p,°_,. The notion being that. as the impingement height decreases, the combustion occurs closer to the

injector face, causing a proportional increase in Q,,,I Thus, for the purposes of this exercise. Q,,,j is modeled

as the reciprocal of the H,,,p,,,_,. Impingement height is a function of ce and .._IPI:Reference to Figure 10

shows that as c_ is increased, H_,,,p_n¢e iS shortened. The dependence of H,,,_, ,,¢, on the fuel orifice diameter,

d, and thus, AP f, results from making the freestream length of the fuel jet, L, a limction of dr For each

AP/, L1, was set to six times dj for an impingement half-angle of 30 °. So. as d t increases (corresponding to

decreasing "APt). Lt:, increases, as does H,,,p,,,_,.

The models for Wre_ and Cm are simple but represent the correct trends. W,,t is a function only of

L,,,,,,_,, the combustor length from injector face to the end of the chamber barrel section. The dimensions of
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the rest of the thrust chamber assembly are assumed to be fixed. So, as L,-o,,b increases, Wm increases

accordingly. The model for Cr,_ is based on the notion that smaller orifices are more expensive to machine.

Therefore, Cr,_ is a function of both propellant pressure drops. As the ziP increases, the propellant velocity

through the injector increases and the orifice area decreases. So, as either, or both, APo and AP: increase,

Cm increases.

The system variables given above and independent variables (constrained to the previously noted

ranges) are used to generate the design data for element optimization studies. Since propellant momentum

ratio is an important variable in the empirical design methodology, a matrix of momentum ratios was

developed over the 100-200psi propellant pressure drop range. The matrix of 49 combinations of fuel and

oxidizer pressure drops is shown in Table A7 where momentum ratios range from 1.06 to 2.11. Nine

pressure drop combinations, eight around the border and one in the middle, were selected for use in

populating the design database. These nine points are highlighted in Table A7 in bold t_pe.

Detailed design results for the case with both ziP,, and APj at 200psi are shown in Table A8.

Similar data was generated for the other eight pressure drop combinations. There are 20 combinations of

Lcomb and a" for each AP combination, making a total of 180 design points selected. Seventeen of these were

outside the database embodied by the empirical design methodology, resulting in 163 design points actually

being evaluated. The data trends are as expected. ERE, for a given AP combination, increases with

increasing L,.o,,i, and oz. The increased L,.o,,t, provides more residence time tbr the propellants to mix and

bum. Increasing c_ increases the radial component of the injected fuel, thus providing better mixing. The

wall heat flux is constant for a given ziP combination. Impingement height increases with increasing _.

Relative combustor cost increases with increasing L_o,,_,and the relative injector cost is constant tbr a given

AP combination.

3.1.3 Swirl Co-a.,dai Injector Element

The chamber pressure, mixture ratio, and propellant flow rates selected for this example are:

P. : lO00 psi

MR = 6

.,n>=: 0.25lb /sec

m:,, = 00421b soc

23
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Thegaseouspropellantsareinjectedatatemperatureof540R.ReferencetoFigurel1showsthat

theGO2, flowing in the center post of the element, exits the element with both radial and axial velocity

components. This effect is achieved by introducing the GO2 tangentially into the center post through small

slots. When the GO2, under hydrostatic head, is forced through the tangential slots, part of the pressure

head is converted into a velocity head, causing a rotational velocity in the element. For a specified AP,, and

swirl angle, O, the number and size of tangential slots, the discharge coefficient, the GO2 center post

diameter, do, and the radial and axial GO2 velocity components, Vor and Vo,_are calculated. These quantities

are then used to determine the dependent variables for each design condition.

The element ERE, calculated according to the empirical design methodology of Calhoon et al.[3],

is a function of all four independent variables noted above. A cold flow mixing efficiency, E,,,_,,, tbr 0:=90 °,

is correlated by:

5In L K. (25)Em.9o = 100-

L --7doJ

The cold flow mixing length, L,,_a, is correlated from a known chamber length, Lc,,,,b. The GO2

post diameter, do, is a function of AP,, and O. Smaller values of d. correspond to large values of AP,j and

smaller swirl angles. The empirical swirl factor, K, is a function of the normalized differential injection

velocity, (VI-V,)/V,,. K,. increases with increasing normalized differential injection _elocity lbr the range of

propellant velocities considered in this effort. For fixed propellant mass flow rates, the velocities V,, and !/I

are functions of their pressure drops across the injector, APo and AP i, respectively. For a given AP,,, Vo also

depends on the swirl angle. Lower Vo's are a product of higher swirl angles. Cold flow mixing is thereby

enhanced with higher values of V,, (i.e. AP,,) and L,.,,,,,. Lower values of _ (i.e. AP_) and O also tend to

enhance cold flow mixing.

A fractional factor, f', is applied to E,,._, to account for the lower levels of cold flow mixing lbund

with swirl angles less than 90 °. The resultant measure of cold flow mixing, E,,, o, is a product of E,,_ and

f'. This factor, tbr a given design, is a function of the normalized differential injection velocity and the ratio

of radial to axial GOz velocity, _,-/E,,,. Increasing values of both quantities increaseJ_, with a value off, = 1
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beingfoundatE,,/Vo,=1(0=90°) lbr all values of (V: - Vo)/E,. Larger values off,- increase cold flow

mixing. These values are found at low APo and high ziP:. and O. There is no dependency o|'_ on chamber

length. These trends are opposite those noted above. Finally, ERE is proportional to Era,

The wall heat flux Q,,, is correlated with the propellant momentum ratio as defined by:

MR = _ (26)

m/u :.

The wall heat flux curve from the Calhoon et al. [3] methodology is fairly flat, varying only about

10% from high to low for the range of pressure drops considered in this effort. Qw decreases with

increasing Vo (high ZIPo and low 6_ and decreasing V/(low ziP/). That Qw would decrease with increasing

V,, is counter to intuition. It seems that high values of Vo, for any O, would result in higher mixture ratios in

the wall region, as is the case for liquid Oe. Calhoon et al.[3] do not discuss this effect.

The heat flux seen by the injector, Q,,_j, is actually modeled by the distance from the injector at

which the propellant streams intersect. This axial distance is measured at the radial position corresponding

to the center of the co-axial fuel annulus, or gap. It is here that the streams begin to mix and burn. This

measure is qualitative, but captures the trend that higher injector heat fluxes occur the nearer the injector

that the combustion begins. The axial distance is affected directly by the swirl angle, and indirectly by the

propellant pressure drops. Q,,,j decreases with decreasing swirl angle, increasing GO_, pressure drop and

decreasing GH_, pressure drop. Swirl angle has the largest effect, while ziP,, is the least significant factor.

The relative combustor weight, Win, is simply a function of the combustor length, L,.,,,,,, the

distance from the injector to the end of the barrel portion of the chamber. The longer the combustor, the

more it weighs.

The relative injector cost, Cm, is a function of the fuel gap width and the width of the tangential

slots used to induce the swirl in the GO_ center post. Larger values of both variables result in lower

machining costs, and thus lead to lower injector cost. The fuel gap width increases with increasing ziP,,, and

decreasing values of _ and O. Swirl slot width increases with lower values of ziP,, and 69. Overall, Cr_

decreases with increasing ziP,, and decreasing AP: and 69. Fuel pressure drop and swarl angle are the most

significant factors.
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A matrixofpropellantpressuredropcombinationswasdevelopedandninecombinationswere

selectedlbruseinpopulatingthedesigndatabase.Thereare20combinationsofL,,,,,_, and. O for each AP

combination, making a total of 180 design points selected.

In the work by Tucker et al. [64] & [65], method i uses the Response Surface Method iRSM) to

find optimal values of ERE, Q_ Q,nj, wm and Cr,_ for acceptable values of ziP,,, APj, L,.,_,_, and O. The

approach of RSM is to perform a series of experiments, or numerical analyses, tbr a prescribed set of

design points, and to construct a response surface of the measured quantity over the design space. In the

present context, the five responses of interest are ERE, Q_,_ Q,_j, writ and Crew. The design space for each

element consists of the set of relevant design variables zlPo, ,dPj, Lcomb and O. The response surfaces are fit

by standard least-squares regression with a quadratic polynomial using JMP [23]. A backward elimination

procedure based on t-statistics is used to discard terms and improve the prediction accuracy. Five full

quadratic response surfaces are constructed by using JMP.

In the current case, it is desirable to maximize ERE and while simultaneously minimizing Q,_,, Q,_j,

W_I and C_l.

3.2 SUPERSONIC TURBINE FOR REUSABLE LAUNCH VEHICLES

Supersonic turbines that drive fuel or oxidizer turbopumps in rocket engines are of great interest to

the next generation space propulsion industry, including the Reusable Launch Vehicles (RLVj. They are

complex, high-speed devices that produce shaft power by ducting the flow of hot gasses over specially

shaped blades on a wheel. For rocket engine applications, maximizing the vehicle payload for a given

turbine operating condition is the ultimate goal. The flow path should be designed in such a way that it

wastes less energy so that turbine temperatures or the mass flow rate can be reduced, or the turbine can be

made smaller, increasing the efficiency (or specific impulse) of the rocket engine. Any gain in turbine

efficiency will be reflected in reduced propellant consumption, resulting in an increase in the payload.

However, higher turbine performance usually entails multistage designs, which are heavier. The design of a

supersonic turbine often involves a considerable number of design variables with structural and

aerodynamic constraints. With the number of design parameters involved, the overall procedure of design

optimization of supersonic turbines becomes a challenging task.
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Papilaetal.[50]haveconductedaglobaloptimizationinvestigationtopertbrmthepreliminary

designofthesupersonicturbines,includingtheselectionofthenumberofstagesanddesignvariables.

From1-to2-to3-stageturbines,thenumberofdesignvariablesincreasessubstantially.Inshapedesign,

fromvanetoblade,fromstagetostage,andfrom2-Dto3-D,notonlydoesthenumberofdesignvariables

increase,butalsotheinteractionsamongdesignvariablesbecomemorecomplicated.Papilaetal.[50]

intendedtoinvestigatetheindividual,aswellascollectiveeffectsofdesignvariablesbyvaryingthedesign

scopesystematically.Vaidyanathanetal.[71]haveusedthedataof thel-stageturbinetoconducta

comparativestudybetweenRSMandNN.

Forpreliminarydesignstage,single-,two-andthree-stageturbinesareconsidered.Thedesign

variablescanbeseparatedintotwocategories,onerelatedtogeometryandtheothertoperformance.They

aresummarizedasfollows:

(1) Geometric inputs. The geometric inputs are needed to layout the turbine meridional geometry, e.g.,

mean diameter, last rotor annulus area, blade height ratio between the I st vane and the last rotor blade

(linear distribution of blade heights is assumed between the 1_' vane and the last rotor blade), vane and

blade axial chords.

(2) Performance inputs. The perlbrmance inputs are needed to calculate the turbine efficiency, e.g., speed

(RPM), number of stages, blade row reaction, and work split (if more than 1 stage is investigated).

For single-stage turbine, 6 design parameters (Table 3) are selected. These are (1) the mean

diameter, (21 speed fRPM), (3) exit blade annulus area, (4) vane axial chord, (5) blade axial chord, (6) stage

reaction.

For 2-stage turbine, there are 1t design parameters (Table 3), namely, (1) the mean diameter, (2)

RPM, (3) exit blade annulus area, (4) Ist blade height (% of exit blade), (5) I st vane axial chord, (6) 1*t

blade axial chord, (7) 2nd vane axial chord, (8) 2"d blade axial chord, (9) 1_ stage reaction, (10) 2nd stage

reaction, and l 11) 1_ stage work traction. Note that 2nd stage work fraction is not a design parameter since it

can be calculated by using 1_ stage work lractions, i.e., wj2=l-_,)_.

There are 15 (Table 3) design parameters for 3-stage turbine. These are (1) mean diameter, (2)

speed (RPM), _3) exit blade annulus area, (4) 1" blade height (% of exit blade), (5) 1S' vane axial chord, (6)

[_ blade axial chord, (7} 2',d vane axial chord, (8) 2nd blade axial chord, (9) 3 _t vane axial chord, (10) 3 _
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bladeaxialchord,(11)1ststagereaction,(12)2nestagereaction,(13)3_dstagereaction,(14,_Is'stagev,ork

fraction,(15)2"dstageworkfraction.Notethat3_stageworkfractionisnotadesignparametersinceitcan

becalculatedbyusingIstand2"astageworkfractions,i.e.,v_=l-(w;-l+wj2).

The composite objective function chosen by Papila et al. [50] for design optimization corresponds

to the payload increment, Apay, versus turbopump efficiency and weight. The relation between Apay and

these two parameters can be developed as follows based on mission profile studies, engine balance

perturbation and some detailed turbopump layout and stress information gained from other proprietary

programs.

Apay =c,×(rl-'qb) ×100-(W-Wb) (27)

where "qb is the baseline efficiency and Wb is the baseline weight. The constant c_ indicates that for every

point in efficiency gained, the amount of payload capacity of the RLV is increased c_ per turbopump

Therefore, dpay function represents the amount of increase in payload capacity. The results of both payload

increment based and composite desirability function based optimization are illustrated for 1, 2, and 3-stage

designs. The results of both payload increment based- and composite desirability function-based

optimization are illustrated for 1, 2, and 3-stage designs in the following chapters.

Two structural constraints are considered by Papila et al. [50]. In axial turbines the product of the

blade exit annulus area and the RPM square, i.e., AN 2 is an indication of the blade centrifugal stress, which

should bind the speed of the turbine. In addition, the disk stresses are also a restriction. In turbomachiner',

industry, the maximum stress value due to disk burst is oRen represented by a pitchline velocity limit, i.e.,

Vp,,_h. The pitchline velocity can be calculated by muttiplying RPM and the mean radius.

3.3 TURBULENT PLANAR DIFFUSER

The goal was to accomplish maximum pressure recovery by optimizing the wall contours. The

flow is incompressible and fully turbulent with a Reynolds number of l0 s, based on the inlet throat half-

width, D. The overall geometry is defined by the ratio of inlet and outlet areas, and the diffuser length to

height ratio. In this study the length to height ratio is fixed at 3.0, and the area ratio at 2.0. The shape of the

diffuser wall is designed for optimum performance, with five design variables represented by B-splines.

The CFD model is based on the full Reynolds-averaged Navier-Stokes equations, v, ith the k-e" two-equation
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turbulencemodelinclosureform.Attheinletoftheflowdomain,aunitbrmflowdistributionisspecified.

DetaileddiscussionofthisstudycanbetbundinMadsenetal.[33].

3.3.1 Objective

Thedimensionlesspressurerecoverycoefficient Cp is introduced as the objective function to be

maximized

Ap (28)
F=Cp- 1 ,

_ pu:.,

Here ,:lp is the static pressure difference between channel cross sections up- and downstream of

the diffuser respectively, p is the fluid density, and u,,,_ is the inlet mean velocity. Inlet and outlet static

pressures are averaged, even though the pressure distribution is nearly uniform due to well-developed flow

at the considered cross sections. The CFD model uses a symmetry condition along the channel center axis,

and has a computational mesh consisting of 120x50 cells including a long outlet section to establish a fully

developed exit profile. The overall geometry of the two-dimensional planar diffuser, see Figure 12, is

defined by the ratio of inlet and outlet areas, AR, and the diffuser length/height ratio, L=D, where L is the

axial length of the diffuser. In this study the L=D-ratio fixed at 3.0. and the area ratio AR at 2.0. Expressed

in terms of the inlet half-width D, the horizontal position of the inlet is 1D, while the horizontal position of

the outlet is 10D. The shape of the diffuser wall is designed for optimum pertbrmance, and to this end two

separate cases of wall parameterizations are tried: (1) a two design variable case, where a polynomial

describes wall shapes, and (2) a five design variable case that uses B-splines. Even though two different

curve descriptions are used in the two cases, the most noteworthy difference seen from the point of view of

the RSM lies in the problem size.

3.3.2 Geometric Representation

For shape parameterization in more variables, B-splines were preferred to natural splines

(piecewise polynomials), although the latter technique is closer to the polynomial representation. B-splines

excel in the predictable way that control points influence cur',e shape, and in the local control, which
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preventssmallchangesinacontrolpointpositionfrompropagatingovertheentirecurve.Combinedwith

lowcomputationalcost,theseadvantageshavecontributedto B-spline curves becoming a standard

geometric modeling technique in computer-aided design.

A B-spline is given in a parametric form asp(u):

_(u) °
p(u) =[" ] = '_-_PN k(u) (29,

Lyo',_J ,=0 ' '

A set of blending functions N,.k combines the influence of n+ 1 control points P,, over the range of

the parametric variable u. The blending functions N,._ are recursively determined polynomials with degree

k-l, where the parameter k dictates the order of continuity of the curve, and thus how many control points

influence a curve segment. In this work k is 8, which corresponds to C6-continuity. The number of control

points is 8 as well-two endpoints, five design variables and one point used for prescribing the inlet slope.

B-splines have an approximating nature, in that they do not necessarily pass through control

points, except for fixed curve endpoints. The slope at a curve endpoint is tangential to a straight line

connecting the endpoint and the first control point, and may be prescribed by placing an additional fixed

control point near the endpoint.

Experimental and numerical evidence indicates that maximum pressure recovery in diffusers

occurs at the border of appreciable flow separation. For this reason, strongly separated diffuser flows

should be avoided, which makes it reasonable to restrict the design space to monotonic wall shapes. While

the approximation accuracy does of course benefit from the reasonable design space approach, it is equally

important in the present example that monotonicity constraints eliminate convergence problems associated

with CFD-analysis of odd, non-monotonic designs.

The parametric form in which B-splines are defined makes it non-trivial to derive monotonicity

constraints analytically, so instead a constraint approximation G was set up in the form of a response

surface for the minimum wall slope G. Then, observing the inequality constraint G 20 implies a positive

wall slope and thus monotonicity throughout. Since B-splines are inexpensive to generate, 9 s (59049) B-

splines were computed tthis took just a few seconds) and used for fitting a quadratic response surface. The

approximation to the monotonicity constraint precludes some designs that satisfy the exact monotonicity
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requirement.However,theeffect of these inaccuracies on the solution of the optimum design problem is

negligible.

The regression analysis, to find 21 polynomial coefficients in five dimensions, is based on a 35-

point D-optimal design. The surplus of analyses is generally required for reducing the sensitivity to

numerical noise and to errors due to the simplified representation as a quadratic polynomial. Again, a pool

of candidate points was created, this time using nine levels tbr each variable, (values ranging from 0.0 to

1.0), and then checking the monotonicity of the B-splines tbr each of the 95 = 59049 designs. Observe that

limiting the y-coordinate of the control points to a variation in the range [0:0; 1:0] is a somewhat artificial

requirement, as monotonic shapes exist with coordinates slightly outside this range. A total of 20864 points

are monotonic in wall shape. This relatively large percentage of acceptable cases reflects the smoother

nature of approximating curves. Had a non-segmented polynomial curve representation been used, the

condition of monotonicity in the control points would alone have reduced the number of feasible design

points to less than 1% of those inside a five dimensional box. As in the two-design-variable case, the subset

of D-optimal points was found using the JMP-software.

3.4 LOW REYNOLDS NUMBER WING MODEL

3.4.1 Training Data

The aerodynamic model, a rectangular wing with a NACA 5405 airtbil cross-section (Figure 13) is

designed for low Reynolds Number (Re=lOa-lO _) flows. Since airfoil performance decreases at low

Reynolds Number flights, attempts to shrink the overall aircraft size while trying to keep sufficient lifting

areas, result in low aspect ratio wing plan forms. As aspect ratio decreases, the percentage of the wing area

affected by the tip vortices increases, creating a 3-D flow field over most of the field. Therefore, the

analysis of such flows should consider the effects on pertbrmance and the effects of both the airfoil

geometry (such as maximum camber) and the wing geometry (such as aspect ratio). [n this study, the

aerodynamic analysis is based on a 3-D potential flow solver, PMARC, and a 2-D coupled inviscid-viscous

flow solver, XFOIL-. The lilt coefficients, Ct., and drag coefficients, Ct), tbr various maximum camber, Yc,

aspect ratios, AR, and angles-of-attack, &', at fixed Reynolds number, Re=2.xl¢) _, and thickness ratio,

y_=5%, are used to correlate the aerodynamic pertbrmance, measured by the power index, Ct//2/Cv, which
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appearsexplicitlyinsteadyflightrequired-powerequation.Aspectratioandmaximumcamberformthe

inputvector,p and C_ j2 / Ct_ forms the target output vector, a, as shown below.

= a = L "/CD _R (30)
P Yc ZxR

where R is the number of input vectors of the training data.

For the 3-D wing case, the maximum camber varies between 0.0 and 0.1 and the aspect ratio

varies between one and five. Three different training data sets are used out of the available data as shown in

Table A I. Table A2 summarizes the test data sets used for prediction for this case. A simulation, referred in

these tables, consists of two input variables: AR and y_ and the output variable: CJ_/Co.

4. ASSESSMENT OF DATA PROCESSING AND OPTIMIZATION CAPABILITIES

Of all the cases considered in this article, the impingement injector element, swirl co-axiai injector

element, 2-stage supersonic turbine and turbulent flow diffuser help understand the effectiveness of using

polynomial based RSM. Shear co-axial injector element, l-stage turbine and two-dimensional wing model

are used to carry out a comparative study between RSM and NN. The size of the data set used varies from

modest to large (l¥om 9 to 2235 data).

In the following, we synthesize the studies of Papila et al. [491 & [50], Madsen et a1.[33], Shyy et al.

[57], Tucker et al. [64] & [65] and Vaidyanathan et a1.[71]. We first review the data processing capabilities

then evaluate the performance of the optimization techniques. For both NN and polynomials, one needs to

first decide most appropriate constructions for a given data set. For the NN, the choices are usually (1) the

number of neurons, and (2) the error goals. Furthermore, the spread constant (for RBNN) and the number

of hidden layers (/br BPNN) can be specified. In this article, the BPNN and RBNN will be limited to the 2-

layer tbrm.
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4.1 SHEAR CO-AXIAL INJECTOR

4.1.1 Polynomial Fits

According to the injector model developed by Calhoon et al. [3], injector performance, as

measured by ERE depends only on the velocity ratio, V/V,,, and combustion chamber length, LL.o,,t,.

Examination of the original data set in Table A3-A6 indicates 15 distinct design points lbr ERE. Since

chamber wall heat flux is dependent only on velocity ratio, V/V,,, and oxidizer to fuel ratio, O/F, there are 9

distinct design points for Q. The design space for this effort is depicted in Figure 14. For ERE. the 5 distinct

chamber lengths offer the potential for a fourth-order polynomial fit in Lco,,b, while the three different

velocity ratios limit the fit in V/Vo to second order. Quadratic and cubic response surfaces for both ERE and

Q have been generated for evaluation. These response surfaces represent reduced models accomplished by

term elimination from the fiall surface using t-statistics as described earlier. The above-noted limitations on

the data cause the cubic surfaces to be third order in L,.o,,,_ only.

Based on the adjusted RMS error, Vaidyanathan et al.[71] have concluded that the cubic fit is

more accurate than the quadratic fit tbr ERE. The adjusted RMS error for the quadratic and cubic response

surfaces of ERE are 0.211 and 0.083, respectively. The cubic fit, by this measure, is superior for ERE.

However, the error is almost identical in the case of Q for both the quadratic (0.039) and cubic (0.040)

surfaces, perhaps due to the very small number of points available for the curve fit. The additional terms in

the cubic fit relati,,e to the quadratic fit do not improve the mapping of the response surface for Q.

4.1.2 Construction of RBNN

In the case of the injector design there are two objectives, namely ERE and Q. Figure 15 gives the

variation of cr for the network designed with solverbe for these objective functions. In case of solverb the

error goal during training also defines the accuracy of the network. An objective of fitting a numerical

model is to remove the noise associated with the data. A model, which maps exactly as soh'erbe does, will

not eliminate the noise, whereas solverb will. Figure 15 shows that for low values of spread constant, the

NN has a poor performance. As the spread constant increases o" asymptotically decreases. However, as

demonstrated by Figure 15a the performance of the network can deteriorate for higher values of the spread
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constant. The region with a large variation in o'is highly unreliable because this indicates a high sensitivity

of the model to a small variation of spread constant and possibly the test data, in this region. Hence the

desirable spread constant is selected from the region where the performance of the network is relatively

consistent.

Figure 16 gives the variation of cr for the network design with solverb for the objective functions

of ERE and Q. It also shows the influence of error goal on the network. Generally if a network maps the

training data accurately it can be expected to perform efficiently with the test data. However, accurately

mapping noisy data may result in poor prediction capabilities for the network. The variation in the

performance is not significant except for the ERE and Q network (Figure 16), where the poor performance

of the network at high values of spread constant improves tbr a larger error goal. This may indicate the

presence of noise in the data tbr ERE, which solverb is able to eliminate with an appropriate error goal.

Figure 17 shows variations in number of epochs and o-with the variation of error goal for a given spread

constant when RBNN is designed with solverb. The number of neurons in the network is one more than the

number of epochs. One expects that as the error goal increases the number of epochs becomes smaller and

the network performs less accurately as in Figure 17a and b.

When choosing an appropriate network the above-mentioned features have to be considered. The

performance of the constructed NN is best judged by comparing the prediction error as given in Eqn. (8) for

different net_orks. Using _olverbe, networks are designed with varying spread constants and the one that

yields the smallest error is selected. When solverb is used, networks are designed for different spread

constants and error goals. The network that gives the smallest error for the test data is used. The details of

the networks selected are discussed in later sections.

4.1.3 Evaluation of Polynomial and N_' for Data Processing

The polynomial and NN-based RSM arc constructed using the training data. The test data is then

employed to select the best polynomial or NN. Specifically in polynomial-based RSM, the difference

between the polynomial and the training data, as given by cr,_,is normally used to judge the performance of

the fit. The additional use of the test data helps to evaluate the pertbrmance of different polynomials over
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designpointsnotusedduringthetrainingphase.Thisgivesacomplementaryinsightintothequalityofthe

polynomialmodeloverthedesignspace,Forboththerocketenginecomponents,differentpolynomials

weretried.Table4 and5comparetheperformanceofdifferentpolynomialsusedtorepresentthetwo

objectivefunctionsoftheinjectorcase,ERE and Q. Starting with all the possible cubic terms in the model,

revised models are generated by removing and adding terms. Similar kind of analysis is also done for the

turbine case. The best polynomial is selected based on a combined evaluation betv,een or, and o_

For the NN, the test data helps evaluate the accuracy of networks with varying neurons in BPNN

and varying spread constant in RBNN. Thus the test data are part of the evaluation process to help select

the final NN. Based on the RSM or NN model, a search for optimum design is carried out using a standard,

gradient-based optimization algorithm over the response surfaces represented by the polynomials and

trained neural networks.

A reduced quadratic and an incomplete cubic response surfaces are used tbr the two objective

functions. The first model in Table 4 and the sixth model in Table 5 are the selected cubic models tbr ERE

and Q, respectively. There is no noticeable improvement amongst the remaining cubic models for ERE. For

Q, the selected model is the best in terms of o: although there are other models with identical values of cz

The radial basis networks designed with solverbe are the largest with 15 neurons in the hidden

layer tbr ERE network and nine neurons for the Q network. Solverb designs a network tbr ERE with 14

neurons in the hidden layer and a network for Q with eight neurons. Compared to RBNN, BPNN has fewer

neurons, the number of neurons in the hidden layer are eight and four for the ERE and Q networks,

respectively. Details of the networks used are listed in Table 6. The spread constant used for RBNN and

the error goal of the training data is also given in this table. The spread constant values are selected from

the region where the performance of the network is consistent with the variation of spread constant (Figure

15 and Figure 16). The error goal, in the case of solverb, is selected based on the network with the best

performance for the ideal spread constant. (Figure 17).

The error in predicting the values of the objective function by different schemes is given in Table

7. Several observations can be readily made.

(l) Both NNs pertbrms better than the RSM tbr this data set.

12) Both solverbe and solverb are of comparable performance.
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(3)TheBPNNhelpsgeneratesmallernetworksandhenceperformsatparincomparisontoRBNN.

(4)Thecubicpolynomialismoreaccuratethanthequadraticone.

ThevariousmodelsgeneratedarecomparedwithtestdatashowninFigure18andFigure19.The

curvesrepresentingtheNNpredictionsareclosertothedataobtainedfromtheinjectormodelthantheRS

therebydemonstratingthatNNmodelsareabletopredictbetterthantheRS.BPNNperformsaswellas

RBNNbuttendstobeflat.Duetoitslowerorder,thequadraticpolynomialisflat.Thecubicpolynomialis

abletoperformbetterthanquadratic.

4.1.4 Polynomial-based RSM for Design Optimization

This case study is used to pertbrm a complete comparative study between polynomial and NN-

based RSM. The comparison is carried out in three ways. Firstly, the predictive capabilities of the different

models are compared. Secondly, NN is used to increase the population of the design space, which is then

used for mapping by polynomial-based RSM. Thirdly, polynomials and NN are used individually to

represent the design space and help in the optimization of the design.

An optimization was done for three different ranges of the independent variables using the

quadratic fit. The three cases analyzed differ only in the constraints implemented on the design parameters.

The constraints are

Case 1." 4 __O/F_<6, 4 __V/V,,_<6, L_o,,,_,_<7,

Case 2. 4 SO/F-_6, 5 _<V/V,,S7, L,,,,,b S7,

Case 3:4 __O/F _<6, 6 _<V/V,, -<8, L, omb _<Z

The optimization is repeated using the cubic fits. The combinations of weighting factors for ERE,

s, and for Q, t, are selected as (1,10), (1.1) and (10, I) lbr these three cases. The optimum has been

evaluated and tabulated for each case, as detailed in Table 8-Table 10. In this effort, injector element

optimization means maximizing the pertbrmance, while minimizing heat flux and chamber length. The

optimum value tbr V/V,, obtained on the cubic response surface is quite different than that found on the

quadratic surface for some cases fthese particular cases are noted in bold in Table 8-10). Also, for selected

cases where there are discrepancies between the quadratic and cubic results, the exact values from the
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injectormodelhavebeenincludedinparenthesesinthetablesforcomparison.Inthesecases,thecubicfit

morecloselymatchestheexactdatathandoesthequadraticfit.SampleresultslbrERE plotted in Figure

20a clearly show the data is better fit by the cubic surface tbr the case shown. Figure 20b shows that the

response surface predicted by cubic fit for Q has a noticeable dip that is completely missed by the quadratic

fit. This discrepancy results in the optimum tbr the cubic fit being considerably lower than that for the

quadratic surface. The prediction from cubic fit agrees well with the exact data, which also has a dip for

this specific case.

The injector model was also used to produce additional design points to assess the capability of

the different response surfaces to match the exact data. In Figure 21a and Figure 22a, the actual data

obtained from the injector model for all the design points has been shown. The cubic and quadratic

response surfaces obtained based on the original data is also shown. The RMS error tbr predicting the new

ERE data is 0.270 and 0.205 lbr the quadratic and cubic surfaces, respectively. For Q, it is 0.025 and 0.016

for the quadratic and cubic surfaces, respectively. Again, the pertormance of the cubic surface is superior to

that of the quadratic surface.

4.1.5 Radial Basis Neural Networks (RBN.'N)

Radial Basis Neural Net,,_orks are trained by both Solverbe and Solverb lot each injector design

response, ERE and Q, using the original data set of 45 design points. Soh'erbe trained the network tbr ERE

with an error to the order of 10_< The network trained by Solverbe for Q has an error on the order of 10 -_6.

Both networks represent the respective design spaces essentially exactly. Solver& with an error goal of

0.001, trained networks for both responses to represent the original data set adequately. Since the size of

the data set considered for training the network is fairly modest, the number of neurons generated by

soh,erbe is also small. Soh, erb would have been suited better for a larger data set where a reduction in the

number of neurons might have appreciably reduced the computation time. The networks trained using

Soh,erbe have been used for this article. The ability of the RBNN to fit the design data and to generate

additional data tbr constructing a more accurate response surface is discussed in the following sections.
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(i) Comparison between Solverbe and Solverb

Since Solverbe trains with the same number of neurons (4.5 in this case) as data points, as seen

above, it fits the training data set with negligible error. However, it can also create erratic behavior since it

makes no attempt to filter noise generated by excess neurons in the network. Solverb, on the other hand,

tends to reduce the potential for noise by controlling the number of neurons in the network. Table l 1 shows

that in the present article, for the spread constant value of 1.00, Soh, erb perlbrms slightly better than

Solverbe based on the nominal error measure. However, when judged by the level of errors associated, both

RBNNs are satisfactory from a practical standpoint. As expected, Solverb uses fewer neurons than

Solverbe; in this case three less. It should be noted that, as investigated in detail by Papila et al. [49], the

relative performance between Solverb and Solverbe is case dependent.

fib Comparison of RBNN Predictions with Polynomial Based RSM

Figure 21b and Figure 22b show that the RBNN trained by Solverbe is able to more accurately

generate additional design data than either quadratic or cubic polynomial (shown for comparison in Figure

2la and. Figure 22a). In Figure 21a, the ERE surface trained with the original data set is shown. The 10

extra design points calculated with the injector model lbr V/V,, of 5.00 and 7.00 are shown. The ability of

the RBNN to accurately generate new design data can be seen by comparing the fit for ERE in Figure 21b

to that tbr the polynomials in Figure 2 la. RBNN trains the network with more flexibility and learns the data

trend, ,,,,hereas polynomials provide only an approximate fit on the given data. Regarding the RMS error, o;,

for ERE, it is 0.152 for RBNN predictions as compared to the values of 0.270 and 0.205 ibr quadratic and

cubic surfaces, respectively. The fbur extra design points generated tbr Q, also at V/Vo of 5.00 and 7.00 are

shown compared to the polynomial surface in Figure 22b and compared to the RBNN surface in Figure

22b. The RMS error in the case of Q is 0.022 tbr RBNN as compared to 0.025 and 0.016 for quadratic and

cubic surfaces respectively. Here the pertbrmance of the RBNN is better than the quadratic but slightly

poorer than the cubic fit. Examination of Table I I indicates it may be possible that using Solverb with a

spread constant of 1.05 could thrther reduce the RMS tbr Q. However, the errors for Q are low enough that

further reduction may not be practical.
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4.1.6 RBNN-Enhanced Polynomial Based Response Surface

Additional design points generated by the RBNN are added to the original data set to form the

enhanced data set. This enhanced data set is used for further analysis to evaluate the pertbrmance of the

RSM with the larger number of design points. The enhanced data set for ERE has 15 points from the

injector model and 10 from the RBNN, for a tota! of 25 points. The enhanced data set for Q has 9 points

from the injector model and 4 from the RBNN, for a total of 13 points. The entire optimization analysis was

redone with the enhanced data set. On this enhanced data set, the full quadratic response surface seems

already appropriately constructed and invoking the statistical analysis generates no reduced model. With

the added data in the enhanced data set, it is now possible to obtain a fit 'for ERE that is 4 _horder in V/V_,

and 4th order in Lco,,b. Q can now be fit with a cubic in V/Vo and a quadratic in O/F. This is now possible

since a combination of 3 different values of O/F, 5 different values of V/V,, and 5 different values of Lc,,m_,

are available.

(i) Comparison of Fits with the Original Response Surfaces

Comparison of the enhanced response surfaces with the original response surfaces indicates that

the extra data produced with the RBNN generally improves the quality of the curve fit. The adjusted RMS

error 1br ERE on the original set is 0.211 and 0083 for quadratic and cubic fits, respectively. On the

enhanced data set, it is 0.179 and 0.100/or the quadratic and cubic fits, respectively. The slight increase in

the error in the case of the cubic fit may be due to noise related to the over-sensit/vity of the polynomial.

However, this phenomenon may reflect the tact that the level of the RMS is low enough in either case so

that no further improvement is accomplished. The adjusted RMS error for Q with the original set is 0.039

and 0.040 for the quadratic and cubic fits, respectively. On the enhanced set it was 0.027 and 0.026 for the

quadratic and cubic, respectively. With the exception of the cubic fit tbr ERE, the fits from the enhanced

surface are improved over those t'rom the original surface. Also, when optimum design points are

examined, there is less difference between the quadratic and cubic fits on the enhanced surfaces than there

is on the original surfaces.
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(ii)Comparison of Optimal Design Points

The analysis for the three cases of optimization over the same three ranges of independent

variables has been re-done. The results of the optimization on surfaces generated from the enhanced data

set are tabulated in Table 12-Table 14. The predicted optimal design points using cubic and quadratic fits

are generally close to each other. They are closer to each other on the enhanced data set than on the

surfaces generated using the original data set. One case where the cubic and quadratic optimum points are

somewhat different is analyzed further. The results shown in Figure 23 confirm the optimum value of

velocity ratio on the quadratic fit to be lower than the cubic fit in this case. Given the weightings of 1.0 for

ERE and I0.0 for Q, the optimizer has selects the minimum of Q tbr both fits. Since the curves exhibit

different minimum points, the weightings force the selection of different optimum points. As already

discussed, for the polynomial fits on the RBNN-enhanced data sets, the errors of both quadratic and cubic

polynomials are more comparable than in the original analysis. At the upper limit of the design space tbr

combustor length, the ERE curves tend to flatten out. This causes some difficulty in locating the optimum

and may cause more noticeable differences between the different polynomials. However, different optimal

designs selected by different polynomials under such a circumstance are not important since these yield

very similar injector performance.

The optimum solution obtained from various schemes is shown in Table 15 and Figure 24 and

Figure 25. The aim is to maximize ERE and minimize Q. The trend of the objective functions in the design

space is monotonic and hence every mtxlel is able to select identical optimum design tbr the given

constraints. The flatness of the quadratic polynomial results in less accurate values of the objective function

tbr the optimum design. The cubic polynomial, while more flexible than quadratic, is not consistently better

in predicting the optimal design point. For example, a V/V,, constraint of 4, the quadratic polynomial is

more accurate but lbr higher values of V/V,, the cubic polynomial is more accurate. In contrast, the NN

mcxlels are able to perform well. Since the optimum design happens to be the same as one of the training

points, solverbe is able to predict the values of the objective function accurately. Solverb perlbrms equally

well, thereby showing the capability of performance with fewer neurons. Performance of BPNN is not as

satisfactory as suggested in Table 7. For lower constraints of V/V,,, it performs poorly but tbr higher values

of V/Vo it is good. This may be due to the selection of fewer neurons in the hidden layers of the networks.
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Overall,it is stillbetterthanthepolynomial-basedRSManddemonstratestheflexibilityof NNover

polynomials.

AsstatedbyPapilaet a1,[49],whenit comesto choosingbetweenNN andpolynomials,

polynomialsareeasytocompute.Thenumberofcoefficientsmightbenumerousbutthelinearityofthe

systemexpeditestheprocessofcoefficientevaluations.ThisisalsothereasonRBNNtrainfast.Onthe

otherhand.theweightsofBPNNareevaluatedthroughanonlinearoptimization,w'hichslowsthetraining

process.OfalltheNNpresentedhere,theonedesignedwiththehelpofsolverbeisthefastesttotrainsince

thevaluesoftheweightsaresettovaluesoftheinputdependentvariables.Solverb trains with the addition

of one neuron at a time with weights similar to the input and hence is slower.

4.2 IMPINGEMENT INJECTOR ELEMENT

4.2.1 Polynomial Fits

In Tucker et al. [64], method i uses the polynomial based RSM to find optimal values of ERE, Q_.,

Q,_j, Wr,t and Cr¢1 for acceptable values of AP,,, _IP,_ /_._ and a_ The approach of RSM is to perform a

series of experiments, or numerical analyses, for a prescribed set of design points, and to construct a

response surface of the measured quantity over the design space. In the present context, the five responses

of interest are ERE, Q,. Q,,j, wm and ('.,., The design space consists of the set of relevant design variables

APo, API, L,.o.,h and oz.

(i) Individual Polynomial Models

When the JMP software is used to analyze the 163 design points, five individual full response surfaces for

the variables in the design space are approximated by quadratic polynomials that contain 15 terms each.

Using the t-statistics approach noted above and detailed in Tucker et al. [641, unnecessary terms in each

equation can be eliminated to give the reduced quadratic surfaces A survey of the reduced response

surfaces indicates that the equations reflect the functionality used to construct the models for the dependent

variables.
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(ii) Joint Response Surfaces

In the current article, it is desirable to attempt to maximize ERE and while simultaneously

rmnimizing Q,_, Q,,j, Wr,_ and Cret. Therefore composite response surface for the present case is given by:

D = ( d EREdQ dQ_j d_. dc_ ) _' (31)

4.2.2 Optimization Results & Discussion

Three sets of results are presented below to demonstrate the capability of method i/'or the current

injector design. These three examples illustrate the effect of each variable on the optimum design, the

trade-offs between life and performance issues, and the effect on the design of extracting the last increment

of performance.

(i) Effect of Each Variable on the Design Using Original Constraints & Equal Weights

The results in this section were obtained by building the joint response surface with the addition of

one dependent variable at a time. The results are shown in Table 16. Since current non-optimizer based

design methods yield high-performing injector elements, simply maximizing the ERE is not a challenge.

Accordingly, the initial results (Case 1 ) are obtained with a joint ERE and Qw response surface. The results

in Case 2 have the impingement height added. Case 3 adds the relative chamber ,.,,eight and the relative cost

is added in Case 4. All results are obtained using the original independent variable constraints and all

dependent variables have equal weights of one. The results for Case I show that ERE is at its maximum

and Q_ is very near its minimum desirability limit. Minimizing Q, requires a small APf relative to APo as

evidenced by the values of 100psi and 183psi, respectively. Maximum ERE values are tbund at the longest

chamber length, L,,,,,j,=8inches. Even with the relati'.ely high value of I83psi tor AP,_ and low value ofAP t

of 100psi. ERE is maximized to 99.9% wtth an _mpingement halt-angle of 33.1 °.

Addition of the impingement height to Case 2 to model the injector lace heat flux. Q,,j. forces c_

lower to increase H, mp,,_e and decrease Q_,j. This decrease in the radial component of the fuel momentum

has an adverse affect on ERE. This effect is mitigated to a degree by increasing the .AP_ by 32psi to 132psi.
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ERE is still reduced by 1.6%. Also, the increase in AP causes increased penetration of the fuel jet, which

results in a slightly higher Q_.

Case 3 adds the relative combustor weight to the list of dependent variables modeled. Since Wm is

only a function of Lco,,o, minimizing W,<_ shortens the combustor length from 8 to 6.6 inches. The shorter

Lco,,b tends to lower ERE. This effect is offset to a large degree by increases in AP_ and ca both of which

increase the radial component of the fuel momentum. The increase in AP_ also causes a slight increase in

Q.,. The increase in crcauses a significant decrease in H,,np,,_ge, which increases the injector face heat flux.

Finally, the relative cost of the injector is added in Case 5. Since Cr<_is only a function of propellant

pressure drops, both APo and AP i are driven to their respective minimum values. This and a slight increase

in a" allow ERE to be maintained at 98%, even with a slight decrease in L<o,,,,. The largest effect of this

fairly dramatic decrease in propellant pressure drops is on Q_,.. Even though the values for AP., and AP t fell,

AP I increased relative to AP, causing Qw to increase by almost 9%. Impingement height and relative

combustor weight are essentially unchanged.

Although several of the variables included in this exercise are qualitative, an important conclusion

can still be drawn. The sequential addition of dependent variables to an existing design results in changes to

both the independent and dependent variables in the existing design. The direction and magnitude of these

changes depends on the sensitivity of the variables, but the changes may well be significant. The design in

Case 4 is quite different that the one in Case [. Consideration of a larger design space results in a different

design--the sooner the additional variables are considered, the more robust the final design will be.

(ii) Emphasis on Life & Performance Issues Using Original Constraints & Unequal Weights

The purpose of this section is to illustrate the effect of emphasizing certain design criterion on the

optimization process. Method i allows this emphasis via the weights applied to the desirability functions in

the joint response surface. The results shown in Table 17 facilitate the illustration. The Case 1 (baseline)

results are repeated from Case 4 in this table where the entire design space is considered with the original

constraints and equal weights for the dependent variables. The results in the Case 2 column are obtained by

emphasizing the minimization of the wall and injector face heat fluxes. Desirability functions tbr both of

these variables are given a weight of five. Since lower heat fluxes tend to increase component life,
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weightingthesetwovariablesisequivalenttoemphasizingalife-typeissueinthedesign.Asexpected,a is

decreased to increase H,,,p,,g,, thus decreasing Q:_:. Since the fuel pressure drop is already at the minimum,

the oxidizer pressure drop is increased by 58% to decrease Q,.. Both of these changes tend to decrease ERE.

While ERE does decrease, the effect is somewhat rmtigated by an increase in L,,,n_. The increases in L:,,,,_

and AP,, cause increases in Wr,t and Cr_, respectively The emphasis on life extracts the expected penalty on

performance. Additionally, for the current model, there are also weight and cost penalties.

The results for Case 3 are obtained by emphasizing maximization of ERE and minimization of l,'¢r,_t

with desirability weightings of five. Increased weighting for these two variables is equivalent to

emphasizing a thrust to weight goal for the injector/chamber. The relative chamber length is shortened to

lower Wre I. ERE is maximized by increasing the radial momentum of the fuel jet. Both APt and a are

increased to accomplish ERE maximization. As noted earlier, increasing AP; and c_ lead to increased wall

and injector heat fluxes, respectively. Table 17 indicates that to be the case here. For this case, emphasis on

thrust and weight tend to have an adverse affect on both Q,, and Q,,v Relative cost, for the current model, is

not significantly affected.

(iii) Extraction of Last Performance & Weight Increments (Modified Constraints & Unequal

Weights)

Here. the high marginal cost of realizing the last increment of thrust to weight is shown. This

section illustrates the capability to modify the constraints on the independent variables and use unequal

weights on the dependent variables at the same time. The results for Case 3 in Table 17 are carried over to

Case l in Table 18 as the baseline tor this example. Here the original constraints are used but increased

weights have been applied to emphasize ERE and Wr,_. Cases 2 and 3 modify the constraints on the

propellant pressure drops, raising the minimum pressure drop from 100psi to 150psi. For Case 2, both '.ziP,,

and AP t are now at the minimum level for the modified constraints. L,.,,,,b is increased slightly to maintain

ERE. The decrease of AP_ relative to z.lP, causes a decrease in Q,.,. The slightly higher-pressure drops also

cause C_ to increase somewhat. Other variables are not changed appreciably.

For Case 3, ERE and W_,¢ are further emphasized by increasing their desirability weights to 10

while decreasing the other weights to 0.1. L,,,,,_, is shortened to respond to the increased emphasis on weight
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minimization.MaintainingthehighlevelofERE requires large increases in AP/and 6tto increase the radial

component of the fuel jet momentum. The increase in AP/causes over-penetration of the fuel jet, v, hich

results in an increase in wall heat flux. The large increase in a_ yields the expected decrease in H,_p,_g_.

which increases the injector face heat flux. The additional emphasis on ERE and C,_ yields essentially no

increase in ERE in this range of AP, although a small weight savings is seen. These marginal improvements

are offset by fairly large increases in C,,l and Qz_:.

4.3 SWIRL CO-AXIAL INJECTOR ELEMENT

Two sets of results are presented below to demonstrate the capability and flexibility of method i

for the current injector design. These examples illustrate the effect of each variable on the optimum design

and the trade-offs between life and performance issues.

4.3.1 Effect Of Each Variable On Element Design

The results in this section were obtained by building the joint response surface with the addition of

one dependent variable at a time. The results are shown in Table 19. Case I seeks the maximum

performance without regard to the effect on the other dependent variables. ERE is a fairly strong function

of L,,,,,,_,--tonger chamber lengths allow more residence time for the propellant to mix and burn. The effect

of 69on ERE ts strongest at low values of O. ERE increases with increasing O until about O =80 ° and then

fall off slightly due to the competing influences noted earlier. These competing influences also cause the

effect of both pressure drops on ERE to be somewhat flat, although since ziP,, affects more variables, its

influence is slightly stronger. Maximum performance is found at high values of AP,,, O, and _o,,b and at

low values of APj. This trend is consistent with other works for similar injector elements. The predicted

optimal value of 98.5 is indeed the highest predicted by this model.

The objective of Case 2 is to simultaneously maximize ERE and the minimize Q,,. Table 19 shov,'s

that the exact same design point was chosen as for Case 1. Usually, the design, which _elds the maximum

ERE, also produces a high wall heat flux. That is not the case here; this issue has already been noted. The

minimum Q,_. is tound in the region of high ziP,, and low Api-. In this area, Q,,. is almost independent of O.
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Hence.theminimumQ,. can still be found for a high value of O required to maximize ERE. It should be

noted that in the low AP,,, high APj region, Q_ is a function of 6_. Here, as O is increased, Q, increases

since the larger swirl angle forces do to increase and thus decrease Vo. In the Calhoon eta[. [3] model, this

reduction in GOz momentum causes an increase in Q_,.

The requirement to minimize Q,,_j is added in Case 3. In order to minimize Q_n;, the swirl angle is

decreased from 81" to 37 °, thus reducing the injector face heat flux by approximately a Iactor of 3. This

decrease in 69 also lowers ERE which forces use of a longer chamber to offset some of the loss. Still, ERE

is reduced by over one percent.

Case 4 considers the desire to minimize the chamber weight, Win, in addition to maximizing ERE

and minirmzing Qw and Q-,I. Since Wre/depends only on Lc,,,,h, the chamber length is shortened by over half.

The weight is reduced, but so is ERE. To mitigate the adverse effect on ERE, Ois increased by almost 10°,

simultaneously increasing Q,_.. ERE drops again b,. o',er a percent, v, hile Q,,. remains constant.

Finally, minimizing the injector cost. C.c:. is added in Case 5. Decreasing each pressure drop

approximately a factor of 2 lowers the relative injector cost. Decreasing AP t results in a larger fuel gap and

decreasing APo allows for a larger swirl slot. These factors combine to lower the cost by almost 10 %.

Although several of the variables included in this exercise are qualitative, an important conclusion

can still be drawn. The sequential addition of dependent variables to an existing design results in changes to

independent and dependent variables in the existing design. The direction and magnitude of these changes

depends on the sensitivity of the variables, but the changes may well be significant. The design in Case 5 is

quite different that the one in Case 1. Consideration of a larger design space results in a different design--

the sooner the additional variables are considered, the more robust the final design.

4.3.2 Emphasis on Life and Performance Issues

Method i allows this emphasis via the _eights applied to the desirability functions in the joint

response surface. The set of results shown in Table 20 facilitate the illustration. The baseline results Table

20 (repeated from Case 5 in Table 19) consider the entire design space using the original constraints and

equal weights tbr the dependent variables. The results are obtained by emphasizing the minimization of the
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wallandinjectorfaceheatfluxesforCase1.Desirabilityfi_nctionsforbothofthesevariablesaregiven

increasedweights(5and10,respectively).Sincelowerheatfluxestendto increasecomponentlife.

weightingthesetwovariablesisequivalenttoemphasizingalife-typeissuein thedesign.SinceQ_. is

already at its minimum value, it remains fixed. As expected, O is decreased, which decreases the value of

Q,,,j by almost 35%. The lower value of O also produces a lower ERE. Both propellant pressure drops and

the combustor length are increased to mitigate the drop in ERE. The increases in L,_o,,,_,and APj cause

increases in Wm and Cr,_, respectively. The emphasis on life extracts the expected penalty on perlbrmance.

Additionally, for the current model, there are also slight weight and cost penalties.

The results for Case 2 are obtained by emphasizing maximization of ERE and minimization of Wr_

with desirability weightings of 10 and 5, respectively. Increased weighting for these two variables is

equivalent to emphasizing a thrust to weight goal for the injector/chamber. The relative chamber length is

shortened to slightly lower Win. ERE is maximized by increasing the GO2 swirl angle by a factor of almost

25 and also increasing AP l by over 35 %. The value of ERE rises by over one percent. As noted earlier.

increasing 6_ leads to increased injector heat flux. For this case, emphasis on thrust and weight tends to

have an adverse affect on Q,,j. Relative cost, for the current model, is also increased significantly.

Pertbrmance and weight trends for the swirl and impinging injector elements are shown in Figure 26.

Figure 27 shows the heat flux and cost trends for the swirl and impinging injector elements.

4.4 SUPERSONIC TURBINE FOR REUSABLE LAUNCH VEHICLES

4.4.1 Polynomial-Based RSM Results for 1-, 2- and 3-Stage Turbines

There are 28-unknown coefficients needed for constructing the 2nd-order response surface tbr the

single-stage case, 78 for the 2-stage and 136 for the 3-stage case. Different starting points are tried to avoid

local maximum and the optimum values of r/, W and Apay with the corresponding design parameters are

determined. The results shown are comparable with the corresponding Meanline runs with the highest error

of 5% for Apay tot single-stage turbine. The percentage error is increased to 135% tbr Apay tbr 2-stage

turbine and to 14.6 % for the 3-stage turbine tbr Apay indicating that the accuracies of the response surfaces

constructed are poor for the 2- and 3-stage_
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Papilaetal.[501havereducedthesizeoftheparameterspaceby80%ineachcoordinates,based

ontheoptimaldesignselectedin theoriginaldesignspace,toimprovetheaccuracyoftheresponse

surfacesforthesecases.Theintentionistoimprovethefidelityoftheresponsesurface.Withtheserefined

designedspaces,substantialimprovementoftheresponsesurfacefitaccuracyisobservedforbothcasesby

Papilaetal.[50].

Basedontheresultsobtained,thefollowingobservationscanbemade:

(l) ToascertainrequiredpredictivecapabilityoftheRSM,atwo-leveldomainrefinementstrategy

hasbeenadoptedbyPapilaetal.[50].Theaccuracyofthepredictedoptimaldesignpointsbasedonthis

approachisshowntobesatisfactory.

(2) AccordingtotheresultsobtainedforApay-based optimization, the 2-stage turbine gives the best

Apay result.

(3) As the number of stages increases, it is obser,,ed that efficiency improves while the weight

increases also but the improvement in efficiency can't compensate the penalty from higher weight.

(4) As shown in Figure 28, the mean diameter, speed, and the exit blade area exhibit distinct trends.

Specifically, the diameter decreases, speed increases, and annulus area decreases with increasing number of

stages. It is interesting to observe that none of these design parameters are toward the limiting values,

indicating that the optimal designs result from compromises between competing parametric trends. For

such cases, a formal optimizer such as the present response surface method is very useful.

Table 21 gives a summary of the optimization results for I-, 2- and 3-stage turbines for Apay-

based optimization.

4.4.2 Higher Order Polynomials and NN-Based RS3[ for Single-Stage Turbine

The generation of polynomial-based RS model and the training of the NN are done with 76 design

points of the single-stage turbine. The analysis was initially done without the constraints and then with the

constraints on (AN) 2 and Vp,,,h.

A quadratic polynomial model was initially generated. Then, cubic terms were included. Cubic terms that

are products of three different variables were included because of the number of data available and the
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numberoflevelsbeingthree.Thetrendofthedesigndataalsosuggeststhepresenceofsomeofthese

terms.Therefore,theinitialcubicequationhas45terms.Reducedthirdorderpolynomialmodelforr/and

W were selected based on the relative performances of different polynomials obtained by removing terms

from the initial cubic equation based on t-statistics. The cubic equation was selected based on the evaluated

value of or,, and o: Table 22 suggests that the reduced cubic polynomial is better than the quadratic

polynomial since _, is better for the former. The value of o" is comparable.

When constructing the NN-based response surface, the design parameters of the NN should be

selected carefully since the selection of the design parameters determines the learning characteristics of the

NN. For the single-stage supersonic turbine case, the variation of o" with respect to the only design

parameter of solverbe network, spread constant, is plotted in Figure 29 for both objective functions of r/

and W. Figure 30 shows that for low values of spread constant, the NN has a poor performance. As the

spread constant increases cr asymptotically decreases. Therefore, the appropriate spread constant is

selected from the region where the performance of the network is relatively consistent. Figure 31 shows the

influence of error goal on the network performance. Unlike the case of injector (Figure 17), a more

stringent error goal for the training data does not necessarily result in better predictive capability against

the test data tbr the single-stage turbine.

The networks designed with solverb have 37 and 75 neurons for ,7 and W, respectively in the

hidden layer, while those designed with solverbe has 76 neurons each. The BPNN uses significantly less

number of neurons by generating networks with five and 60 neurons for r/and W, respectively, in a single

hidden layer. The NN architectures chosen are listed in Table 23.

The accuracy of the various models is tested with the 18 additional available data and the error is

shown in Table 24. Solverbe has a poor prediction for r/, which might be due to over fitting, but performs

well for W. Solverb is most consistent among all methods evaluated.

The optimum solutions subjected to the constraints, of (AN)" limited to less than 1.132

tnormalized with baseline value) and Vp,,._ is limited to less than 1.148 (normalized with baseline value),

are presented in Table 25. Since (AN)" is proportional to the product of square of RPM and A .... and Vp,,.h is

proportional to D times RPM. no NN or polynomial-based RSM is generated lbr them. By comparing the

predicted optimal design by the various methods, one observes that solverbe and BPNN yield noticeably
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largererrorin r/and W, respectively. Solverb and the response surface are more consistent with both ,7 and

W. Judged by the error in predicting Apay, it seems that the polynomial based RSM is most accurate.

However, since the real goal is to maximize dpay, it is important to note that the actual value of.-Ipay for

the optimal design chosen by the RSM is the worst.

From a design perspective, it is interesting to understand the impact of the constraints from A,,,

and Vp,,.h on the optimal turbine parameters. Such an assessment is offered in Figure 32 and 33. As D. RPM

and Aa,,, decrease, rl, W, Vp,,ch, AN 2 and Apay decrease. Co and Cv are almost constant over the design space

and they do not have any noticeable effect on the objective functions and constraints. In the case of Cv, the

BPNN shows a small perturbation for the analysis with the constraint. This might be due to the mapping of

some noise by BPNN. Otherwise it is unaffected by the inclusion of the constraints. The optimum stage

reaction, Kr. is zero implying that the optimum design should be an impulse turbine.

4.4.3 Orthogonal Arrays For 2-Stage Turbine

Although the majority of the work is based on the face centered composite design approach

(FCCD), orthogonal arrays (OA) are constructed by Papila et al. [50] to investigate the efficiency of

orthogonal array designs in representing the design space for 2-stage turbine. A set of 249 design points is

selected using orthogonal arrays. Table 26 shows the comparison of the quality of the second-order

response surfaces generated tot rl, W and Apay by using 1990-data generated b_ face centered composite

design and 249-data selected by orthogonal array method.

The above table illustrates that the fidelity of the response surface generated for design space of

249 data, based on orthogonal arrays, are comparable with that of 1990 data based on the face centered

criterion. The response surface models are also assessed by using 78-test data to determine the predictive

accuracy of these models. Table 27 presents that the testing adjusted tins-errors of response surfaces

generated are 1.65% for r/and 0.96% tbr W using 249-data. and 1.67% for r] and 1.21% tbr W using 1990-

data.

When these results are compared with the results of 1990-data and it is observed that the optimum

r/, W and Apay are largely consistent However, it is also observed from Figure 34 which shows the
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comparisonofthedesignvariablesforoptimizationbasedon(Apay),someofthedesignvariablesare

differenteventhoughoptimum,7, W and Apay are consistent. This shows that there are multiple points in

the design space, which yield comparable performance. Nevertheless, it remains true that the two-stage

turbine is most suitable from a payload point of view.

4.4.4 N2N-Based RSM for 2-Stage Turbine

In order to find the optimum RBNN design for the design of the two-stage turbine design, the

effect of the spread constant (sc) on the network training error is determined. Figure 35 and Figure 36 show

the variation of solverbe network error, _, with respect to spread constant for the NN designed for FCCD

and OA data. The optimum spread constant is determined as 3.2 for 1990-training data (FCCD) from

Figure 35 and 4.3 for 249-data (OA) from Figure 36. In spite of the fact that, the spread constants larger

than 3 give reasonable training rms-errors (_), less than O. [% ['or all networks designed for refined space

with 249-data as shown in Figure 37, sc=4.3 value is used for these cases for consistency.

After constructing the NN-based response surface, the NN model is tested by using 78-test data

selected along the main diagonal of the design space to determine the predictive accuracy of these models.

Table 28 presents that the prediction rms-errors (o3 of" response surfaces generated by tbr second order

polynomial are 1.65% for ,7 and 0.96c/c for W using 249-data, and 1.67% for ,7 and 1.21% tbr Wusing

1990-data. Table 28 also presents that the prediction rms-errors of response surfaces generated by solverbe

RBNN are 1.36% lbr r/and 1.30% tor W, and 2.26 % for r/and 1.56% for Wusing 249-data.

Figure 38 summarizes fitting/training and testing results of RBNN and polynomial-based &pay

approximations tbr 2-stage turbine. The efficiency of the multi-level RSM approach can be observed by

comparing the original and refined design space plots. From these plots, it is also possible to observe that

more accurate training is possible with RBNN but testing or prediction accuracies of the RBNN and

polynomial-based approximations are quite comparable.
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4.5 TURBULENT PLANAR DIFFUSER

4.5.1 Polynomial Fits

Based on the D-optimal set of 35 design points selected, the 21 regressors of a full quadratic

polynomial were fitted resulting in a moderate R,,2-value of 0:810.A backward elimination of regressor

terms subsequently led to the removal of five terms and an increase of Ra 2 to 0.8,.1.8. The lower values of

Ra 2, in comparison to the two-design-variable case, reflect the increased difficulties in obtaining a good fit

when moving to higher-dimensional response surfaces. Data on the backward elimination steps are given in

Table 29, which apart from R 2 and Ra 2 holds the minimum t-statistic and the number of uncertain terms

with ]tol < 2.0 remaining in the model. From the t-statistics information, it appears that the backward

elimination improved the accuracy of remaining terms.

The next step performed was to investigate whether the 35 applied observations included outliers

A common (but not necessarily true) assumption, which enables the statistical treatment of observations, is

that errors are independently and identically distributed according to a normal distribution with mean zero

and variance. Thus, the distribution of response surface errors was plotted and compared to a normal

distribution, with which it is expected to correspond well. From the histogram plot of the error distribution,

see Figure 39, it did not seem that there are any outliers. Four arbitrary points away from sampling points

were picked to test the prediction accuracy of the polynomial-based RSM. Table 30 compares CFD-results

and polynomial approximations with and without backward elimination of terms.

Again. the predictions of the response surface appear reliable, apart from at the last control point.

This point is, however, well in the non-monotonic region, so that the approximation relies on an

extrapolation, which was never intended. The reduced approximation model comes closer to the CFD-

results lbr two out of the three meaningful test points.

4.5.2 Numerical Noise

While noisy data from laboratory experiments is a generally accepted fact, the presence of noise in

numerical simulations seems much less recognized. Due to the complex numerical modeling techniques of

CFD, the exact origins of noisy responses may be difficult to pinpoint, but factors such as turbulence
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models, incomplete convergence, and the discretization itself are certainly influential. Here, the presence of

numerical noise has been investigated. The problem of non- smooth or noisy objective functions has

previously been addressed by Giunta et al. [17], who round RS approximations-based optimization to

pertbrm very robustly under such circumstances, especially when point selection is based on design of

experiment techniques, such as D-optimal designs.

Limitations of the software used were felt during the application of a wall shape parameterization

in the investigation of noise. A B-spline curve with two free control points was used. Again, it was

observed that the objective function oscillated due to numerical noise, but the amplitude was small. To

make the noise more apparent, it was therefore necessary to refine the subdivision of the discretized line

and reduce its length to 20% of the initial, so that the line spans from (0.3,0.6) to (0.302,0.602). This

yielded the noisy response patterns shown in Figure 40. The two topmost curves in this figure were

determined using a relatively tight convergence criterion, and two different convection schemes - a

standard first-order upwind differencing scheme (UDS) and a second-order upwind differencing scheme

(SUDS). The use of different differencing schemes was carried out to estimate whether numerical diffusion

does significantly dampen the generation of noise. As discussed in Madsen et al. [33], two different CFD

codes were adopted, and one seems less forgiving, in the sense that it predicts a stronger tendency for flow

separation. This could possibly be explained by factors such as numerical diffusion, boundary treatments,

and momentum interpolation methods adopted in the two codes.

As expected, switching to a more dissipating differencing scheme (lower order accuracy) yields a

smoother response. To further illustrate this issue, one more design line curve is shown in Figure 40, which

arose from using a relatively loose, yet still reasonable, convergence criterion (using SUDS). The applied

convergence criterion considers summed and normalized (by inlet flux) residuals over the entire mesh, with

termination of computations once the maximum is below a certain small value e. The loose convergence

criterion in Figure 40 was _= 10 _, whereas the tight tolerance was _'= 10 5. For comparison, a convergence

limit of e" = I0 't was applied in the CFD analyses used tbr response surface modeling. The overall

conclusion is that the presence of some numerical noise in CFD-results is practically inevitable, although

its magnitude depends on choice of code and modeling techniques. Here, a technique such as polynomial-

based RSM can be effective in smoothing out the undesirable fluctuations.
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4.5.3 OptimumDiffuser Designs

In the optimum design using B-spline parameterization, both the monotonicity constraint and four

out of five side constraints are active. As already mentioned, the response surface constructed to guarantee

wall monotonicity becomes too restrictive• To compensate tbr this, a one-dimensional search in the

direction of the steepest gradient was conducted starting at the optimum design point estimated by RSM.

y = y" + o, VF (32)

This search is terminated as soon as designs turn non-monotonic, yielding a new optimum point at

the edge of the true feasible domain and an increase in the optimum pressure recovery coefficient from

0.7208 to 0.7235. Figure 41 compares the optimum wall contours determined by RSM using B-splines and

polynomial shapes. The optimum B-spline shape compares well to the optimum polynomial one, so it is not

surprising that there is no significant gain compared to this case. The largest differences in shape are found

in the later part of the expansion, where the shape has less impact on the overall performance, as separation

is small in either case. Thus, the close resemblance of optimum inlet shapes is reassuring in terms of the

credibility of the optimization algorithm. A CFD-analysis of the five-design-variable optimum design

yields a pressure recovery coefficient of 0.7193, a little below the predicted value, as in the two-design-

variable case. The improvement from the two design variable case (0.7185 to 0.7193) indicates that there is

not much potential tbr further gains. Furthermore, tbr comparison, Figure 41 also contains the

corresponding wall contour determined using search optimization techniques. The optimum wall shape

tbund by search optimization can be described as truly bell-shaped, without a "plateau" similar to the one

tbund in the results of RSM-optimization. There appears to be a distinct difference in optimum shapes from

the two different optimization approaches, which must be ascribed to the combination of optimization

accentuating modeling diflbrences and a relatively small scatter in diffuser performances.

Figure 42 highlights the use of a response surface approximation for the optimum shape of a two-

dimensional diffuser. As illustrated, within the fidelity of the analysis tool, there are often multiple design

points that meet the design objectives. It is interesting to note that different diffuser shapes are tbund to

yield essentially the same performance. The response surface model is ideally suitable tbr such situations.
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4.6 LOW REYNOLDS NUMBER WhNG MODEL

4.6.1 Polynomial Fits

For the 3-D wing case, the response is the flight power index, C_':/C,,, and the design space

consists of design variables maximum camber, 3,, and wing aspect ratio, AR. Quadratic, cubic and quartic

order polynomials are tested for the best approximations for data sets containing 9, 15 and 25 simulated

data points (See Table A 1). The predicted RMS errors are calculated for each of the model and are shown

in Table 31. As shown in this table, Model 4 gives the smallest predicted RMS for the cases involving 9

and 15 simulated data points, whereas, Model 12 allows the smallest predicted RMS error for the case

involving 25 simulated data points.

4.6.2 Comparison of Radial-Basis and Back-propagation Networks

The predictive accuracy of neural networks depends not only on the training data but also on the

parameters used to define the network. The best values lbr these parameters cannot be determined by using

only training data, because typically one can obtain very small errors for the training data with a wide range

of these parameters. However, the pertormance of NN can be examined using test data.

For the radial-basis network, one important issue is to investigate the magnitude of error in the test

data to help to select the spread constant. For the back-propagation network, where cost of computation is

an issue, the effect of number of neurons on the cost and accuracy should be checked. It was noticed that

for the back-propagation network, using four neurons gave a good compromise of accuracy and cost. For

the radial-basis network, it was found that the error and the number of iteration required for convergence

are extremely sensitive to the value of spread constant. After extensive experimentation, the spread

constant was chosen as I. 175.

For the 3-D wing case, both radial-basis NN and back-propagation networks are applied. [n order

to be able to make comparisons between these networks, the training time histories are summarized in

Table 32 and Table 33. These tables show that both are efficient in the training of 9-simulation, 15-

simulation and 25-simulation training data sets. However, as the data size increases, the back-propagation
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network exhibits a growth rate in terms of the number of epochs, indicating that it is more CPU time

intensive for larger data sizes. As far as accuracy is concerned, both networks perform well exhibiting

improved predictive capabilities as the number of training points increases from 9 to 25-simulation for Yc

interpolations ( Figure 43). For this case, both methods reproduced the original 9-simulation accurately but

both failed to predict accurately the interpolation points at y,:=0.0125,0.025, 0.075 and 0.0875 with the

RMS error of the test data of 1.68 for back-propagation network and 1.04 for radial-basis network ( Figure

43a). Figure 43b shows that adding 6 new points at AR=2 and 4 at y,=O, 0.05 and 0.1 (15-simulation

training data set) does not significantly improve the 6 interpolated values (RMS values of 1.369 for back-

propagation network and 1.029 for radial-basis network). However, with the addition of 10 new points at

yc=0.025 and 0 075 at AR=1,2,3,4 and 5, (25-simulation training data set) both the back-propagation

network and the radial-basis network can accurately capture the overall behavior of the aerodynamic data

as shown in Figure 43c. The RMS error now is O. 141 for back-propagation network and 0.106 for radial-

basis network. For AR interpolations, the back-propagation network resulted in lower RaMS values when

compared to the RMS values of radial-basis networks (Figure 44). For the 9-point simulation training data,

the RMS of radial-basis network (RMS=II.12) is quite high when compared to the RMS of back-

propagation (RMS= 1.172) (Figure 44a). For this case, adding 6 new points at AR=2 and 4 at y,.=0, 0.05 and

O. 1 significantly improves the RaMS value for radial-basis (RMS=0.87) as shown in Figure 44b. With the

addition of 10 new points to 15-simulation data at y,:=0.025 and 0.075 at AR= 1,2,3,4 and 5, the RMS error

decreases further to 0.7 tbr radial-basis networks, and 0.026 tbr back-propagation (Figure 44c). The results

indicate that the back-propagation network is quite accurate lbr small to modest number of data lot the

cases investigated and it is also more consistent than that of the radial-basis network. However, as indicated

in Table 32 and Table 33. in terms of computing time or epochs, back-propagation network scales

unfavorably with respect to the number of data used. In other words, the back-propagation network is

competitive tbr modest data size while the radial-basis network is more effective for larger data size. More

intbrmation will be presented when the 2-D airtoil case that involves substantially larger data size is

discussed.
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4.6.3 Comparison of Radial-Basis Neural Network and Polynomial-Based Techniques

For the 3-D wing model, the outputs of the solverb radial-basis NN, along with the results of the

polynomial-based technique, are compared for different size of the data. It must be noted that the network

parameters used to obtain radial-basis network results are sc=1.175 and error goal=10 -a. Figure 45

illustrates the comparison between the NN and polynomial-based outputs based on the 9-simulation

training data set. For this case, both methods reproduced the original 9-simulation accurately but both failed

to predict accurately the interpolation points at yc=0.025 and 0.075 with RMS errors at the test data of 1.04

for both the NN and polynomial-based methods. Furthermore, it is seen that the error estimate of 1.116 of

Table 31 is a gross underestimate. Note that by the time there are 25 data points, Table 31 predicts an error

of 0.659. The reason for this problem is that RMS error estimates are not reliable when the number of

coefficients is close to the number of points (7 vs. 9 for this case). In addition, these estimates assume

random noise and that underlying function is quadratic. Figure 45b shows that adding 6 new points AR = 2

and 4 at y,. = 0, 0.05 and 0.1 does not help noticeably to improve the 6 interpolated values (RMS values of

1.029 for both). However, with the addition of l0 new points at yc=0.025 and 0.0075 at AR=1,2,3,4 and 5,

(25-simulation training data set) both the NN and polynomial-based techniques accurately capture the

overall behavior of the aerodynamic data as shown in Figure 45c. The generalization of the NN with 25-

simulation is further assessed by comparing additional interpolated values at different Yc and AR at

yc=0.0125 and 0.0875 at AR=1,2,3,4 and 5. The RMS errors now are 0. 142 for the polynomial and 0.221

for the NN, which are more in the line with the prediction in Table 31.

These comparisons illustrate that both neural network and conventional polynomial fitting

methods do a good job as the number of points is increased.

5. CONCLUSION AND FUTURE DIRECTIONS

Recent experiences in utilizing the global optimization methodology, based on polynomial and

neural network techniques, for aerodynamics and rocket propulsion components are summarized. Global

optimization methods can utilize the information collected from various sources and by different tools.

These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-

offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in
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filteringthenoiseintrinsictonumericalandexperimentaldata.Anotheradvantageisthatthesemethodsdo

notneedtocalculatethesensitivityofeachdesignvariablelocally.Theglobaloptimizationmethodcanbe

particularlyeffectivewitheithera polynomial-basedresponsesurfaceor a neuralnetworkwhen

informationfromdifferentcomputational,experimental,andanal_icalsourcesneedstobeassembled.In

thisarticle,wepresentrecentexperiencesinutilizingtheglobaloptimizationmethodologyfortasksrelated

tothepreliminarydesignofasupersonicturbine,multi-criteriondesignofthreedifferentt?pesofinjector

element(shearco-axial,impingement,andswirlco-axial),performanceofalowReynoldsnumberwing,

andshapeoptimizationofaturbulentflowdiffuser.Asuccessfuloptimaldesignoftenneedstoaddressthe

issuesrelatedtotheselectionofappropriatetrainingdataforconstructingtheglobalmodel,employmentof

thestatisticalandtestingtoolstoidentifyappropriateglobalmodels,existenceofmultipledesignselections

andrelatedtrade-offs,andconsiderationofnoisesintrinsictonumericalandexperimentaldata.These

issuesarediscussed.It isseenthattheglobaloptimizationmethodcannaturallytaketheconfidencelevel

ofthedataintoaccount,offersanumberofdesignswithcomparableperlbrmance,andallowsdesignersto

makeamoreinformeddecision.Wehaverevieweddirectevidencesthatdemonstratethatappropriate

selectionofdesignpointscansignificantlyreducethenumberofdatarequiredforconstructingtheglobal

model.Inparticular,whiletheFCCDapproachcanbeeffectivewithmodestnumberofdesignvariables,

OAwithD-optimalselectioncriterionseemstobeeffectivewhenthenumberofdesignvariablesbecomes

higher.Regardingtherelativemeritsbetweenpolynomialsandneuralnetworks,basedontheresults

reviewed,wecanmakethetbllowingsummary.

1. Higherorderpolynomialsusuallyperformbetterthanlowerorderpolynomialsastheyhavemore

flexibility.However,exceptionshavebeennoticedwhichdemandsthatappropriatestatisticalmeasuresbe

takentodeterminethebesttermstoincludeinanexpression.

2. BothNNandpolynomialbasedRSMcanperformcomparablytbrmodestdatasizes.

3. AmongalltheNNconfigurations,RBNNdesignedwithsolverb seems to be more consistent in

performance.

4. Radial basis networks, even when designed efficiently with soh, erb, tend to have many more

neurons than a comparable back-propagation with tan-sigmoid or tog-sigmoid neurons in the hidden layer.

The basic reason tbr this is the fact that the sigmoid neurons can have outputs over a large region of the
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inputspace,whileradialbasisneuronsonlyrespondtorelativelysmallregionsoftheinputspace.Thus,

largerinputspacesrequiremoreradialbasisneuronstbrtraining.

5. Configuringaradialbasisnetworkoftentakeslesstimethanthatforaback-propagationnetwork

becausethetrainingprocessfortheformerislinearinnature.

6. Whilethetransferfunctionemployedbyanyneuralnetworkisnonlinearingeneral,RBNN,with

thecombinedfeatureof flexibilityandlinearregressionismoreaccuratethanBPNN,whichrequires

solutionofnonlinearsystems.

7. Thecomparisonsdemonstratethatforthiscasetherearenosignificantdifferencesbetweenthe

NNandpolynomialbasedRSM.Theresultsofpolynomial-basedmethods,though,suggestthatwhenthe

errorismostlyduetomodelingratherthannoise,theerrorestimatesofthepolynomial-basedtechniquecan

besubstantiallyoff.

8. TheNNtechniquehasshownthepotentialoffittingthedatamuchbetterthanthepolynomial-

basedtechnique.However,thiswasachievedbyusingthetestdatatoselecttheparameterslikespread

constantoftheNNwhichappeartogreatlyaffectthepredictiveaccuracy.Thatis,it wasnotpossibletouse

onlythetrainingdatatoselectthebestsetofparameters.ThisindicatesthatbecausetheNNsdonot

providethestatisticalintbrmationgivenbypolynomial-basedmethods,usingbothtestdataandtraining

dataisveryimportantindesigningthenetwork.

9. Withthelargenumberofpoints,andthehighorderpolynomial,thestatisticalpredictionsofthe

polynomial-basedresultsmatchedver__elltheerroratthetestdata.

10. Theneuralnetworks,whentrainedappropriately,canbeusedtogenerateadditionaldatatohelp

enhancethedatasetforconstructingthepolynomial.Suchacombinedapproachhasbeendemonstratedin

Shyyetal.[57]forinjectordesign.

11. Thecriteriatbr selectingthedatabaseexhibitsignificantimpacton theefficiencyand

effectivenessoftheconstructionoftheresponsesurface.Forexample,effectivenessofusingOAtoselect

thedatabaseisdemonstratedbyPapitaetal.[50].

12. A multi-levelapproachcanbeappliedtoidentifytheoptimaldesignpointswithsubstantially

higheraccuracy.
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Thereareanumberofoutstanding issues that need to be addressed. In the tbllowing, we list

several topics that we consider important for future research.

1) Is it possible to develop a comprehensive technique by combining NN and polynomial-based RS

techniques to help reduce the required data size for optimization?

Specifically, the work done by Rat and Madavan [51], [52] & [53], Madavan et al. [31], and Sh)y

et al. [57] suggests that NN can be effectively used to supplement the existing training data to help

generating a more accurate polynomial. RBNN may lack satisfactory filtering properties in some cases

(Papila et al. [49], Vaidyanathan et at. [71]). However, once trained, RBNN can generate additional design

data to feed the polynomial-based RSM Polynomials possess the intrinsic filtering capability. The

evaluation of the nature of the fluctuations from the data generated by RBNN, and the investigation into

whether polynomials can use the data effectively, is planned. These features have been addressed in this

article.

2) What are the keys to develop a more robust and flexible NN configuration?

This has been a topic of research for a long time. In this article, an attempt has been made to stud)

the training parameters of the different networks used. There are other important issues, which needs to be

addressed in the future. For example, the possibility of using a more versatile RBNN in terms of a variable

design parameter, unlike the present situation where the variable has the same value all around the domain.

needs to be addressed. Ways to determine NN's performance via statistical tools, especially tbr RBNN

since it employs a linear model to determine the weight associated with each neuron will be investigated.

3) What is the scaling rule between the number of neurons, and computing tittle, versus number of

input�output variables and the size of the design data?

There are several rules of thumb tbr BPNN in the literature (e.g., Greenman [ 14], Carpenter and

Barthelemy [4], and Fujita [13]) but to our knowledge, no information is provided Ibr RBNN.
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4) How can one address the need for generating training and testing data most economically and

effectively?

The effect of the selection of the design points on accuracy, scaling and performance of

polynomial-based RSM has been addressed. The same has yet to be done tbr NN.
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7. APPENDIX

TRAINING DATA

Training Data Set #1

(9-Simulation)

AR yc CL3/2ICD

1 0 2.0011

1 0.05 4.1224

1 0.1 3.6865

3 0 5.6398

3 .05 9.6873

3 0.1 8.6806

5 0 7.9413

5 0.05 14.0942

5 0.1 12.8951

Table A1. Training Data Sets for 3-D wing model

AR

Training Data Set # 2

(15-Simulation)

y¢

0

0,05

0. i

.05

0.1

C 3/Z/CL D

2.0011

4.1224

3.6866

4.03

7.12

6.34

5.6398

3 0.05 9.6873

3 0.1 8.6806 2

4 0 6.92 2

4 .05 i 1.99 3

4 0.1 10.87 3

5 0 7.9414 3

5 0.05 14.0942 3

5 0.1 12.8951 3

4

Training Data Set # 3

(25-Simulation)

AR

4

4

4

4

5

5

5

5
i

3/2

yc CL /CD

0.0 2.0011

0.025 4

0.05 4.1224

0.075 3.99

0.1 3.6866

0.0 4.03

0.025 7.07

0.05 7.12

0.075 6.89

0.1 6.34

0.0 5.6398

0.025 9.64

0.05 9.6873

0.075 9.39

O. l 8.6806

0.0 6.92

0.025 11.86

0.05 11.99

0.075 11.66

0.1 10.87

0.0 7.9414

0.025 13.83

0.05 14.0942

0.075 13.73
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Table A2. Test Data Sets for 3-D wing model based on AR and y_

Test Set#1 for y,

AR yc
1 0.025

1 0.075

3 0.025

3 0.075

5 0.025

5 0.075

Test Set#2 for y,

AR y,

1 0.025

1 0.075

2 0.025

2 0.075

3 0.025

3 0.075

4 0.025

4 0.075

5 0.025

5 0.075

Test Set#3for yc

AR y¢

l 0.0125

1 0.0875

2 0.0125

2 0.0875

3 0.0125

3 0.0875

4 0.0125

4 0.0875

5 0.0125

5 0.0875

Test Set#1 for AR

AR y¢

2 0

2 0.025

2 0.05

2 0.075

2 0.1

4 0

4 0.025

4 0.05

4 0.075

4 0.1

Test Set#2 for AR

AR v¢

2.5 0

2.5 0.025

2.5 0.05

2.5 0.075

2.5 0. I

4.5 0

4.5 0.025

4.5 0.05

4.5 0.075

4.5 0.1

Table A3. Performance and heat flux responses for O/F = 4 for the shear co-axial injector element. (Table

A3-5 together contain 45 data points used as the training set)

O/F V/Vo Lcomb, in. ERE, %

4.0 4.0 4.0 92.9

4.0 4.0 5.0 96.0 0.753

4.0 4.0 6.0 97.6 0.753

98.6

] Q, Btu/in"-sec
! 0.753

4.0 4.0 7.0 0.753

4.0 4.0 8.0 99.0 0.753

4.0 6.0 4.0 95.0 0.928

4.0 6.0 5.0 97.1 0.928

4.0 6.0 6.0 98.5 0.928

4.0 99.2

99.4

6.0

6.04.0

7.0

8.0

0.928

4.0 8.0 4,0 96.6

4.0 8.0 5.0 98.2 1.10

4.0 8,0 6,0 99.1 1.10

4.0 8.0 7.0 99,4 1.10

4.0 8.0 8.0 99.6 1.10

0.928

1.10
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TableA4. PerformanceandheatfluxresponsesforO/F = 6 for the shear co-axial injector element.

O/F V/Vo Lco,,_, in. ERE, %

6.0 4.0 4.0 92.9

6.0 4.0 5.0 9@0 0.691

6.0 4.0 6.0 97.6 0.691

6.0 4.0 7.0 98.6 0.691

6.0 4.0 8.0 99.0 0.691

6.0 6.0 4.0 95.0 0.642

6.0 6.0 5.0 97.1 0.642

6.0 6.0 6.0 98.5 0.642

6.0 6.0 7.0 99.2 0.642

6.0 6.0 8.0 99.4 0.642

6.0 8.0 4.0 96.6 0.741

6.0 8.0 5.0 98.2 0.741

6.0 8.0 6.0 99.1 0.741

6.0 8.0 7.0 99.4 0.741

6.0 8.0 8.0 99.6 0.741

Table A5. Pertbrmance and heat flux responses for O/F = 8 tbr the shear co-axial injector element.

O/F L¢o,,,b, in. ERE, %

Q, Btu/in_-sec

0.691

8.0

8.0

8.0

8.0

8.0

8.0

8.0

8.0

v/vo
4.0

4.0

4.0

4.0

4.0

6.0

6.0

6.0

4.0

5.0

6.0

7.0

8.0

4.0

50

6.0

8.0 6.0 70

8.0 6.0 8.0

8.0 8.0 4.0

92.9

96.0

97.6

98.6

99.0

95.0

97.1

98.5

Q, Btu/in_-sec

0.588

0.588

0.588

0.588

0.588

0.512

0.512

0.512

99.2 0.512

99.4 0.512

96.6 0.493

8.0 8.0 5.0 98.2 0.493

8.0 8.0 6.0 99.1 0.493

80 8.0 7.0 99.4 0.493

8.0 8.0 8.0 99.6 0.493
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TableA6.DatausedtotestthepolynomialsandNNfortheshearco-axialinjectorelement.(Thetable

contains20datapointsusedasthetestingset)

O/F ERE, %

6.0

V/Vo Lcomb, in.

94.44.0 5.0 4.0

4.0 5.0 5.0 96.9 0.812

4.0 5.0 6.0 98.1 0.812

4.0 5.0 7.0 99.1 0.812

4.0 5.0 8.0 99.4 0.812

4.0 7.0 4.0 96.0 1.014

4.0 7.0 5.0 97.9 1.014

4.0 7.0 6.0 98.8 1.014

4.0 7.0 7.0 99.4 1.014

4.0 7.0 8.0 99.6 1.014

6.0 5.0 4.0 94.4 0.642

6.0 5.0 5.0 96.9 0.642

6.0 5.0 6.0 98.1 0.642

6.0 5.0 7.0 99.1 0.642

6.0 5.0 8.0 99.4 0.642

6.0 7.0 4.0 96.0 0.691

6.0 7.0 5.0 97.9 0.691

6.0 7.0 6.0 98.8 0.691

6.0 7.0 7.0 99.4 0.691

7.0 8.0 99.6 0.691

Q, Btu/inZ-sec

0.812

Table A7. Propellant momentum ratio as a function of propellant pressure drops: shear co-axial

injector element_

z_e o

AP t 200 180 160 150 140 120 100
200 1.49 1.42 1.33 1.30 1.25 I. 16 1.06

180 1.57 1.50 1.4 t 1.37 1.32 1.22 1.11

160 1.67 1.59 1.50 1.45 1.40 1.30 1.18

150 1.73 1.64 154 1.49 1.44 1.34 1.22

140 1.79 1.70 1.60 1.55 1.50 1.39 1.27

120 1.93 1.83 1.72 1.67 1.61 1.50 1.37

2.00 1.89 1.83 1.77 1.64 1.49100 2.1,1
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TableA8.Designdataforashearco-axialinjectorelementwithAP,, and .AP, = 200psi.

200

200

200

200

200

200

zIPf

200

2OO

200

200

200

200

200 200 4

200 200 4

200 200 4

200

2OO

200

Lcomb (_

8

15

20

30

45

50

15

ERE

NA

85

92.8

95.4

95.8

91

Qw

0.85

0.85

0,85

0.85

0.85

0.85

Himpinge

0.84

0.62

0.39

0.23

0.19

0.84

Wrel

0.923

0.923

0.923

0.923

0.923

Crel

1.083

1.083

1,083

1.083

1.083

1.083

20 95.2 0.85 0.62 1 1.083

30 96.8 0.85 0.39 1 1.083

45 98.1 0.85 0.23 1 1,083

50 0.85 0.1998.4 1.083

200 200 6 15 95.6 0,85 0.84 1,077 1.083

200 200 6 20 97.8 0.85 0.62 1,077 1.083

200 200 6 30 98.5 0.85 0.39 1.077 1,083

200 200 6 45 99.2 0.85 0.23 1.077 1.083

200 200 6 50 99.4 0,85 O. 19 1.077 1,083

200 200 8 15 98.3 085 0.84 1.154 1.083

200 200 8 20 99.1 0.85 0.62 1.154 1.083

200 200 8 30 99.4 0.85 0.39 1.154 1.083

200 200 8 45 99.6 0.85 0.23 1.154 1.083

200 50 99,7 0.85 O. 19 1,154 1.083
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Figure 1. Schematic of the prtx:edure tbr global design optimization
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parameters: sc= 1.175, error goal=0, 1 for radi;.d-basis networks)
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10. TABLES

Table 1. Comparison of NN and polynomial-based response surface (RS) techniques

Computational Effort

and Cost

Noise

"Hw,dling complex

fttnclions

NN-based

RSM

Disadvantage

Disadvantage

Advantage

Polynomial-

based RSM

Advantage

Advantage

Disadvantage

Comments

Finding the weights associated with the neurons is a

non-linear regression process for all of the NN

types other than RBNN. Whereas, finding the

polynomial coefficients requires solution of a linear

set of equations.

The cost increases if the regression process is non-

linear which makes NN's other than RBNN more

expensive than polynomials.

Ability of filtering noise from experimental data is

possible with polynomial-based RSM. However, if

the number of neurons used to design the NN is not

the same as the data, then, b? definition, filtering is

also possible for NN-based RSM.

NN's are more suitable for multi-dimensional

interpolation of data that lack structure since they

are much more flexible in functional form

especially when dealing with design in the context

of unsteady flows, partial and/or complete data sets.

Table 2. Literature review on NN and polynomial-based RS techniques comparlson

Authors No of No of No of

Data Input Output

Carpenter & 36 2 1

Barthelemy 961 2 1

[4] 81 4 1

300 15 1

Madavan et al. 13 I

[3t]

Nikolaidis et 400 50 1

al. [39]

Papila et al. 9

[491 15

25

255

765

Rai and Madavan 3 & 5

[521 27

Shy'.¢ et a1.[57] 45

Vaidyanathan et 45

al. [711 76

2 1

2 1

2 1

2 I

2 1

l 1

3 !

15 1

3 2

3 2
6 2

NN Type Activation ] No of

12-1averl Function I Neurons

BPNN Sigmoid i l, 2, 4

BPNN

(3-1a;cer)

BPNN

RBNN

&

BPNN

BPNN

(3- layer)

Sigmoid

Sigmoid

[ radbas

&

Sigmoid

Sigmoid

3,5,7

1,2,3

2,4, 6, 8, 10

15 & 7

Polynomial

Degree

1_ to 4 _h

2 nd to 5'_

Ist to 2 "_

1_ to 2 =d

Ist to 2 "a

"}Bd

o" of NN is insensitive -

tO no of neurons

8, 9 4 2 nd to 5 'h

12, 15 4 2 nd tO 5 m

20, 25 4 2 "d tO 5 'h

253, 255 2 "d tO 4'n

765

1 & 2 l st to 2'"_

7 & 3 I st to 2n'_

RBNN radbas 42 and 45 2na to 3_

RBNN radbas 42 and 45 2"a to 3_
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Table3.Designvariablesanddesignspaceforsingle-,2-and3-Stageturbines

(Allgeometricdesignvariablesarenormalizedbythebaselinevalues)

SINGLE-STAGE

Variable Lower Upper

Limit

Mean 0.50

Diameter, D

S'peed, RPM 0.70

Blade 0.70

Annulus

Area, Aann

Vane Axial 0.39

Chord, cv

Blade Axial 0.26

Chord, cb

Stage 0.0%

Reaction, sr

Limit

1.50

1.30

1.30

1.71

1.14

50 ,'7c

2.STAGE

Variable Lower Upper
Limit Limit

Mean 0.50 1.50

Diameter, D

Speed, RPM 0.70 1.30

Blade 0.70 1.30

Annulus

Area, Aann

Ist Blade 0.90 1.50

Height (% of

Exit Blade),

hj

1St Vane 0.39 1.71

Axial Chord,

Cvl

Is' Blade 0.26 1.14

Axial Chord,

Cbl

2n_ Vane 0.21 1.41

Axial Chord,

Cv2

2 °d Blade 0.17 1.13

Axial Chord,

c0.,

I s_Stage 00% 50'._

Reaction, sr_

2_d Stage 0.0_ 50c._

Reaction, sr_,

1_' Work 50% 85%

Fraction, wf_

3-STAGE

Variable Lower Upper

Limit Limit

Mean 0.50 1.50

Diameter, D

Speed, RPM 0.70 1.30

Blade 0.70 1.30

Annulus

Area, Aann

1S' Blade 0.90 1.50

Height (%

of Exit

Blade), hj

1StVane 0.39 1.71

Axial

Chord, c_l

1_' Blade 0.26 1.14

Axial

Chord, cb_

2_d Vane 0.21 1.41

Axial

Chord, c_2

2"a Blade 0.17 1.13

Axial

Chord, ct, z

3 _d Vane 0.21 1.41

Axial

Chord, c_

3 _a Blade 0.17 1.13

Axial

Chord, cb3

I_t Stage 0.0% 50%

Reaction, srt

2 "a Stage 0.0% 50%

Reaction, sr_,

3_ Stage 0.0% 50%

Reaction, sr3

1_' Work 40% 80%

Fraction, wf_

2 ''d Work

Fraction, wfz
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Table 4. Different cubic polynomials for ERE. (Dependent variables: V/V,, and L,.o,_o, 15 training points, 10

test points).

Model

#

Coefficient = 0

V/Vd

V/Vo _

Terlns

Removed

Vs/Vo-' Lcomh

V/Vo_L_o._,V/Vo _'
V/Vo-"L_o._,V/'VoJ
V/Vo%o._, V/Vo J
V/VoLLco,_, V/Vo 3

Terms Included _ (%)

Lcomb 4

L.),nb _, _ '/_o 2L ..... :

L,_b 4, V/_,/L,o_o:.

V/VoL.,,_b "_

0.09

0.08

0.08

0.09

0-(%)

0.21

0.21

0.21

0.21

0.09 0.21

0.10 0.21

Table 5. Different cubic polynomials for Q. (Dependent variables: O/F and V/Vo, 9 training points, 4 test

points).

Model

#

Coefficient = 0

V/Vo_, 0/I_
O/F _

Ternls

Removed

V,/Vo 2

V/Vo-', OIFj
V/I/o", O/F'

V_Vo _, O/F _. V/_'b-'

V/Vo", O/F', V/Vo:

Terms Included

_VVo: OIU

_(%)

5.58

5.58

0-(%)

2.23

2.09

5.58 2.09

5.58 2.23

3,96

5.58

2.09

2.09

Table 6.

Scheme

Neural Network architectures used to design the model for shear co-axial injector element. {sc =

spread constant }

# of

Layers

RBNN 2

(Solve rbe )

RBNN (Solverb) 2

BPNN 2

# of neurons in

the hidden

layer

ERE Q

15 9

14 8

8 4

# of neurons in

the output layer

_ ERE Q

'1 1

i1 1

i l l

Error goal aimed for during training

ERE Q

0,0 (sc = 325_ 0.0 {sc = ].20}

0.001 {so= IO5} 0,001 {sc= 1.05}

0.01 0.01

Table 7. _MS error in predicting the values of the objective function by various schemes for the shear co-

axial ir ,ector element.

Scheme 0- for ERE (%) 0- for Q (%)

0.20 1.40RBNN (Solverbe)

RBNN (Solverb)

BPNN

Partial Cubic RS

Quadratic RS

0.13 153

O. 18 0.83

0.21 2.23

0.28 3.49
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Table8. Optimumvalues obtained with cubic and quadratic for case 1. (Constraints: 4 _<O/F -< 6, 4 _<

V_/Vo-< 6, and L_omb<-7) {Values in the parenthesis are the exact response of the injector model}

Cubic Quadratic

WEN WQ O/F Vt/_V, l_omb _ERE Q O/F V0tV. _omb ERE Q

(s) (t)

1 10 6.0 5.41 7.0 ....99.02 0.664 6.0 6.00 7.0 99.17 0.669

(99.00) (0.654) [(99.20) (0.642)

1 t 6.0 6.00 7.0 99.15 0.669 6.0 6.00 7.0 I 99.17 0.66910 I 6.0 6.00 7.0 99.15 i 0.669 6.0 6.00 7.0 99.17 0.669

Table 9. Optimum values obtained with cubic and quadratic for case 2. (Constraints: 4 < O/F -<6, 5 _<

V_/Vo < 7, and l_omb < 7) {Values in the parenthesis are the exact response of the injector model}

Cubic Quadratic

WERe WQ O/F Vt/'V, l-_mb ERE Q O/F vorvo _omb ERE Q

(s) (t)

1 10 6.0 5.41 "7.0 99.02 0.664 6.0 6.52 7.0 99.31 0.684

(99.00) (0.654) (99.10) (0.716)

1 1 6.0 6.34 7.0 99.21 [ 0.674 6.0 7.00 7.0 99.42 0.702

(99.20) I (0.691) (99.30) (0.728)
l0 l 6.0 7.00 7.0 99.32 t 0.690 6.0 7.00 7.0 99.42 0.702

Table 10. Optimum values obtained with cubic and quadratic for case 3. (Constraints: 4 _<O/F -<6, 6 <

Vr/Vo -<8. and l._omb< 7)

Cubic Quadratic

WERE WQ O/F VtCV, I_o_ ERE Q O/F VorVo _o,_, ERE Q

(s) (t)

! 10 6.0 6.00 7.0 99.15 0.669 6.0 6.52 7.0 99.31 0.684

1 1 6.0 6.34 7.0 99.21 0.674 6.0 8.00 7.0 99.67 0.753

I0 l 6.0 8.00 70 99.42 0728 6.0 8.00 7.0 99.67 0.753

101



Table 11. The RMS error in the prediction of ERE and Q tbr different values of spread constant. The error

goal used for Solverb is 0.001.

Solverbe Solverbe Solverb Solverb I Solverb

sc RMS error RMS error RMS error RMS error No of neurons

(ERE) (Q) (ERE) (Q)

0.50 1.493 0.179 1.733 0.287 44

0.75 0.745 0.135 0.675 0.135 ,1-4

1.00 0.152 0.022 0.153 0.017 42

1.05 0.190 0.011 0.128 0.012 44

1.25 0.316 0.010 0.267 0.022 44

1.50 0.336 0.022 0.309 0.030 44

1.75 0.369 0.022 0.310 0.021 44

2.00 0.308 0.016 0.296 0.019 41

2.25 0.279 0.020 1.846 0.045 43

2.50 0.325 0.017 0.744 0.025 43

Table 12. Optimum values obtained with cubic and quadratic for case 1 (enhanced data set}. (Constraints:

4 _<O/F < 6, 4 < Vt/Vo < 6, and L_omb<- 7) {Compare with Table 8}

Quadratic

x,Vet_z WQ

Is) (t)

1 I0

1 1

10 1

Cubic

O/F Vt/Vo I l_omt, ERE Q O/F VtCVo L;o,,_b

6.0 5.54 t 7.0 99.02 0.654 6.0 5.01 7.0

(98.90) (0.658)

6.0 6.00 7.0 99.12 0.658 6,0 6.00 7.0

6.0 6.00 7.0 99.12 0.658 6.0 6.00 7.0

ERE

i 98.96

(98.70)
99.25

99.25

Q

0.644

(0.664)

0.658

0.658

Table 13. Optimum values obtained with cubic and quadratic for case 2 fenhanced data set _. (Constraints:

4 < O/F < 6, 5 -< V¢'Vo <--7, and L_o,,_b< 7) {Compare with Table 9}

WERE

(s)

1

Cubic Quadratic

WQ O/F Vt/Vo _o,,,_ ERE Q O/F V_/V,,

(t)

10 6.0 5.54 7.0 99',02 0.654 6.0 5.01

(98.90) (0.658)

1 6.0 6.33 7,0 99.18 0.663 6.0 6.04

(99.10) (0.666)

! 6.0 7.00 7.0 99.30 0.681 6.0 7.0010

L,o_b ERE

7.0 98.96

(98.70)

7.0 99.26

(99.20)

7.0 99.46

Q

0.644

(0.664)

0.659

(0.642)

0.693
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Table 14. Optimum values obtained with cubic and quadratic tbr case 3 (enhanced data set). _Constraints:

4 _<O/F _<6, 6 < V/Vo < 8, and I_o,_j, _<7_

Cubic

WER E WQ O/F V_¢o _o,n, [ ERE Q

(s) (t)

1 10 6.0 6.00 7.0 99.12 0.658

I 1 6.0 6.33 7.0 99.19 0.663

10 1 6.0 8.00 7.0 99.42 0.725

Compare with Table 10}

Quadratic

O/F VJVo I_omb ERE Q

6.0 6.00 7.0 99.25 0.658

6.0 6.04 7.0 99.26 0.659

6.0 7.95 7.0 99.57 0.746

Table 15. Optimal Solutions tor fixed values of V/Vo and given range or" O/F and L,.,,,,:, obtained with NN

and RSM schemes for the shear co-axial injector element. _Constraints: 4 < O/F <_8, 4 < L,,,_b < 7) (error

V/Vo
4

Scheme

given in sarenthesis for each prediction is in %)

O/F Lc,,,,, in. ERE, %

RBNN (Solverbe) 98.60 (0.00)

RBNN (Solverb) 98.60 (0.00) 0.588 (0.00)

BPNN 98.64 (0.14) 0.578 (1.70)

Partial Cubic RS 98.61 (0.01) 0.595 (1.19)

Quadratic RS

Model

98.67 _0.07)

98.60

8.0 7.0

8.0 7.0

8.0 6.9

8.0 7.0

8.0 7.0

8.0 7.0

8.0 6.9

8.0 7.0

8.0 7.0

8.0 7.0

8.0 70

8.0 7.0

8.O 7.O

80 7.0

8.0 7.0

8.0 7.0

8.0 70

8,0 7.O

8.0 7.O

Q, Btu/inZ-sec

0.588 (0.00)

0.591 (0.51)

0.588

Model 98.50 0.588

6 RBNN (Solverbe) 99.20 IO.O0) 0.512 (0.00)

RBNN (Solverb) 99.20 i0.00) 0.512 (0.00).

BPNN 99.18 (0.02) 0.513 (0.20)

Partial Cubic RS 99.15 ¢0.057 0.499 (2.54)

Quadratic RS 99.17..(0.03) 0.531 (3.71 )

Model 99.20 0.512

8 RBNN (Solverbe) 99.40 (0.00) 0.493 t0.00)

RBNN (Solverb) 99.40 c0.00) 0.493 (0.00)

BPNN 99.41 10.01) 0.500 (1.42)

99.42 _0.02)Partial Cubic RS

Quadratic RS 99.67 _0.27)
!

Model 99.40 ]0.493

0 500 (1.42)

I 0.471 (4.46)
I
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Table 16. Effect of each variable on the optimization of impingement co-axial injector element --optimal

desiglts for original constraints & equal w _ights

Independent

Variable

_P_
AP r

Lcomb

(Z

Dependent

Variable

ERE

Constraints

100-200

Qw

Hhnpin_

W_t

100-200

2-8

15-50

Desirability

Limits

95.0-99.9

0.7-1.3

Results Case 1

0.2-1.0

' 0.9-1.2

183

100

8.0

33.1

ERE & Qw

99.9

0.74

Results Case 2

183

132

8.0

18.9

98.3

0.76

0.75

Results Case 3

179

149

6.6

22.3

ERE, Qw,

HLmpinz¢, Wrel

98.0

0.79

0.61

Results Case 4

100

100

6.5

24.0

ERE, Q,,,

Hu_pia_, Wr¢l,

Crel

98.0

0.86

0.63

-- -- 1.1 1.1

Cr,j 0.7-1.1 -- -- -- 0.93

Table 17. Effect of emphasizing & life & performance issues on the optimization of impingement co-axial

in ector element----optimal desil,ms for original constraints and modified weights

Independent

Variable

AP{

Lcomb

Constraints

100-200

100-200

Results

Casel

100

100

Constraints

100-200

100-200

Results

Case 2

158

100

Constraints

100-200

100-200

Results

Case 3

100

137

2-8 6.5 2-8 7.7 2-8 5.2

e[ 15-50 24.0 15-50 15.0 15-50 36.0

98.0

0.86

96.7

0.75

0.940.63

Dependent

Variable

ERE

Thrust�Weight

Variable

Weight
5

Variable

Weight
1

Baseline

Variable

Weight

1

Qw

[_htzping¢

Wr¢I

99.1

0.95

0.32

1 1.10 1 1.14 5 1.05

Cr,i 1 0.93 1 0.97 1 0.95

104



Table 18. Effects of realizing the last increments of performance & weight on the optimization of

impingement co-axial injector element ---c mmum desi_-ns for modified constraints and unequal weights

,Modified ,Modified
Independent

Variable

Original

Constraints

Results

Casel

Results Results
AP

ConstrMnts
Case 2

AP

Constraints
Case 3

APo 100-200 100 150-200 150 150-200 150

APf 100-200 137 150-200 150 150-200 200

Lt.,_ 2-8 5.2 2-8 5.4 _ 2-8 4.4
I

ct 15-50 36.0 15-50 35.6 I 15-50 44.8

Variable Variable Variable

Dependent Weight Weight Weight
Variable

(5:1) (5:1) {100:1)

ERE 5 99.1 5 99.0 10 99.1

Q,, 1 0.95 1 0.84 0.1 0.95

1 0.32 1 0.31 0.21Himpinge

Wrel 5 1.05 5 1.05

1.00
C_l

0.1

10

0.10.95

1.01

] 1.07

Table 19. Effect of each variable on the optimization of swirl co-axial injector element ----optimal designs

for original constraints and equal weights.

I Independent

Variable

Constraints Results

Case 1

Results

Case 2

Results

Case 3

Results

Case 4

Results

Case 5

ziP. 100-200 200 200 200 200 104

,M r 20-200 41 41 42 47 20

Lc.,_ 2-8 7.2 7.2 7.6 3.2 3.4

O 30-90 81 81 37 47 44

Desirability
Limits

92.3-99.0

0.596-

0.647

6.95-36.59

Dependent

Variable

ERE

98.5

0.596

26.8

1.13

ERE

ERE & Q.

98.5

0.596

26.8

1.13

Qw

Q_.j

ERE, Qw, ERE, Qw,

Qi.j Qi.j, wr, i

97.2 96.0

0.596 0.596

! 12.09.1 ;

1.14 0.97Wrcl

0.900-

1.154

ERE, Q,,,

Qinj, Wra,

Cr¢l

95.7

0.596

10.5

0.98

C,,i 0.73-1.42 0.98 0.98 0.81 0.84 0.76
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Table20.Effectofemphasizinglifeandperformanceissuesontheoptimizationofswirlco-axialinjector
element.

Independent

Variable

/_kP 9

APf

L_mb

Constraints

100-200

20-2OO

Results

Baseline

104

Constraints

100-200

20-200

Results

Case 1

200

32

Constraints

100-200

20-200

Results

Case 2

2OO

4420

2-8 3.4 2-8 3.6 2-8 2.9

O 30-90 44.0 30-90 30.0 30-90 72.0

95.7

0.596

10.5

95.3

0.596

6.9

0.990.98

Baseline

Variable

Weight

1

Dependent

Variable

ERE

Thrust�Weight

Variable

Weight

10

Qw

q,,
Wr¢l

Life
Variable

Weight

1

10

96.7

0.596

22.6

0.96

C,i 1 0.76 1 0.79 1 0.94

Table 21. Optimization summary for 1, 2 and 3-stage turbine with response surface in original design

space (All out 9ut parameters are normalized by the baseline values)

Original Design Space Refined Design Space

qop, Wol,, Apa_,op, qo_, Wop, Apayop,

l-stage 0.77 0.73 -0.21 0.77 0.73 -0.21

Apay 2-stage 1,10 1,05 0,11 1,13 1.04 0,15

3-stage 1.24 1.62 0.14 1.20 1.54 0,11

Table 22. Values of _, and crtbr different response surfaces of q and W for the supersonic turbine.

Scheme _ for r/(% )

Quadratic RS 2.51

Reduced Cubic RS

o'for r/(%) _ for W(%)

0.90

1.95 1.03

crfor W ( % )

0.82 1.27

0.40 1.22

Table 23. Neural Network architectures used to design the models for r/and W of the supersonic turbine.

(sc = spread constant)

I Scheme

RBNN (Solverbe)

# of

Layers

Error goal aimed for during# of neurons in the

hidden layer

q W

76 76

37 75

5 60

# of neurons in the

output layer

q W

1 1

1 1

1 l

training

q

0.0

{sc = 9.50}

W

0.0

{sc = 9.45}

RBNN (Solverbl 2 0.001 0.001

t {sc = 6.50} {sc = 8,35}BPNN 2 0.001 0,001
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Table 24. R_MS error in predicting the values of r/and Wby various schemes tbr the supersonic turbine.

Scheme

RBNN (Solverbe)

o'for _/(%)

1.25

trfor W (%)

1.10

RBNN (Solverb) 0.29 1.10

BPNN 0.78 2.56

Reduced Cubic RS 1.03 1.22

Table 25. Optimal solutions with constraints on Vp,ch and AN 2 for a supersonic turbine. (error gr, en in

parenthesis for each prediction is in %) (Vp,ch = 1.148 and AN e = 1.132 in all the cases) (All the variables

are normalized b

Scheme D, in.

RBNN 0.972

(Solverbe)

Meanline 0.972

RBNN 0.999

(Solverb)

Meanline 0.999

BPNN 1.024

Meanline 1.024

Reduced 0.903

Cubic RS

Meanline 0.903

r respective baseline values).

RPM Aa,t,,, in z C,, in.

1.181 0.811

1.I81 0.811

1.149 0.857

1.149 0.857

1.121 0.901

1.121 0.901

1.272 0.700

1.272 0.700

1.443

1.443

1.483

1.483

1.168

1.168

1.706

1.706

Cb, in. K,, %

0.836 0.0

0.836 0.0

0.792 0.0

0.792 0.0

1.143 0.0

1.143 0.0

0.871 0.0

0.871 0.0

q

0.810

(5.80)

W, lbs

0.636

(0.74)

dpay, ibs

-0.139

(29.80)

0.766 0.641 -0.197

0.785

(1.75)

0.653 -0.177

(0.17) (9.16)

0.654 -0.194

0.608 -0. 153

(8.63) (21.49)

0.666 .0.195

0.591 -0.194

(2.10) (8.40)

0.604 -0.211

0.772

0.793

(2.49)

0.772

0.758

(1.50)

0.746

Table 26. The quality of the second-order response surface obtained for r/, W and Apay of 2-stage turbine

for 1990-data (face centered criterion) and 249-data (orthogonal arrays) (Mean values of r/, W and :_lpay are

1990-data

249-data

normalized b_' the baseline values)

rl W Apay

R z 0.995 0.996 0.995

Ra-' 0.994 0.996 0.995

Rms- error 1.31% 2.56% 9.58%

Mean 0.78 0.86 -0.24

R z 0.995 0.998 0.994

Ra 2 0,992 0.997 0.992

Rms- error 2. 128% 0.826%) 20.68%

Mean 0.89 0.92 -0.11
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Table27. Testing of the second-order response surface obtained for r/and W of 2-stage turbine for 1990-

data (FCCD criterion) and 249-data (OA) with 78- test data

# ofdesign points # oftest data _tbr _ (%) of or W(%)

249 78 1.65 0.96

1990 78 1.67 1.21

Table 28. Testing the RBNN and second-order polynomial response surface obtained tbr r/and W for

, preliminary' design of 2-sta_e turbine (original design space)

Number of Number of cr tbr 1"1(%) a tbr rI (%) using o" tbr W(%) cr tbr W(%) using

training test data sc using RBNN Polynomial-based using RBNN Polynomial-based
data (Solverbe) RSM (Solverbe) RSM

249 78 4.3 1.365 1.648 1.305 0.959

1990 78 3.2 2.263 1.672 1.557 1.214

Table 29. Backward elimination procedure lbr polynomial-based RSM in five variables.

Terms

t Min I_l0.05

No. Itol< 2.0
15

i4

g 2 ga 2 Comments

21 0.922 0.811

20 0.23 0.922 0.823 Removed V/

19 0.45 12 0.922 0.834 Removed v./

18 0.53 9 0.921 0.841 Removed yly4

17 0.97 8 0.919 0.848 Removed y2v._

* 16 1.22 6 0.915 0.848 Removed ,v2e

l 5 I. 57 5 0.909 0.844 Removed ply3

Table 30. Comparison between CFD-solutions and polynomial-based RSM-predictions.

Y; Y: Y, I"4 Y*' F F (full) F (reduced)

0.5 0.5 0.5 0.5 0.5 0.7171 0.7148 0.7126

1.0 0.5 0.0 0.5 1.0 0.7174 0.7210 0.7174

0.25 0.75 0.25 0.75 0.25 0.7148 0.7185 0.7162

0.0 0.5 1.0 0.5 0.0 0.6943 0.7333 0.7283
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Table31,PredictedRMSerror, _, tbr different polynomial models for 3-D wing model: 9-simulation,

15-simulation, and 25-simulation data sets. (The shaded models indicate the best fit)

Model

No

1

2

3

4

5

6

9

10

11

12

MODEL

%ARZ+czAR+c3ARy¢ +e4_/c +csycZ+c6

cxARZ+c2AR+c3ARy¢ +¢_y¢ +csyeZ+c6+ cTAR _

c1AR'+czAR+c3ARy¢ +e4yc +csy¢-'+c6+ cTyc3 •

clARZ+czAR+c3ARyc +e4yc +csycZ+c6+ cTARyc"

clARZ+czAR+c3ARyc +c4yc +csy¢ z+c6 -I-C7_¢¢J+csAR_cz

cIARZ+%AR+c3ARyc +c4Yc +csycZ+c6

+CTyc3+c#ARyc2+C9ycA R2

clARZ+czAR+%ARyc +C_yc +csYcZ+%

+ e7 yc3+csARycZ+ c9AR 3

clAR%czAR+c3ARyc +c4yc +csycZ+C_

+CTyc3+csARyc2+c9ycAR2+ cxoAR 3

cIAR+czARyc +C3yc +C4yc_+Cs +C6ycLl cTARyc z

ClAR+c2AR_tc +c3yc +C4yc-+Cs +c6AR2 yc

e_AR'+%AR+csARyc +c4Yc +csyc2+c6

+CTyc3+CsARycZ+C9yc 4

%ARZ+czAR+c3ARyc +c4yc +csyc2+%

+cTyc3+csA Ry¢2+c9yc4+CloARyc 3

o for

9 data

a for

15 data

for

25 dam

0.8047 0.5172 0.7800

0.8047 0.5475 0.8007

0.8047 0.5172 0.5524

0.07380.1162 0.6590

- 0.3207

0.3262

0.6961

0.3350

0.4248

0.8044

0.2383

0.1073

Table 32. Training history of radial-basis networks with Solverb tbr 3-D wing model

NN

No.

1

'9

3

# of

Simulations

# of Neurons # of Epochs

9 8 7

15 12 I1

2O25 19

Steady State

Error

10 q6

10 .4

104

Spread

Constant

1.175

1.175

1.175

I Error Goal

lO-Z

10 "z

lO-Z

Table 33. Training history of back-propagation networks with Trainlm for 3-D wing model

N_

No.

1

2

3

# of # of Neurons # of Epochs Steady State Error Goal

Simulations Error

9 4 23 4.5x104 10"

15 4 12 8.5xl0 "3 10 z

25 4 105 9.96x10 "3 10 -z
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