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GLOBAL DIMENSION OF TILED ORDERS OVER
A DISCRETE VALUATION RING

BY

VASANTI A. JATEGAONKAR(l)

ABSTRACT.   Let R be a discrete valuation ring with maximal ideal m and
the quotient field K.   Let A = (m  '') Ç M (K) be a tiled /{-order, where  X.. e Z
and X.. =0 for 1 s i s,7».   The following results are proved.   Theorem 1.   There
are, up to conjugation, only finitely many tiled R-orders in M„(X) of finite
global dimension.  Theorem 2.   Tiled R-orders in M (K) of finite global dimen-
sion satisfy DCC.   Theorem 3.   Let A CM (/?) and let T be obtained from A by
replacing the entries above the main diagonal by arbitrary entries from R.   If r
is a ring and if gl dim A < oo,  then gl dim  r < oo.   Theorem 4.   Let A be a tiled
R-order in M.(K).   Then gl dim A < oo if and only if A is conjugate to a triangular
tiled R-order of finite global dimension or is conjugate to the tiled R-order T ■
(r^iftC M¿R), where 7- = 7j.b0 for all i, and Yy-l otherwise.

Introduction.   This paper is a continuation of the author's previous paper,
Global dimension of tiled orders over commutative noetherian domains [7],

Throughout this paper R  will denote a discrete valuation ring (DVR) with maximal
ideal m, generated by r, and the quotient field K.   In this paper we will use
notations and terminologies of [7].   Let A be a tiled R-order in Mn(K), i.e., an
R-order in Al  (K) containing n orthogonal idempotents.   If a tiled R-order A in
M (K) contains the usual system e.., 1 < i < n,  of « orthogonal idempotents,
then A = (m '') C Mn(K), where \H = 0 and A.. £ Z for all i,j [7],  Furthermore,
by conjugating if necessary, we may assume that A.. > 0 for all i, / (cf. Lemma
1.1).   One of the main results in this paper shows that if A = (m '') Ç MR(R)
is a tiled R-order of finite global dimension, then A.. < n — 1 for all i, /'; hence
it follows that there are only finitely many tiled R-orders in M„(R) of finite global

dimension.   Using this we show that if Sx, S2, ..., Sfc is a finite family of
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314 V. A. JATEGAONKAR

orthogonal idempotents in Mn(K), and if S is the collection of all tiled R-orders
in Mn(K) oí finite global dimension containing some S., then S satisfies the
descending chain condition (DCC).  This shows that the conjecture of R. B. Tarsey
[12] is true for a wide class of R-orders in Al (K).   The complete classificationn r

given in Theorem 4.2 shows that if A is a tiled R-order in M.(K), and if
gl dim A < oo, then gl dim A < 3.  Since there is a tiled R-order in A14(X) of
global dimension 3 [5l, [12], this upper bound is best possible.   An intrinsic

characterization of a reduced triangular tiled R-order A = (m '') C Al (R), obtained
in Theorem 3.3, is of independent interest.   We recall that a tiled R-order   A =
(m ,;) Ç Al (R) is reduced if A.. > 0 or A.; > 0 whenever i 4 j, and that A is a

triangular tiled R-order if X.. = 0 whenever i < j.   Lastly, let A = (m z;) C Al (K)

be a tiled R-order.   Since A is a ring, we have

0.1.  Xi. < Xik + X, . tot 1 < 2, /', k < n.
0.2.   If A is a triangular tiled R-order, then A.. > A.,   and A, . > A., whenever° ' ij —    ik ki —   72

j<k.
We will have several occasions of using 0.1 and 0.2, and sometimes we use

them without giving a reference.
The main results of this paper were announced in [6].

1.  Preliminaries.   In this section we prove some preliminary results which

will be needed in the sequel.

Lemma 1.1.   Let A = (m *') Ç Al (K) be a tiled R-order.   Then there exists a

tiled R-order T = (m7") C Al (R) such that y1. = 0 for all j and V = y Ay" l for
some unit y in M (K).  Furthermore, ye¿.y~   m e.. for !</<«.

Proof.   Let y be the diagonal matrix in Al (K) with t    ' as the (2', Oth entry,
where m = tR.   Set Y = y Ay"  .  Then a direct computation shows that T and y

satisfy the conditions of the lemma.
Definition 1.2. If A and T ate tiled R-orders in Mn(K), then A and T ate

permutationally conjugate if one is obtained from the other by permuting rows and
columns, equivalently, A = eTc~    tot some permutation matrix e in Mn(K).

Lemma 1.3.   Let A = (m !') C Aln(R) be a reduced tiled R-order, where A,. = 0
for all j.   Then A is permutationally conjugate to a tiled R-order T = (m  :;) C

Al (R), where yl. = 0 for all j, and y.. > 0 whenever i > j.

Proof.   We use induction on n.   If n = 2, then the assertion is trivial.   Let

n > 3.  Since Xl- = 0 for all j and since A is reduced, therefore by Lemma 1.7
of [7] we have an integer / > 1 such that X¡{ > 0 whenever i 4 I-   By interchanging

the Mi and the 22th rows and columns, we may further assume that / = 22.   Thus,
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GLOBAL DIMENSION OF TILED ORDERS 315

A  .> 0 whenever i 4 n, and Aj. = 0 for all /',   Clearly, eAe is a reduced tiled
R-order contained in Afn_j(R), where e = 2"~   e...   Hence by the induction
hypothesis, eAe is permutationally conjugate to a tiled R-order T = (m   '/) C
Aln_j(R), where yj. = 0,  y!. > 0 whenever i > j.   Thus T'= y'(eAe)y'~    for some
permutation matrix y' = (y!) in Mf¡_l(K).  Let y = (y.) in M„CO with ynn = 1,
y_.- = v.-   = 0 for / 4 n, and y.. = y', otherwise.  Then T = y Ay ~l fulfills the227 ^ 722 11, s ij        stj y      y

requirements of the lemma.

Let A = (m '') C Aln(R) be a tiled R-order.  Let x be the diagonal matrix
in Al (K) with t on the diagonal.  Let Ä = A/Ax = A/Am.  Then Ä = A ®R R/m
as R/m-algebras and thus A is a finite dimensional R/m-algebra.  Obviously A
is isomorphic to the R/m-algebra (m l'/m ''    ), where the multiplication is induced
from that in A, i.e., if («.. + m ,,+ ) and (b.. + m ,-' + ) are in (m "/■ ''"*" )»
then (a.. + m I,+ )(b.. + m ,,+ ) = (S?_, a.,b.. + m !,+ ).   From now on we will27 17 *-i   tk kj
always identify the two R/m-algebras Ä and (m l,/m lJ   ). Let e~.. = e.. + Am,

1 < i < n.   Then ë".. are orthogonal indecomposable idempotents in A and
S?_j F.. = 1.   Furthermore, P. = e~. Ä, 1 < i .< «, are, up to isomorphism, the only
principal right projectives of Ä.   Since ma/ma+   s R/m for every nonnegative

integer a, [P.:R/m] = «.   Also, if A is reduced, then by Lemma 1.3 of [7], /(A)
is obtained from Ä" by replacing the diagonal entries R/m by zero.  We now show
that if Al is a finitely generated right A-module with [Al : R/m] 4 0 mod «, then
hd. Al = 00.

Proposition 1.4.   Let E be a finite dimensional algebra over a field F.
Assume that for every indecomposable idempotent e in E, [eE: F] = 0 mod /,
where I is independent of e.   Then, for any finitely generated right E-module M
with [Al : F] 4 0 mod /,   we have hd£ Al = 00.

Proof.   Since E is a finite dimensional algebra over the field F, the algebra
E is artinian.   Hence, by Theorem 56.6 of [3, p. 382], if P is a finitely generated
projective right B-module, then Ps ®e/ e.E, where |/| < 00 and the e. are*
indecomposable idempotents in E.   By the hypothesis [e.E: F] =0 mod /; therefore
[P : F] = 0 mod / for any finitely generated projective right E-module.  Now assume
that hd£ AI = ß < 00.   Then we have an exact sequence.

o_x    It y        Sß-1 y   $1   y    S°   M_nu —► aß   -»  a o   j  -»   ... —» x, —» X.  —» Al —» 0

where X¿ are finitely generated projective right E-modules.   By Corollary 2 of

[2, p. 151], we have [Al : F] = lfsQ (- l)l'[X..: F] = 0 mod /.   But this contradicts
the hypothesis that [Al : Fl 4 0 mod /.   Thus hd£ Al = t».
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316 V. A. JATEGAONKAR

Corollary 1.5.   Let A = (m '>) C Al (R) be a tiled R-order.   Let Ä = A/Am.
// Al is a finitely generated right A-module with  [,M:R/m] 4 0 mod n, then
hd_Al = oo.

A

Let A = (mX») Ç Aln(R) be a tiled R-order.   Let A = (R, R, ..., R) be a free
left R-module of rank 22.   Then A is a right Al (R)-module naturally.  This module
multiplication induces a (R - A) bimodule structure on A.   Further, if A) is a
nonzero A-submodule of A, then, since R is a principal ideal domain, Al is also

a free R-module of rank 22  (cf. remarks at the end of §1 of [7]).

Corollary 1.6.   Let A = (m*"') Ç Aln(R) be a tiled R-order.   Let Ä = A/Am =
A/Ax.   Let A be a free left R-module of rank n treated as a right A-module
naturally.   Let M be a nonzero A-submodule of A.   If M = M/Mx and if Al_ = BT ©

_ ._ —    A A
C_ is a nontrivial decomposition of M as a right A-module, then hd_ Al = 00

A A
and hd. Al = 00.

Proof.   Clearly hd_ M = 00, by Corollary 1.5.  Hence hdA Al = 00, by Theorem
9 of [8, p. 178]. *

Lemma 1.7.   Ler A = (mX,¿) C Al (R) be a tiled R-order.   Let A = A/Am.   Let—    n
A m {R, R, ..., R) be a free left R-module of rank n.   Treat A as a right {{-module

(X 1 CL9 n+¡\
naturally.   If B = (m     , m    , .. •, m    ) C A, where 0 < a. are integers, then

(1) ß is a A-submodule of A if and only if A.. > a. — a. ¡or all i, j.
(2) // ß is a A-submodule of A, then

_ a        a +1 a       a +1
B = B/Bm = (m Vm *    , • • •, m Vm s   , 0, • • •, 0)

a     ,      a     , +1 a     a  +1
©(0, ....,0, m S+Vm s+1    ,..-,m*Vm"   )

as right A-modules if and only if A.. > a. - a. for all i, j; X..> a. - a. for
1 .< i .< s </ < 22; and A.. > a. - a. for 1 </<«.<».<«.   Further, if these condi-
tions hold, then hdA B = ».

(3) // B is a A-submodule of A, then
_ a       a +1
B = ß/ßm = (0, . • •, 0, m Vm s   , 0, • • •, 0)

a.      a.+1 a     ,      a     ,+1 a    ,     a    ,+1 a       a +1
©(m Vm ï    ,...,m s~l/m s"1   ,0,m s+1/m s+1   ,>•-,* "Mn   )

as right A-modules if and only if A.. > a. — a. for all i, j, X  . > a. — a    ando I '    '      ij —     j i ' ''      S) ) s

A.   > a   - a. whenever j 4 s.   Further, if these conditions hold, then hd. ß = 00.
JS S j ' ' A

Proof.   The proof is a straightforward computation and we leave it to the

reader.  That hdA B = 00 in (2) and (3) follows from Corollary 1.6.
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GLOBAL DIMENSION OF TILED ORDERS 317

2.  Tiled orders in Mn(K).   In this section we show that, up to conjugation,
there are only finitely many tiled R-orders in Al (K) of finite global dimension
(Theorem 2.3).   We also show that certain large classes of tiled R-orders in Al (K)
of finite global dimension satisfy DCC (Theorem 2.5).

Lemma 2.1.  // A = (m *') Ç Afn(R) is a tiled R-order with gl dim A < «, then
for every integer k,   1 < k < « - 1, there exist integers i>k+l and j < k such

that A.. < 1. *27 -

Proof.   Fix k > 1.   Suppose that A.. > 2 whenever   i > k + 1 and ; < k.   Set
CLj =1 for 1 .< i .< k and a. = 0 for k + 1 < i < «.   Then it is easy to check that
the conditions of Lemma 1.7 (1) and (2) for the right A-module B are satisfied
with s = k; and therefore hd. B = ».   This is impossible as gl dim A < ~.   Thus
for some integers i > k + 1 and j <k we must have A.. < 1.

Lemma 2.2.   Lei A = (m '') C Al (R) be a tiled order with gl dim A < oo.—       22 °

Assume that A.,  is an increasing function of i.   Then,

(1) 0 < A¿ + lf j - An < 1 for 1 < i < n - 1,
(2) A¿1 <i- 1 for 1 <i <n,
(3) if A.j < / - 1 for some I, then A., < i - 1 whenever i > /.

Proof.   Fix an integer k between 1 and « - 1.   By Lemma 2.1 we have integer
integers s > k + 1 and j <k such that A  . < 1.  Hence by 0.1 and the monotonicity

of A.j we have

AA1 ̂ A*+l .1 S Asl < Ki + A,T ̂ l + V

Thus Afel < Afc+1 j < 1 + A^j, which proves (1).  For (2) we use an induction on i.
Since Aj j =0, the statement is true for i = 1.   Assume that A¿1 < i — 1.  Then by
using (1) of this lemma we have A., j j < 1 + A.j < i.   This completes the
induction and proves (2)  The proof of (3) is similar.

In the next theorem we show that if we consider the class of all tiled R-orders
of finite global dimension in Al (K) containing  « orthogonal idempotents, then

up to conjugation this class is finite.

Theorem 2.3.   Let R be a DVR with maximal ideal m and quotient field K.
Then:

(1) // A = (m ,;) Ç Aln(R) is a tiled Rorder with gl dim A < oo, then \. <
n - 1 ¡or 1 < i, / < « - 1.

(2) There are only finitely many tiled R-orders in M (R) of finite global
dimension coritaining a fixed set of n orthogonal idempotents.

(3) There are, up to conjugation, only finitely many tiled R-orders in M (K)

of finite global dimension.
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318 V. A. JATEGAONKAR

Proof.   First we note that to prove (1) it is enough to show that A.j < n — 1
for all i, since by interchanging the 1st and the ;th rows and columns we can
always assume that / = 1.   Furthermore, by permuting rows and columns of A
through 2 to n we may as well assume that A¿1 is an increasing function of i.
But then by Lemma 2.2(2) we have A.j < i - 1 < « - 1 for all i.   Thus A- • < n - 1
for 1 <• i, j < n.

We now prove (2).   Let fi, 1 < i < n, be a fixed set of n orthogonal idempotents

in Aln(R).  Aln(R) contains e.,, l.<i<n, and /. and e.. are local idempotents
with 2"=1 f. = 1 = 2^=1 efj. ; therefore by Proposition 3 of [9, p. 77] we have a unit
u in Mn(R) and a permutation n on the numbers 1 to « such that e¿¿ = a/^/.a"
for 1 .< i < n.   Thus, if A is a tiled R-order in Mn(R) containing /,-, 1 < i < n,
then aAa"    is a tiled R-order in Al (R) containing e{i, l<i<n.   Hence to
complete the proof we must show that there are only finitely many tiled R-orders
in Al^R) of finite global dimension containing e.., 1 .< i < n.   But this is obvious
in view of (1).

To prove (3), let A be an R-order in Al (K) containing »2 orthogonal idempotents.
Then A is conjugate to a tiled R-order T in Al (K) containing e • •, !<'<«,
which in turn, by Lemma 1.1,  is conjugate to a tiled R-order A=(m°'/')CA1 (R).
Now the assertion follows trivially from (1) and (2).

This complete the proof of the theorem.

Proposition 2.4. Let /j, f2, •••,/ be n orthogonal idempotents. Let §
be the set of all tiled R-orders A in M (K) such that gl dim A < oo and /. £ A
for 1 <i <n.   Then S satisfies the descending chain condition.

Proof.   Let Aj 2 A2 D *• • 2 ^- 2 •A*+i 2 • • * ^e a descending chain of tiled
R-orders in S.   By Proposition 3 of [9, p. 77] we have a unit a in Alß(K) such
that, for all ;', uA.u"    is a tiled R-order in Aln(X) containing e¿¿, 1 .< i < n.   By
Lemma 1.1 we have a unit y in Al (K) such that yaA,a~ y"   C Aln(R) and
ye{iy~   = e¿¿ for all i.   Set z = ya.   Then clearly

zA,z~^ D zA.z-1 D • •• 3 zAz'1 D zA. .z""1 D ...I        -      2        -       -      ;        -      ;+l

is a descending chain of tiled R-orders in Al (R).   Furthermore, for all /',
i i "el dim zA z~   < oo and e.. e zAz~ , l.< t .< n.   Hence by Theorem 2.3(2) we

have an integer / suchthat zA.z     = zA. jZ~    for all / > /.   Consequently
A. = A.+1 for all j >l.   This completes the proof.

Theorem 2.5.  Let R be a DVR with quotient field K.   Let S^ S2, ..., Sk
be a finite collection of sets, where each S. is a set of n orthogonal idempotents

in M (K).  Let S be the collection of all tiled R-orders A in M (K) such that
ft * n

S. C A for some j and gl dim A < oo.   Then S satisfies DCC.
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GLOBAL DIMENSION OF TILED ORDERS 319

Proof.   Let

(*) AjDA^.-oA.dA.^d...

be a descending chain of tiled R -orders in o.   Let 5. = {A¿: A¿ DS.\,  1 < ;' < k.
If S. is nonempty, then by Proposition 2.4 we have a natural number p. such that

Af = A     for all i > p..   If S. is empty set p. = 0.  Let p = maxl£. fe p;..   Let
i > u.   Since A- £ o. for some j, therefore A. = A,. = A„.  This shows that the— r~ i j i > i fj.j fj.
chain (*) terminates.   This completes the proof.

The above theorem shows that for a large class of R-orders in AIn(K), Tarsey's
conjecture [12] is true.

Theorem 2.6. Let A = (m '') Ç Al (R) be a tiled R-order with gl dim A < oo.
Let r be the set of matrices obtained from A by replacing the entries above the
main diagonal by arbitrary entries from R.   // Y is a ring, then gl dim T < oo.

Proof.   By the hypothesis T = (mr,'j) Ç Aln(R), where y„ = A„ for i > /' and
y.. = 0 otherwise, is a ring.  Hence T is a triangular tiled R-order.   By Theorem 1
of [5], to show that gl dim T < oo it is enough to show that yfe+1 fe < 1 for 1 <
k < n — 1.  Fix an integer k between 1 and » — 1,  Since gl dim A < », therefore
by Lemma 2.1 we have integers i >k + 1 and ; < k such that A.. < 1.  Since

i > /', y.. = Af;. < 1.   But then, by 0.2, we have Yk+lk < Yk+i,j S Yy < *•  Thus
y,   j . < 1.  This completes the proof.

Lemma 2.7.  Let A = (m '') CM (R) be a reduced tiled R-order with—    n
gl dim A < ».   Then for arty integer k,  1 < k < n, there exists an integer p.. 4 k,
depending on k, such that \k      + A     . = 1.

Proof.   Fix k < «.   Suppose that A.^ + Afc. > 2 for all / 4 k.   A is reduced,
therefore by Remark 2 at the end of §1 of [7], /(A) is obtained from A by

replacing the diagonal entries R by m.  It is easy to see that the right A-module
Jk = e¿¿A satisfies the conditions of Lemma 1.7(3) with s = k, and therefore
hd   Jk = ».    This contradicts the hypothesis that gl dim A < oo.  Thus for some
integer pk 4 k we must have A     k + Afc „   < 1.  Since A is reduced and pk 4 K

Corollary 2.8.   Let A = (m 1J) C Al (R) be a tiled R-order.   Assume that A,.—       22 ÍJ

= 0 for all j and A.. > 0 whenever i > 2 and i 4 /•   Then gl dim A < » if and
only if A.. = 1 whenever i > 2 and i 4 /•

Proof.   The "if" part follows from Proposition 3.3 of [7].  We now prove the
' only if" part.  Clearly A is reduced.  Hence by Lemma 2.7, for every integer
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i, 1 < i < n, we have an integer p. 4 i such that A . + A. ... = 1. If p. > 2 and

í > 2, then by the hypothesis we have A^. + X.^, > 2. Thus, if i > 2, then we
must have p. = 1, so that A„   . = A,. = 0 and A., - A. „ = 1.  Hence 0 < A.. <

■2 » /¿¿.I it 2 1 2,Mj 2/ —■

\l + Al; - *» whenever i > 2 and i 4 /'•   This completes the proof.
In [5] we have seen that the triangular tiled R-order Q   = (m"*') C A1_(R),

0 ft ~        «

where tu.. = » - / for t > / and <a • • = 0 otherwise, plays an important role. We now
show that if A = (m ,;) C Aln(R) is a tiled order of finite global dimension and if
A.. = « — 1 for some i 4 j> then A is permutationally conjugate to the tiled R-order
0 . This in particular shows that if we disturb even slightly the "upper triangle"
of Qn by replacing R by a proper ideal of R, then we end up with a tiled R-order
of infinite global dimension.  First we need a proposition.

Proposition 2.9.   Let A = (m '') C Al (R) be a tiled R-order.   Assume that

X. ¿_, = 1    for2<i<n,      A. ._} = 3 • for 4 < i < n,
X.._ 2 = 2    for 3 < i < n, Ai;. > 3    for i-j> 4.

Then gl dim A < oo if and only if A  is a triangular tiled R-order.

Proof.   The "if" part follows from Theorem 1 of [5].  We now prove the "only
if" part.  First, we observe that if A. .  , = 0 for all i, then A. ,., = 0 for all i,

l(ltl *# *+*

since by 0.1 we have 0 < A¿ f  2 < A¿ . j + A¿  j ¿+2 < 0.   Repeating this argument
one can show that A¿ .   . = 0     for all / > 1, so that A is a triangular tiled R-order.

Thus to prove the "only if" part it is enough to show that A; f+1 = 0 for all
i > 1.  Since A.. > 0 whenever t > ;, A is reduced.  By the assumption gl dim A < oo,
therefore by Lemma 2.7 we have natural numbers pl 4 1 and p-n4n such that
Aj       + A     j = 1 and An> „   + A     n = 1.  Also by the hypothesis A21 = 1,
A., > 2 for 3 < 2 < 22; and A        , = 1, A . > 2 for 1 < i < n — 2.  Hence, we must

12  — —      —      ' 71,72— 1 *       721 — —      — '

have ftj = 2, p   = n — I and A12 = 0 = A_ln.   If n = 3, then we are done.  So
assume that n>4.  Fix an integer k, where 2 < k < n - 2.  Set a. = 2 for

i<k- 1, a. = a.   j - 1 and a. = 0 for k + 2 < i < n.   If Xk fc  j > 0, then one
can easily check that the conditions of Lemma 1.7(1) and (2) for the right A-module
ß are satisfied with s = k, and therefore hdA B =- oo.  This contradicts the assump-

tion that gl dim A < ».   Thus we must have Afe fc+1 =0.  This completes the proof
of the proposition.

Corollary 2.10.  Let A = (mX';) Ç Aln(R) be a tiled R-order.   Assume that
A.. = i - j whenever i > j.   Then gl dim A < » if and only if A = 0n»   where
Q   = (m   '') Ç Mn(R) with co-= i - j whenever i > j and co{. = 0 otherwise.

Proof.   The proof is a direct application of Proposition 2.9.
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Theorem 2.11.   Lei R be a DVR with maximal ideal m and the quotient
field K.   Let A = (m '') CM (R) be a tiled R-order of finite global dimension.   If
A.. = n — 1 for some i 4 /»  then A is permutationally conjugate to Q , where
il    is as defined in Corollary 2.10.

Proof.   If A is not reduced, then we have Afc/ = A/jfc = 0 for some k 4 I.
Hence, A is Morita equivalent to the tiled R-order T obtained from A by deleting
the /th row and the lúi column.  Since gl dim T = gl dim A < », Theorem 2.3(1)
yields A.. < n - 2 for 1 < i, ;' < «,  i 4 l> j 4 I. By using 0.1, it is easy to see
that \ki = Ajf. and Ajfc = A¿¿ for 1 < i < n, and therefore we must have A.. < « - 2
for all i, ;.   But by the hypothesis A.. = « - 1  for some i 4 j; hence it follows
that A is reduced.   We now observe that to prove the theorem it -is enough to show
that A is permutationally conjugate to a tiled R-order T = (m   '') Ç Al (R), where
yf. = i — ; for i > /,  since then by Corollary 2.10 we have T = ün>   By interchanging
suitable rows and columns we may assume that A j = « - 1.  By Theorem 2.3(1) we
have A¿j < « - 1 for all i.   By permuting rows and columns of A through 2 to n,
we may further assume that A.j is an increasing function of i.   But A  . = n - 1;
therefore by Lemma 2.2(2) and (3) we must have A. j = i — 1 for 1 < i < n — 1.
Hence, by 0.1, we have i = A.  . , < A.  , . + A. = A. . . + i - 1 for all i.  This

* X * f A   "*"" * T 1(1 I» 1 + 1(1

shows that A.j . > 1.   By Lemma 2.1 we have integers s >i + 1 and ; < i such
that A  . < 1.   By the monotonicity of A.j and 0.1 we have

'-*M.l **sl SA./+ \l * ^Z-1-/<¿

Thus we have i < s — 1 = A  , < ; < i,  and therefore i = ;' = s — 1 and A.j . =
A  . < 1.   All this shows that A.  . . = 1 for all i.   We now show that A.. = i - j
whenever i > /'.   By 0.1 we have A¿j < A¿. + A.j, i.e., i - 1 < A.. +/'— 1.  Hence
A.. > í — /.   To show that A.. <i — j whenever i > / we use induction on i.   When
i = 2, we have ; = 1.   Since A21 = 1, the statement is true when i = 2.   Let
i > 3 and let / < i.   By 0.1 we have A.. < A.   _ j + A._ j ..   Hence by the induction
hypothesis we have A., < 1 + (i - 1) - ;' = i - /.   This completes the induction and

shows that A.. = i — j whenever i > /'.  This completes the proof.

3.   Characterization of triangular tiled orders.   In this section we obtain an
intrinsic characterization of a triangular tiled order, i.e., we give, in terms of
A.- a necessary and sufficient condition for a tiled R-order A = (m '') C fAn(R)
to be conjugate to a triangular tiled R-order in Aln(R).  If « = 2, A is always
conjugate to a triangular tiled Reorder by Lemma 1.1.  So throughout this section
we assume that « > 3.
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Lemma 3.1.   Let A = (m *') C Al (R) be a tiled R-order.   Fix a natural number—        72 ,

í < n.   Let {¿j, ¿2, • • •, i     j} be a permutation of the set [1, 2, ...,/- 1, i + 1,
• • •, »i}.  // /or some /¿xe^ integer j, where 1 <;'<«- 1, u/e have A. .   +— 2,2^

A.    .       = A. .       whenever s > j, then
's.'s + l z»'s + l

(a) A. .  + A.   .   = A. .   for k> l> j.
2,2/ T     2/,21. I.I*  ' -     -'

(b) Furthermore, if A is reduced, then- X. .   + A.   .  > A. .   for k> l> j.

Proof.   First, we prove (a) by using an induction on k.   Fix / > /.   Obviously
(a) holds when k = I.   By 0.1 we have

A. .      <A. . + A.   .      <A. . +A.   .  +A.   .
'•'ife+1-   '•'/      '/-'jfe+l-   l'U      'r'k      '*•'*+.

= A. .   +A.    .      ,   by the induction hypothesis,
'•'*      V*+l

= X. . by the hypothesis as k > j.
'•'/t+l

Thus we have proved that

A. .       <A. . +A.   .       <A. .      .
'•'A+l ~   '•'/      lf'k+l~   *»**+l

Consequently, A. .       = A. ., + A., .,   ,.  This completes the induction and proves
(a).

We now prove (b).   By (a) we have A. .   + A.    .  = A. . + A.   .   + A.   .   when-
l.lk        lk,lt        '»'2 '/**« tk»ll

ever k>l>j.   Since A is reduced, A.   .   + A.   . > 0 whenever k 4 I.   Thus we
have A. .   + A.    ., > A, ... whenever *>/>;*.   This completes the proof of the

,«*«       '«»if      '''I —
lemma.

Proposition 3.2.   Let A = (m *') Ç Al (R) be à tiled R-order.   If for some fixed
integer i, where 1 < 2* < 22,  there exists a permutation \i j, i'2, • • •, i     j_| of the
set [1, 2,..., j'-l, i + l,..., »2! such that A. . +A.. .   , = A. .      for Kk<n-2,
then A is conjugate to a triangular tiled R-order.

Proof.  Set 2'0 = i.   Hence we have A¿ .   + A¿   .  = X{i    fot all k > 0.  By
the hypothesis A. .   + A.    ..   . = A. ...   . for k > 1, therefore using Lemma 3.1 with

Jr l'lk      »«v'k+l      '»'*+l - °
; = 1 one concludes that

/ji\ A. . + A.   .   = A. .     whenever k > / > 0.
W «.'/      '/.»*      t,xk -   -

Let y = (y   .) and z = (z  .) be the matrices in Aln(K), where if m = tR, then

and
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y   . = z  . = 0    otherwise.7 SJ SJ

Then, yz = zy = 1.  Set T = yAy~ *.   We show that T = (Ts .) Ç A1n(R) and is a
a triangular tiled R-order.  To show this we must show that I"1  • = R whenever

ly, r = yAj-
using the matrix multiplication we get
s < /,  r  . Ç R whenever s > ;.   Clearly, T = yAy"   = (ys.-XA  .)(z  .); therefore

r„.= T*y    A    z   . = y    .A. z.sj      ^'su   uv  vi     7s,i      .    2      ,,2.   ,   I.    ,,7
U,V S—I       S—I     7—1      7—1

Now from 0.1 and (#) it follows that T  . C R whenever s > j and T  . = Ro7 — *7
whenever s < /.   Thus T is a triangular tiled R-order.

Theorem 3.3.   Lei A = (m '0 C Al (R), « > 3, ¿e a reduced tiled R-order,—     n —    '
where R is a DVR with maximal ideal m. Then A is conjugate to a triangular
tiled R-order in Al (R) if and only if for some natural number i < «, there exists
a permutation {ij, i'2, • ••, *__i I of |1, 2, •• •, i - 1, i + 1, ..., «j such that

A. .   +A.   .       = A. . for Kk<n-2.
l>'k      'k''k+l       '»'k+1 -    -

Proof.   The   "if" part follows from Proposition 3.2.  We now prove the
"only if" part.  So, assume that A is conjugate to a triangular tiled R-order in
Aln(R).   By Proposition 1.9 of [7] we have a natural number i < « such that

(*) p2. 2 r/(A) 2 • • • 2 V" '(w 2 pyw=0
is a composition series of P. considered as a right A-module, where P. and A
are as defined in §1 of this paper.   Since [P¿: R/m]-= « and since (*) is a
composition series, it follows that [P./*(Ä): R/m] = n - k for ¿ > 1.  We claim
that there exists a permutation {ij, i'2,...,i _jj of the set {1, 2, ..., i - 1,
¿ + 1, ..., n\ such that P¿Js+i(Á) is obtained from P.JS(K) by replacing the

X,- ,-      A,- ¿  +1 •
i'sth entry m   ' s/m   ' s      by zero.  We will construct i    inductively.  Recall
that, since A is reduced, /(Ä) is obtained from A by replacing the diagonal
entries R/m by zero.  Since P./2<Ä) is a right Ä-module, P./2(Ä) D P./2(Ä)e ..
for all /.   Also, P./(Ä) ^ P./2(Ä), [P./*(A): R/m] = « - k for A = 1, 2.  Therefore
we obtain an integer i j / i such that P.] Œ) is obtained from PjŒ) by

2*  21   /       2'  2*1"^replacing the i jth entry m   '   /m   ' by zero.  A similar argument and induc-
tion proves our claim.  We observe that in particular P.]s* (K) is obtained from
-    -r xi2i,  xi.it + l
P.J(K) by replacing ¿¿th entry, 1 <k<s <n-l, m     */m      *      by zero.  To
complete the proof we now show that
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A..   +A.    .       =A. . whenever 1 <*< 22 - 2.
'•'*       'fc-'t+l       '-'fc+l -    -

Since PJ^HTi) = P.Jn-2(Ä)j(K), k follows that

*i 2 xi 2       +1 Ki        i »<        i       +1
(m   '-Vm   ,»-2    ).(m   »-2,»-Vm   »~2  »-1    )

x'"„ l        *w. i+1
= m      "-1modm      "_1

Since the multiplication in Ä is induced by that in A, and since by 0.1 we
have A. .        + A. > A. .       , it follows that A. .        + A.     , .

«•«Ti-2        'n-2.i7i-l—    ««»«-I «.Iti-2        «tj— 2.173— 1
A. .       .   If « = 3, we are done.   If n > 4, we use an induction on s.  So, assume

that A. .   + A.    .       = A. .        for * > s + 2.'»'*        «*''k + l        *'lk+l —
Then Lemma 3.1(b) yields A,- ■   + A.    .       > A. .    . whenever k > s + 2.

-    -+l/T\ -     -   k,'s+2        ,!,i+2
Since P./J+ (A) is obtained from p.j(\) by replacing the 2/th entry, 1 < / </<

n - 1, by zero, and since P.;S+2(A) = P.Js+l(R)j(K), we must have

X. . X. .      +1 ji-1 X. .      X. . +1 X-   • X.   •      +1
(m M*+7m   'a+2   )-       Z        («     ^   *'   ) • (m ',,,5+2/m 'l'1^2   )

iW»l ;ljls+2

n-1 X       +x.   . X. .       +1
=       Z («      '     '  s+2) mod m ',,*+2

/=i+l;/^s+2

This together with the induction hypothesis yields A. .       + A. =e /f 7 i.is+1        is+l.tf+2
A¿ f.      .  This completes the induction on s and also completes the proof of the

"only if" part.

4.  Tiled orders in Aln(K), where 2 < « < 4.  In this section we study tiled
R- orders in Al (K) of finite global dimension with the restriction that 2 < n < 4.
The machinery developed in the first three sections enables us to give a complete
classification of tiled R-orders in MAX.) of finite global dimension (Theorem 4.2).
As another application of the developed machinery we prove Proposition 4.1, first
proved by R. B Tarsey ([ll], [12]).   Our proof is different from that given by
Tarsey and is also less computational.  Throughout this section fl    will denote
the tiled R-order (m   ,;) Ç Aln(R), where o.. = i - j fot i > j and <af. = 0 otherwise.

Proposition 4.1. (a) Ler A be a tiled R-order in M (K), where n = 2 or 3.
Ti>er2 gl dim A < » if and only if A is conjugate to a triangular tiled R-order in
M (R) of finite global dimension.

(b) A12(R) and fl2 are> UP t0 conjugation, the only tiled R-orders in A12(K)
of finite global dimension.
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(c) There are, up to conjugation, only four tiled R-orders in Alj(K) of finite
global dimension, and these are defined as follows: (i) Alj(R), (ii) Q3; (iii)
T = (mr") Ç A13(R), where y¿. = 1 whenever i > j and y-   - 0 otherwise; (iv)
T = (m7") Ç A13(R), twbcre y?1 = yJ2 = 1 and yif = 0 otherwise.

Proof.  The "if" part of (a) is trivial.  We now prove (b), (c) and the "only
if" part of (a) simultaneously.  As seen before A is conjugate to a tiled R-order
containing e.., 1 < i < n.   So we may as well assume that A is of the form
A = (m*1"') Ç Al (K).   By Lemma 1.1 we may further assume that A¿;. > 0 for all i, j;
and Aj. = 0 for all  i.   Now let « = 2.  If A is not reduced then we must have
A21 = 0, so that A = M2(R).  If A is reduced then by Theorem 2.3(1) we have
A21 = 1 i.e., A = Q2.  Now let n = 3.   By Theorem 2.3 we have \.. < 2 for all
i, ;; and if A.. = 2 for some i 4 j, then by Theorem 2.11 we have that A is
conjugate to the tiled R-order Q3.  So assume that A.. < 1.  If A is reduced, then
by Lemma 1.3 we may further assume that A.. = 1 for i > / and A23 = 0 or 1.  If
A23 = 0 then A is the tiled R-order defined in (iii) of (c).  If A23 = 1, then let
y = (yf.) in M^K), where y12 = 1, y2j = y}3 = t (where tR = m), and y{. = 0
otherwise.  A direct computation shows that yAy"   =öj.  Now assume that A is
not reduced.   Then we have A. { = A.. = 0 for some k 4 I.   If / = 1, then by
interchanging suitable rows and columns we may assume that  k = 2, i.e., A21 =
Aj2 = 0.  Then using (0.1) one gets that A23 = 0 and A31 = A32 .< 1.

So, either A = Alj(R) or A is the order defined in (iv) of (c).  Now assume that
both of k and / are different from 1, so that A23 = A,2 = 0.   By 0.1, we have
A2j = A31 < 1.  If A2j = Ajj = 0, then A = A13(R).  If not, set y = (y.) in A13(K),
where y12 =y23 = 1, y}1 =/ and y.. = 0 otherwise.   Then yAy"    is the tiled
R-order defined in (iv) of (c).

Lastly it is easy to see that none of the tiled R-orders defined in (c) is con-
jugate to the other.   This completes the proof of the proposition.

Theorem 4.2.   Lei R be a discrete valuation ring with maximal ideal m
generated by t, and quotient field K.   Let A be a tiled R-order in M4(K).  Then
gl dim A < » if and only if A is conjugate to a triangular tiled R-order in MAR)
of finite global dimension or A is conjugate to the tiled R-order T - (my,;") C

Al4(R), where yu = 0 = yu for all i, and yi. = 1 otherwise.

Proof.  The "if" part follows from Corollary 2.8.  We now prove the "only if"
part.  As A is conjugate to a tiled R-order in M4(K) containing e.., 1 < i < 4,

we may as well assume that A is of the form A = (m ") Ç M4(K).  By Lemma 1.1,
we may further assume that \.. > 0, \Xi = 0 for all i, ;.  First we consider the
case when A is reduced.  Then, by Lemma 1.3, we may in addition assume that
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A.. > 0 whenever i > /.   Thus we have A = (m '') Ç A14(R) with A¿; = Xl{ = 0 for
all i and A21, A»,, A,2, A41, A42, A43 are strictly positive.  Hence we must con-
sider various cases according as A23, A24, A,4 are strictly positive or not.  It is
easy to see that up to conjugation we have to discuss only the following five types
of tiled R-orders:

Type I.    A23 = A24 = AJ4 = 0.
Type II.   A23, A24, A34 > 0.
Type III. A23, A24 > 0, AJ4 = 0.
Type TV. A23 = 0 = A24, A34 > 0.
TypeV.   A23>0, A24 = A34 = 0.
Since Type I is a case of triangular tiled R-order, this case is settled.  In

Type II, since gl dim A < », we must have A.. = 1 whenever t 4 j and i > 2,
by Corollary 2.8.   Thus A = T.   Now let us discuss Type III.  Clearly A is re-
duced, gl dim A < », A23 + A32 > 2 and A24 + A42 > 2; therefore, by applying
Lemma 2.7 with k = 2, we get that A21 = 1.  Since 0 < A2¿ < A2 j + A^. = 1 for
i = 3, 4, A23 = A24 = 1.  But then A21 + AJ3 = A23   and A23 + AJ4 = A24.  There-
fore Proposition 3.2 applies with i = 2 for the permutation (j 3 4), so that A is
conjugate to a triangular tiled R -order.   We now look at Type IV.   Since  Aj. =

A,. = 0 for / = 2, 3, 4, therefore ejjAe' is a projective right e Ae -module, where
e  = 2=2 e...   Hence by the analogue of Theorem 2.5 of [7], we have gl dim e'Ae'

SXi ■ + X--,l-il m = R or m as m is the only proper ideal / of R with
gl dim (R/I) <~.  Since Alf = 0 forall i, we have 2¿jél m*1***'1 = 2 mXfl.  Since
A is reduced, A¿1 > 0 for i 4 la  Hence we must have 2^ m '   = m.   Thus

Aj.j = 1 for some i > 2.  Since A23 = 0 = A24 and since 0 < A2I < A2f + A¿1 = Xil
tot i = 3, 4, therefore it follows that A21 = 1.  Again, A32, AJ4, A42, A43 > 0 and
gl dim e Ae  < », therefore by Corollary 2.8 we must have A32 = A34 = A42 = A43 = 1.
Clearly 0 < A¿1 < A¿2 + A21 = 2 for i = 3, 4; therefore A.t = 1 or 2 whenever
t = 3 or 4. If Ajj = 1 then A31 + A12 = AJ2, AJ2 + A24 = A}4, so that A is
conjugate to a triangular tiled R-order, by Proposition 3.2.   If A41 = 1, then

A41 + ^12 = A42' ^42 + A23 = ^43' so again> by Proposition 3.2, we have that A
is conjugate to a triangular tiled R-order.  If A31 = A41 = 2, then let y = (y..) in

M AK), where y 12 = 1 = y33 = y44, y21 = t, y{. = 0 otherwise.   Computation
shows that y Ay"l = Y.

Lastly we turn to Type V.  Since the number of R in A is 9 and since the
number of R in fi4 is 10, A cannot be permutationally conjugate to Í24.  Thus,
by Theorems 2.3(1) and 2.11, we must have Af. < 2 for all i, j.   Since A-4 = 0
for all ¿, we have, by Lemma 2.7 applied to A with k = 4, that A4. = 1 for some
i < 3.  If A41 = 1, then, since A is a ring, it follows, by 0.1, that A2 x = A23 = 1.
Hence we have A24 + A41 = A21, A21 + A13 = A2J.  Thus, by Proposition 3.2, A
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is conjugate to a triangular tiled R-order.   So assume that A4 j = 2 and A4 • = 1

for i' = 2 or 3.   By interchanging the 2nd and the 3rd rows and columns we may

assume that A4J = 1,   Note that this permutation keeps us in Type V.   Since
0 < A23 < A24 + A43 = 1, A23 = 1.   Also, by Lemma 2.7, applied to A with k = 1,
we have A21 = 1 or A31 = 1.   Since all A.. < 2, to complete the discussion of
Type V, we have to discuss the following three subcases:

(a) A21 = 1-A3i;
(b) A2,=2, A3j=l;
(c) A21 = 1, A31 = 2.
Case (a).  Let A21 = A31 = 1.  Clearly, 0 < AJ2 < A31 + A12 = 1; therefore

Aj2 = 1,   If  A42 = 1, then it is easy to check that

iPl + P4 = /2'     'Pl^P4a/i;     P2 + P3 = 'l'     P2nP3 = /2>

where P . = e. .A and ] . - e. ./(A).   By Theorem 1 of [10], A is a semiperfect ring;
therefore, by using Remarks (1) and (3) at the end of §1 of [7], it is easy to see

that none of J x and J 2 is projective as a right A-module.   Hence by using
obvious short exact sequences and Theorem 2 of [8, p. 169] it follows that
hd.  J 2 = ».   But this contradicts the hypothesis that gl dim A < ».   Thus A42 = 2.
But then we have A43 + A31 = A41, A41 + AJ2 = A42, so that A is conjugate to a
triangular tiled R -order, by Proposition 3.2.

Case (b).   Let A21 = 2, A31 = 1.  Since A23 = 1, we have A24 + A43 = A23,
A23 + Ajj = A21.  Hence A is conjugate to a triangular tiled R-order, by Proposi-
tion 3.2.

dase (c).   Let A2 j = 1, A31 = 2.   Recall that A41 = 2.   Hence by Lemma 3.1,
applied with k = 2, we have A32 = 1 or A42 = 1.  Since 0 < A32 < AJ4 + A42 and
A     _ 0, we have, in any case, A,2 = 1.   Further if A42 = 1, then we have A,4 +
A42 = A32, A32 + A2 j = A3j.   Thus Proposition 3.2 guarantees that A is conjugate
to a triangular tiled R-order. So assume that A42 = 2.   Then one shows,'since

m = tR, that
p2 + p3 = /1,        p2op3 = /3,

tP2 + P4 = /3,        tP2 np4 = tj2 su J2,

íP, + p4 = /2*        *P, hp4 = /4,

í2Pj + iP3=/4, í2P,ntP3 = í2/1s/1.

Then by using obvious short exact sequences and Theorem 2 of [8, p. 169] we

get hdA Ji = » for all i.  Thus A42 = 2 is impossible.  This completes the dis-
cussion of Cases (a), (b), and (c) anf hence of Type V also.  Thus the assertion
of the theorem is proved when A is reduced.
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Now assume that A is not reduced.   Then we have A,, = A., = 0 for some
k 4 I.   Recall that A = (m *>) C M4(R) and A¿¿ = A1¿ = 0 for all i. First suppose
that A, j = Aj. = 0 for some k > 2.  We may assume that k = 2.  Then, since A
is a ring, A23 = A24 = 0.  If one of A34 or A43 is zero, then clearly A is
permutationally conjugate to a triangular tiled R-order. So assume that A,4, A4, > 0.
Since A is a ring we have A31 = A32 > 0, A41:= A42 > 0.  Clearly e^Ae' is a
projective right e'Ae'-module where e' = e22 + e33+ e44, and gl dim A < »;

therefore by the analogue of Proposition 1.10(2) of [7] we have gl dim e Ae' < oo.

Hence by Corollary 2.8 we have A3l = A32 = A}4 = A41 = A42 = A43 = 1.  Then
Ajj + Aj2 = A32, A32 + A24 = A34, so that A is conjugate to a triangular tiled
R-order by Proposition 3.2.  Now assume that A, ; = A.. = 0 where k 4 I, k, l>2.
The proof of this case is similar to the above and we leave it to the reader.  This
completes the proof of the theorem.

Corollary 4.3.   If AC Mn(K), 2 < n < 4,  is an arbitrary tiled R-order of finite
global dimension, then gl dim A < n — 1.

Proof.   Follows from Proposition 4.1, Theorem 4.2, Theorem 1 of [5] and
Proposition 3.3 of [7].

The above corollary shows that the conjecture of R. B. Tarsey [12] about the
bound on the global dimension is true when n < 4.

Theorem 4.4.   Let R be a Dedekind domain with quotient field K.   Let A be
an arbitrary tiled R-order in Mn(K), where 2 < n < 4. If gl dim A < », then
gl dim A < 22 - 1.

Proof.   Follows from Corollary 4.3 and the corollary to Proposition 2.6 of [l].
K. L. Fields [4] in answer to a question of Kaplansky has constructed orders

T and S in a central simple algebra Q over the quotient field of a DVR, such
that T C S gl dim T = 2 and gl dim S = ».   We give simpler examples showing
even worse behavior, viz., we construct a sequence of orders Aj §¡ A2 J A3 Çë A4
with gl dim A j = gl dim A3 = », gl dim A2 = 3, gl dim A4 = 2.  Let R be a DVR
with maximal ideal m, generated by t, and quotient field K.  Define A?., 1 < i < 4, by
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Clearly Aj Çê A2 £ A3 Ç^ A4, and one can easily verify that the A¿'s are rings,
hence tiled R-orders in Ai4(K).   In the proof of Theorem 4.2 we have seen that
gl dim Aj = » and gl dim A3 = ».   Since A4 is not hereditary, therefore by
Theorems 1 and 2 of [5] we have gl dim A4 = 2.   We now show that gl dim A2 = 3.
Let /. = e¿j./(A2), P¿= e¿iA2.   It is easy to check that

/Pl + P4 = /2'       /P1 n P4 = /4 = íP3 S P3.

P2 + P3 = /,, P2nP3 = J2*Jy

and J 2 is not a projective right A2-module. Using obvious short exact sequences
and Theorem 2 of [8, p. 169] one concludes that hd /(A2) = 2, so that gl dim A2
= 3, by Lemma 1.2 of [7].

5.  Some remarks.   Let R be a DVR with maximal ideal m and quotient field
K. Let A be a triangular tiled R-order in Aln(K), i.e., A = (m ,J) Ç Afn(R), where
A.. = 0 whenever í < 7.   Let e=   2"~j   e¿¿.   Then, since eAenn is a projective
left eAe-module, from Theorem 2.5 of [7] it follows that gl dim A .< » if and only
if gl dim eAe < » and /(A)e      is a projective left A-module.

It is also easy to see that if T = (m   *') C A14(R) is a tiled R-order where
ylf. = 0 for all 2, and yf • =1 for 2 > 2 and i 4 /', then /(r)e44 is a projective
left T-module and that, by Corollary 2.8, gl dim el~e <», where e = exl + e22 + e3}.

All this together with the classification given in Proposition 4.1 and

Theorem 4.2 shows that, if A is a tiled R-order in Aln(K), 2 < « < 4, containing
« orthogonal idempotents /j, f2, • • •, / , then gl dim A < » if and only if there
exists a natural number I < n such that /(A)/j is a projective left A-module and

gl dim gAg < », where g = 2.^ f..
We say that a tiled R-order   A   in Mn(K) containing « orthogonal idempotents

/j, /2, ..., /    has the property P if there exists a natural number I <n such that
(Pj) J(A)fl is a projective left A-module or f¡J(A) is a projective right A-module,
(P2) gl dim gAg < », where g = 2j>; f{.
We conjecture that if A is a tiled R-oijler in M (K), then gl dim A < » if

and only if A has the property P.  Since every tiled R-order A< in Al (K) is
conjugate to a tiled R-order in Al (R) containing e.., I <i <n, it is enough to
prove the conjecture for the class of tiled R-orders A = (m *') C Al (R).  One can

show that if A = (m ,J) Ç Aln(R) is a tiled R-order and if /(A)e;; (resp. euJ(A)) is
a projective left (resp. right) A-module, then /Ae.. (resp. e,,A/) is a projective
left (resp. right) /A/-module, where / = Sf^ e(i ; furthermore 2iy/ m*''m '' = R or in.
Hence if our conjecture is true, then from Theorem 2.5 of [7] and induction it will

follow that gl dim A < n - 1.   This then would show that the conjecture of R. B.
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Tarsey [12] about the bound on the global dimension of orders in M„(K) is true at
least for the class of tiled R-orders.   We note that the "sufficiency" of our con-

jecture follows from Theorem 2.5 of [7],   Lastly we construct an example of a tiled

R-order A = (m  !7) C Ai_(R) to show that the alternatives permitted in condition

(P.) are necessary.

Let A = (m*1') Ç A15(R), where A23 = A45 = A1;. = X.. = 0 for all /, A?1 = A51 =
A,2 = 2 and A. = 1 otherwise.   One can easily check that A is a ring hence a
tiled R-order and that /(A)e,5 S Ae44. -Hence /(A)e55 is aprojective left A-module.

Computation shows that hd /j = 1 = hd /3, hd J2 = 2 = hd /5, hd /4 = 3, where
J . = e¿./(A).   Thus, by Lemma 1.2 of [7], gl dim A = 4.   Also, if e = 2¿=1 e^.,
gl dim eAe = 3; and none of J'. is a projective right A-module.  Hence the
alternatives permitted in the condition (P,) are necessary.

At the end we make the following remark:
Remark.   One can observe that in § 1 to 4, we have not made any use of

commutativity of R.   Hence all the proofs go through when R  is a local left and
right principal ideal domain.
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