GLOBAL DIMENSION OF TILED ORDERS OVER A DISCRETE VALUATION RING

BY

VASANTI A. JATEGAONKAR ${ }^{(1)}$

Abstract

Let R be a discrete valuation ring with maximal ideal m and the quotient field K. Let $A=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(K)$ be a tiled R-order, where $\lambda_{i j} \in \mathbf{Z}$ and $\lambda_{i i}=0$ for $1 \leq i \leq n$. The following results are proved. Theorem 1. There are, up to conjugation, only finitely many tiled R-orders in $M_{n}(K)$ of finite global dimension. Theorem 2. Tiled R-orders in $M_{n}(K)$ of finite global dimension satisfy DCC. Theorem 3. Let $\Lambda \subseteq M_{n}(R)$ and let Γ be obtained from \mathbf{A} by replacing the entries above the main diagonal by arbitrary entries from R. If Γ is a ring and if $\mathrm{gl} \operatorname{dim} \mathrm{A}<\infty$, then $\mathrm{gl} \operatorname{dim} \mathrm{r}<\infty$. Theorem 4. Let A be a tiled R-order in $M_{4}(K)$. Then $g l \operatorname{dim} A<\infty$ if and only if A is conjugate to a triangular tiled R-order of finite global dimension or is conjugate to the tiled R-order $\Gamma=$ $\left(m^{\gamma_{i j}} \subseteq \subseteq M_{4}(R)\right.$, where $\gamma_{i i}=\gamma_{1 i}=0$ for all i, and $\gamma_{i j}=1$ otherwise.

Introduction. This paper is a continuation of the author's previous paper, Global dimension of tiled orders over commutative noetherian domains [7]. Throughout this paper R will denote a discrete valuation ring (DVR) with maximal ideal m, generated by t, and the quotient field K. In this paper we will use notations and terminologies of [7]. Let Λ be a tiled R-order in $M_{n}(K)$, i.e., an R-order in $M_{n}(K)$ containing n orthogonal idempotents. If a tiled R-order Λ in $M_{n}(K)$ contains the usual system $e_{i i}, 1 \leq i \leq n$, of n orthogonal idempotents, then $\Lambda=\left(\mathrm{m}^{\lambda_{i j}}\right) \subseteq M_{n}(K)$, where $\lambda_{i i}=0$ and $\lambda_{i j} \in \mathbf{Z}$ for all i, j [7]. Furthermore, by conjugating if necessary, we may assume that $\lambda_{i j} \geq 0$ for all i, j (cf. Lemma 1.1). One of the main results in this paper shows that if $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ is a tiled R-order of finite global dimension, then $\lambda_{i j} \leq n-1$ for all i, j; hence it follows that there are only finitely many tiled R-orders in $M_{n}(R)$ of finite global dimension. Using this we show that if $S_{1}, S_{2}, \ldots, S_{k}$ is a finite family of

[^0]orthogonal idempotents in $M_{n}(K)$, and if \mathcal{S} is the collection of all tiled R-orders in $M_{n}(K)$ of finite global dimension containing some S_{i}, then δ satisfies the descending chain condition (DCC). This shows that the conjecture of R. B. Tarsey [12] is true for a wide class of R-orders in $M_{n}(K)$. The complete classification given in Theorem 4.2 shows that if Λ is a tiled R-order in $M_{4}(K)$, and if $\mathrm{gl} \operatorname{dim} \Lambda<\infty$, then $\mathrm{gl} \operatorname{dim} \Lambda \leq 3$. Since there is a tiled R-order in $M_{4}(K)$ of global dimension 3 [5], [12], this upper bound is best possible. An intrinsic characterization of a reduced triangular tiled R-order $\Lambda=\left(\mathrm{m}^{\lambda^{i j}}\right) \subseteq M_{n}(R)$, obtained in Theorem 3.3, is of independent interest. We recall that a tiled R-order $\Lambda=$ $\left(\mathrm{m}^{\lambda_{i j}}\right) \subseteq M_{\dot{n}}(R)$ is reduced if $\lambda_{i j}>0$ or $\lambda_{j i}>0$ whenever $i \neq j$, and that Λ is a triangular tiled R-order if $\lambda_{i j}=0$ whenever $i \leq j$. Lastly, let $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(K)$ be a tiled R-order. Since Λ is a ring, we have
$$
\text { 0.1. } \lambda_{i j} \leq \lambda_{i k}+\lambda_{k j} \text { for } 1 \leq i, j, k \leq n \text {. }
$$
0.2. If Λ is a triangular tiled R-order, then $\lambda_{i j} \geq \lambda_{i k}$ and $\lambda_{k i} \geq \lambda_{j i}$ whenever $j \leq k$

We will have several occasions of using 0.1 and 0.2 , and sometimes we use them without giving a reference.

The main results of this paper were announced in [6].

1. Preliminaries. In this section we prove some preliminary results which will be needed in the sequel.

Lemma 1.1. Let $\Lambda=\left(\mathrm{m}^{\lambda_{i j}}\right) \subseteq M_{n}(K)$ be a tiled R-order. Then there exists a tiled R-order $\Gamma=\left(\mathrm{m}^{\gamma_{i j}}\right) \subseteq M_{n}(R)$ such that $\gamma_{1_{j}}=0$ for all j and $\Gamma=y \Lambda y^{-1}$ for some unit y in $M_{n}(K)$. Furthermore, $y e_{i i} y^{-1}=e_{i i}$ for $1 \leq i \leq n$.

Proof. Let y be the diagonal matrix in $M_{n}(K)$ with $t^{\lambda_{1 i}}$ as the (i, i) th entry, where $m=t R$. Set $\Gamma=y \Lambda y^{-1}$. Then a direct computation shows that Γ and y satisfy the conditions of the lemma.

Definition 1.2. If Λ and Γ are tiled R-orders in $M_{n}(K)$, then Λ and Γ are permutationally conjugate if one is obtained from the other by permuting rows and columns, equivalently, $\Lambda=\epsilon \Gamma^{-1}$ for some permutation matrix ϵ in $M_{n}(K)$.

Lemma 1.3. Let $\Lambda=\left(\mathfrak{m}^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a reduced tiled R-order, where $\lambda_{1 j}=0$ for all j. Then Λ is permutationally conjugate to a tiled $R \cdot \operatorname{order} \Gamma=\left(\mathrm{m}^{\gamma_{i j}}\right) \subseteq$ $M_{n}(R)$, where $\gamma_{1_{j}}=0$ for all j, and $\gamma_{i j}>0$ whenever $i>j$.

Proof. We use induction on n. If $n=2$, then the assertion is trivial. Let $n \geq 3$. Since $\lambda_{1_{j}}=0$ for all j and since Λ is reduced, therefore by Lemma 1.7 of [7] we have an integer $l>1$ such that $\lambda_{l i}>0$ whenever $i \neq l$. By interchanging the l th and the nth rows and columns, we may further assume that $l=n$. Thus,
$\lambda_{n i}>0$ whenever $i \neq n$, and $\lambda_{1 j}=0$ for all j. Clearly, e Λe is a reduced tiled R-order contained in $M_{n-1}(R)$, where $e=\sum_{i=1}^{n-1} e_{i i}$. Hence by the induction hypothesis, $e \Lambda e$ is permutationally conjugate to a tiled R-order $\Gamma^{\prime}=\left(\mathfrak{m}^{\gamma}{ }_{i j}^{\prime}\right) \subseteq$ $M_{n-1}(R)$, where $\gamma_{1 j}^{\prime}=0, \gamma_{i j}^{\prime}>0$ whenever $i>j$. Thus $\Gamma^{\prime}=y^{\prime}(e \Lambda e) y^{\prime-1}$ for some permutation matrix $y^{\prime}=\left(y_{i j}^{\prime}\right)$ in $M_{n-1}(K)$. Let $y=\left(y_{i j}\right)$ in $M_{n}(K)$ with $y_{n n}=1$, $y_{n j}=y_{j n}=0$ for $j \neq n$, and $y_{i j}=y_{i j}^{\prime}$ otherwise. Then $\Gamma=y \Lambda y^{-1}$ fulfills the requirements of the lemma.

Let $\Lambda=\left(\mathfrak{m}^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a tiled R-order. Let x be the diagonal matrix in $M_{n}(K)$ with t on the diagonal. Let $\bar{\Lambda}=\Lambda / \Lambda x=\Lambda / \Lambda \mathfrak{m}$. Then $\Lambda \cong \Lambda \Theta_{R} R / m$ as R / m-algebras and thus Π is a finite dimensional R / m-algebra. Obviously Π is isomorphic to the R / m-algebra $\left(\mathrm{m}^{\lambda_{i j}} / \mathrm{m}^{\lambda_{i j}+1}\right)$, where the multiplication is induced from that in $\Lambda_{\lambda i j}$, i.e., if $\left(a_{i j}+\mathrm{m}^{\lambda_{i j}+1}\right)$ and ($b_{i j}+\mathrm{m}^{\lambda_{i j}+1}$) are in $\left(\mathrm{m}^{\left.\lambda_{i j} / \mathrm{m}^{\lambda_{i j}+1}\right)}\right.$, then $\left(a_{i j}+\mathfrak{m}^{\lambda_{i j}^{\prime+1}}\right)\left(b_{i j}+\mathfrak{m}^{\lambda_{i j}+1}\right)=\left(\sum_{k=1}^{n} a_{i k} b_{k j}+\mathfrak{m}^{\lambda_{i j}+1}\right)$. From now on we will always identify the two R / m-algebras $\bar{\Lambda}$ and $\left(m^{\lambda_{i j} / m}{ }^{\lambda}{ }^{i j+1}\right)$. Let $\bar{e}_{i i}=e_{i i}+\Lambda m$, $1 \leq i \leq n$. Then $\bar{e}_{i i}$ are orthogonal indecomposable idempotents in $\bar{\Lambda}$ and $\Sigma_{i=1}^{n} \bar{e}_{i i}=1$. Furthermore, $\bar{P}_{i}=\bar{e}_{i i} \bar{\Lambda}, 1 \leq i \leq n$, are, up to isomorphism, the only principal right projectives of $\bar{\Lambda}$. Since $\mathfrak{m}^{\alpha} / \mathfrak{m}^{\alpha+1} \cong R / \mathfrak{m}$ for every nonnegative integer $a,\left[\bar{P}_{i}: R / m\right]=n$. Also, if Λ is reduced, then by Lemma 1.3 of [7], $f(\bar{\Lambda})$ is obtained from $\bar{\Lambda}$ by replacing the diagonal entries R / \mathfrak{m} by zero. We now show that if M is a finitely generated right π-module with $[M: R / m] \neq 0 \bmod n$, then $h_{\mathrm{A}} M=\infty$.

Proposition 1.4. Let E be a finite dimensional algebra over a field F. Assume that for every indecomposable idempotent e in $E,[e E: F] \equiv 0 \bmod l$, where l is independent of e. Then, for any finitely generated right E-module M with $[M: F] \equiv 0 \bmod l$, we have $\mathrm{hd}_{E} M=\infty$.

Proof. Since E is a finite dimensional algebra over the field F, the algebra E is artinian. Hence, by Theorem 56.6 of [3, p. 382], if P is a finitely generated projective right E-module, then $P \cong \bigoplus_{i \in I} e_{i} E$, where $|I|<\infty$ and the e_{i} ar E indecomposable idempotents in E. By the hypothesis $\left[e_{i} E: F\right] \equiv 0 \bmod l$; therefore $[P: F] \equiv 0 \bmod l$ for any finitely generated projective right E-module. Now assume that $\operatorname{hd}_{E} M=\beta<\infty$. Then we have an exact sequence.

$$
0 \rightarrow x_{\beta} \xrightarrow{\delta_{\beta}} x_{\beta-1} \xrightarrow{\delta_{\beta-1}} \cdots \rightarrow x_{1} \xrightarrow{\delta_{1}} x_{0} \xrightarrow{\delta_{0}} M \rightarrow 0
$$

where X_{i} are finitely generated projective right E-modules. By Corollary 2 of $\left[2\right.$, p. 151], we have $[M: F]=\sum_{i=0}^{\beta}(-1)^{i}\left[X_{i}: F\right] \equiv 0 \bmod l$. But this contradicts the hypothesis that $[M: F] \not \equiv 0 \bmod l$. Thus $^{\operatorname{hd}}{ }_{E} M=\infty$.

Corollary 1.5. Let $\Lambda=\left(\mathfrak{m}^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a tiled R-order. Let $\Lambda=\Lambda / \Lambda m$. If M is a finitely generated right $\bar{\Lambda}$-module with $[M: R / m] \not \equiv 0 \bmod n$, then $\mathrm{hd}_{\overline{\mathbf{A}}}{ }^{M=\infty}$.

Let $\Lambda=\left(\mathfrak{m}^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a tiled R-order. Let $A=(R, R, \cdots, R)$ be a free left R-module of rank n. Then A is a right $M_{n}(R)$-module naturally. This module multiplication induces a ($R-\Lambda$) bimodule structure on A. Further, if M is a nonzero Λ-submodule of A, then, since R is a principal ideal domain, M is also a free R-module of rank n (cf, remarks at the end of $\S 1$ of [7]).

Corollary 1.6. Let $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a tiled R-order. Let $\bar{\Lambda}=\Lambda / \Lambda m=$ $\Lambda / \Lambda x$. Let A be a free left R-module of rank n treated as a right Λ-module naturally. Let M be a nonzero Λ-submodule of A. If $\bar{M}=M / M x$ and if $\bar{M}_{\overline{\mathbf{A}}}=B_{\mathbf{A}}{ }^{\oplus}$ $C_{\overline{\mathbb{A}}}$ is a nontrivial decomposition of \bar{M} as a right K-module, then $\mathrm{hd}_{\overline{\mathbf{A}}} \bar{M}=\infty$ and $\mathrm{hd}_{\mathbf{A}} M=\infty$.

Proof. Clearly hd $\overline{\mathbf{A}}^{\bar{M}}=\infty$, by Corollary 1.5. Hence hd $_{\boldsymbol{A}} M=\infty$, by Theorem 9 of [8, p. 178].

Lemma 1.7. Let $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a tiled R-order. Let $\bar{\Lambda}=\Lambda / \Lambda m$. Let $A=(R, R, \ldots, R)$ be a free left R-module of rank n. Treat A as a right Λ-module naturally. If $B=\left(\mathfrak{m}^{a_{1}}, \mathfrak{m}^{a_{2}}, \ldots, \mathfrak{m}^{a_{n}}\right) \subseteq A$, where $0 \leq \alpha_{i}$ are integers, then
(1) B is a Λ-submodule of A if and only if $\lambda_{i j} \geq a_{j}-a_{i}$ for all i, j.
(2) If B is a Λ-submodule of A, then

$$
\begin{aligned}
\bar{B}=B / B m= & \left(m^{a} / \mathrm{m}^{a}+1\right. \\
& \oplus\left(0, \ldots, m^{a} s / \mathrm{m}^{a_{s}+1}, 0, \ldots, 0\right) \\
& \left.\mathrm{m}^{a+1} / \mathrm{m}^{a_{s+1}+1}, \ldots, \mathrm{~m}^{a}{ }^{a} / \mathrm{m}^{a+1}\right)
\end{aligned}
$$

as right π-modules if and only if $\lambda_{i j} \geq a_{j}-a_{i}$ for all $i, j ; \lambda_{i j}>a_{i}-a_{i}$ for $1 \leq i \leq s<j \leq n$; and $\lambda_{i j}>\alpha_{j}-a_{i}$ for $1 \leq j \leq s<i \leq n$. Furtber, if these conditions bold, then hd ${ }_{A} B=\infty$.
(3) If B is a Λ-submodule of A, then

$$
\begin{aligned}
& \bar{B}=B / B \mathfrak{m}=\left(0, \ldots, 0, \mathrm{~m}^{a} s / \mathrm{m}^{a^{+1}}, 0, \ldots, 0\right) \\
& \oplus\left(\mathrm{m}^{a}{ }^{a_{1}} \mathrm{~m}^{a_{1}+1}, \ldots, \mathrm{~m}^{a} s-1 / \mathrm{m}^{a} s-1+1\right. \\
&\left.a, \mathrm{~m}^{2} s+1 / \mathrm{m}^{a} s+1^{+1}, \ldots, \mathrm{~m}^{a} / \mathrm{m}^{a+1}\right)
\end{aligned}
$$

as right $\bar{\Lambda}$ modules if and only if $\lambda_{i j} \geq \alpha_{j}-\alpha_{i}$ for all $i, j, \lambda_{s j}>\alpha_{j}-\alpha_{s}$ and $\lambda_{j s}>\alpha_{s}-\alpha_{j}$ whenever $j \neq s$. Further, if these conditions bold, then hd $A=\infty$.

Proof. The proof is a straightforward computation and we leave it to the reader. That $\mathrm{hd}_{\Delta} B=\infty$ in (2) and (3) follows from Corollary 1.6.
2. Tiled orders in $M_{n}(K)$. In this section we show that, up to conjugation, there are only finitely many tiled R-orders in $M_{n}(K)$ of finite global dimension (Theorem 2.3). We also show that certain large classes of tiled R-orders in $M_{n}(K)$ of finite global dimension satisfy DCC (Theorem 2.5).

Lemma 2.1. If $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ is a tiled R-order with $g l \operatorname{dim} \Lambda<\infty$, then for every integer $k, 1 \leq k \leq n-1$, there exist integers $i \geq k+1$ and $j \leq k$ sucb that $\lambda_{i j} \leq 1$.

Proof. Fix $k \geq 1$. Suppose that $\lambda_{i j} \geq 2$ whenever $i \geq k+1$ and $j \leq k$. Set $\alpha_{i}=1$ for $1 \leq i \leq k$ and $\alpha_{i}=0$ for $k+1 \leq i \leq n$. Then it is easy to check that the conditions of Lemma 1.7 (1) and (2) for the right Λ-module B are satisfied with $s=k$; and therefore hd $B=\infty$. This is impossible as $g l \operatorname{dim} \Lambda<\infty$. Thus for some integers $i \geq k+1$ and $j \leq k$ we must have $\lambda_{i j} \leq 1$.

Lemma 2.2. Let $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a tiled order with gl $\operatorname{dim} \Lambda<\infty$. Assume that $\lambda_{i 1}$ is an increasing function of i. Then,
(1) $0 \leq \lambda_{i+1,1}-\lambda_{i 1} \leq 1$ for $1 \leq i \leq n-1$,
(2) $\lambda_{i 1} \leq i-1$ for $1 \leq i \leq n$,
(3) if $\lambda_{l 1}<l-1$ for some l, then $\lambda_{i 1}<i-1$ whenever $i \geq l$.

Proof. Fix an integer k between 1 and $n-1$. By Lemma 2.1 we have integer integers $s \geq k+1$ and $j \leq k$ such that $\lambda_{s j} \leq 1$. Hence by 0.1 and the monotonicity of $\lambda_{i 1}$ we have

$$
\lambda_{k 1} \leq \lambda_{k+1,1} \leq \lambda_{s 1} \leq \lambda_{s j}+\lambda_{j 1} \leq 1+\lambda_{k 1}
$$

Thus $\lambda_{k 1} \leq \lambda_{k+1,1} \leq 1+\lambda_{k 11}$, which proves (1). For (2) we use an induction on $i_{\text {. }}$ Since $\lambda_{11}=0$, the statement is true for $i=1$. Assume that $\lambda_{i 1} \leq i-1$. Then by using (1) of this lemma we have $\lambda_{i+1,1} \leq 1+\lambda_{i 1} \leq i$. This completes the induction and proves (2) The proof of (3) is similar.

In the next theorem we show that if we consider the class of all tiled R-orders of finite global dimension in $M_{n}(K)$ containing n orthogonal idempotents, then up to conjugation this class is finite.

Theorem 2.3. Let R be a DVR with maximal ideal \mathfrak{m} and quotient field K. Then:
(1) If $\Lambda=\left(\mathrm{m}^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ is a tiled R-order with $g l \operatorname{dim} \Lambda<\infty$, then $\lambda_{i j} \leq$ $n-1$ for $1 \leq i, j \leq n-1$.
(2) There are only finitely many tiled R-orders in $M_{n}(R)$ of finite global dimension containing a fixed set of n orthogonal idempotents.
(3) There are, up to conjugation, only finitely many tiled R-orders in $M_{n}(K)$ of finite global dimension.

Proof. First we note that to prove (1) it is enough to show that $\lambda_{i 1} \leq n-1$ for all i, since by interchanging the 1 st and the j th rows and columns we can always assume that $j=1$. Furthermore, by permuting rows and columns of Λ through 2 to n we may as well assume that $\lambda_{i 1}$ is an increasing function of i. But then by Lemma 2.2(2) we have $\lambda_{i 1} \leq i-1 \leq n-1$ for all i. Thus $\lambda_{i j} \leq n-1$ for $1 \leq i, j \leq n$.

We now prove (2). Let $f_{i}, 1 \leq i \leq n$, be a fixed set of n orthogonal idemporents in $M_{n}(R) . M_{n}(R)$ contains $e_{i i}, 1 \leq i \leq n$, and f_{i} and $e_{i i}$ are local idempotents with $\Sigma_{i=1}^{n} I_{i}=1=\sum_{i=1}^{n} e_{i i}$; therefore by Proposition 3 of $[9, \mathrm{p} .77]$ we have a unit u in $M_{n}(R)$ and a permutation π on the numbers 1 to n such that $e_{i i}=u f_{\pi(i)} u^{-1}$ for $1 \leq i \leq n$. Thus, if Λ is a tiled R-order in $M_{n}(R)$ containing $f_{i}, 1 \leq i \leq n$, then $u \wedge u^{-1}$ is a tiled R-order in $M_{n}(R)$ containing $e_{i i}, 1 \leq i \leq n$. Hence to complete the proof we must show that there are only finitely many tiled R-orders in $M_{n}(R)$ of finite global dimension containing $e_{i i}, 1 \leq i \leq n$. But this is obvious in view of (1).

To prove (3), let Λ be an R-order in $M_{n}(K)$ containing n orthogonal idempotents. Then Λ is conjugate to a tiled R-order Γ in $M_{n}(K)$ containing $e_{i j}, 1 \leq i \leq n$, which in turn, by Lemma 1.1, is conjugate to a tiled R-order $\Delta=\left(m^{\delta_{i i}} \subseteq M_{n}(R)\right.$. Now the assertion follows trivially from (1) and (2).

This complete the proof of the theorem.
Proposition 24. Let $f_{1}, f_{2}, \cdots, f_{n}$ be n orthogonal idempotents. Let δ be the set of all tiled R-orders Λ in $M_{n}(K)$ such that $\mathrm{gldim} \Lambda<\infty$ and $f_{i} \in \Lambda$ for $1 \leq i \leq n$. Then δ satisfies the descending chain condition.

Proof. Let $\Lambda_{1} \supseteq \Lambda_{2} \supseteq \cdots \supseteq \Lambda_{j} \supseteq \Lambda_{j+1} \supseteq \cdots$ be a descending chain of tiled R-orders in δ. By Proposition 3 of $[9, \mathrm{p} .77]$ we have a unit u in $M_{n}(K)$ such that, for all $j, u \Lambda_{j} u^{-1}$ is a tiled R-order in $M_{n}(K)$ containing $e_{i i}, 1 \leq i \leq n$. By Lemma 1.1 we have a unit y in $M_{n}(K)$ such that $y u \Lambda_{1} u^{-1} y^{-1} \subseteq M_{n}(R)$ and $y e_{i i} y^{-1}=e_{i i}$ for all i. Set $z=y u$. Then clearly

$$
z \Lambda_{1} z^{-1} \supseteq z \Lambda_{2} z^{-1} \supseteq \cdots \supseteq z \Lambda_{j} z^{-1} \supseteq z \Lambda_{j+1} z^{-1} \supseteq \cdots
$$

is a descending chain of tiled R-orders in $M(R)$. Furthermore, for all j, $\mathrm{gl} \operatorname{dim} z \Lambda_{j} z^{-1}<\infty$ and $e_{i i} \in z \Lambda_{j} z^{-1}, 1 \leq i \leq n$. Hence by Theorem 2.3(2) we have an integer l such that $z \Lambda_{i} z^{-1}=z \Lambda_{j+1}^{-} z^{-1}$ for all $j \geq l$. Consequently $\Lambda_{j}=\Lambda_{j+1}$ for all $j \geq l$. This completes the proof.

Theorem 2.5. Let R be a DVR with quotient field K. Let $S_{1}, S_{2}, \ldots, S_{k}$ be a finite collection of sets, where each S_{j} is a set of n orthogonal idempotents in $M_{n}(K)$. Let δ be the collection of all tiled R-orders Λ in $M_{n}(K)$ sucb that $S_{j} \subset \Lambda$ for some j and $g l \operatorname{dim} \Lambda<\infty$. Then δ satisfies DCC.

Proof. Let

$$
\begin{equation*}
\Lambda_{1} \supseteq \Lambda_{2} \supseteq \cdots \supseteq \Lambda_{i} \supseteq \Lambda_{i+1} \supseteq \cdots \tag{*}
\end{equation*}
$$

be a descending chain of tiled R-orders in \mathcal{S}. Let $\mathcal{S}_{j}=\left\{\Lambda_{i}: \Lambda_{i} \supset S_{j}\right\}, 1 \leq j \leq k$. If δ_{j} is nonempty, then by Proposition 2.4 we have a natural number μ_{j} such that $\Lambda_{i}=\Lambda_{\mu_{j}}$ for all $i \geq \mu_{j}$. If \mathcal{S}_{j} is empty set $\mu_{j}=0$. Let $\mu=\max _{1 \leq j \leq k} \mu_{j}$. Let $i \geq \mu$. Since $\Lambda_{i} \in \delta_{j}$ for some j, therefore $\Lambda_{i}=\Lambda_{\mu_{j}}=\Lambda_{\mu}$. This shows that the chain ($*$) terminates. This completes the proof.

The above theorem shows that for a large class of R-orders in $M_{n}(K)$, Tarsey's conjecture [12] is true.

Theorem 2.6. Let $\Lambda=\left(\mathfrak{m}^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a tïled R.order with $\mathrm{gl} \operatorname{dim} \Lambda<\infty$. Let Γ be the set of matrices obtained from Λ by replacing the entries above the main diagonal by arbitrary entries from R. If Γ is a ring, then $\mathrm{gl} \operatorname{dim} \Gamma<\infty$.

Proof. By the hypothesis $\Gamma=\left(\mathrm{m}^{\gamma}{ }_{i j}\right) \subseteq M_{n}(R)$, where $\gamma_{i j}=\lambda_{i j}$ for $i>j$ and $\gamma_{i j}=0$ otherwise, is a ring. Hence Γ is a triangular tiled R-order. By Theorem 1 of [5], to show that $\mathrm{gl} \operatorname{dim} \Gamma<\infty$ it is enough to show that $\gamma_{k+1, k} \leq 1$ for $1 \leq$ $k \leq n-1$. Fix an integer k between 1 and $n-1$. Since $g l \operatorname{dim} \Lambda<\infty$, therefore by Lemma 2.1 we have integers $i \geq k+1$ and $j \leq k$ such that $\lambda_{i j} \leq 1$. Since $i>j, \gamma_{i j}=\lambda_{i j} \leq 1$. But then, by 0.2 , we have $\gamma_{k+1, k} \leq \gamma_{k+1, j} \leq \gamma_{i j} \leq 1$. Thus $\gamma_{k+1, k} \leq 1$. This completes the proof.

Lemma 2.7. Let $\Lambda=\left(\mathfrak{m}^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a reduced tiled R-order with $\mathrm{gl} \operatorname{dim} \Lambda<\infty$. Then for any integer $k, 1 \leq k \leq n$, there exists an integer $\mu_{k} \neq k$, depending on k, such that $\lambda_{k, \mu_{k}}+\lambda_{\mu_{k}, k}=1$.

Proof. Fix $k \leq n$. Suppose that $\lambda_{j k}+\lambda_{k j} \geq 2$ for all $j \neq k . \Lambda$ is reduced, therefore by Remark 2 at the end of $\S 1$ of [7], $J(\Lambda)$ is obtained from Λ by replacing the diagonal entries R by m. It is easy to see that the right Λ-module $J_{k}=e_{k k} \Lambda$ satisfies the conditions of Lemma 1.7(3) with $s=k$, and therefore $\operatorname{hd}_{\Lambda} J_{\boldsymbol{k}}=\infty$. This contradicts the hypothesis that $\mathrm{gl} \operatorname{dim} \Lambda<\infty$. Thus for some integer $\mu_{k} \neq k$ we must have $\lambda_{\mu_{k}, k}+\lambda_{k, \mu_{k}} \leq 1$. Since Λ is reduced and $\mu_{k} \neq k_{2}$ $\lambda_{\mu_{k}, k}+\lambda_{k, \mu_{k}}=1$.

Corollary 2.8. Let $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a tiled R-order. Assume that $\lambda_{l_{j}}$ $=0$ for all j and $\lambda_{i j}>0$ whenever $i \geq 2$ and $i \neq j$. Then $\mathrm{gl} \operatorname{dim} \Lambda<\infty$ if and only if $\lambda_{i j}=1$ whenever $i \geq 2$ and $i \neq j$.

Proof. The "if" part follows from Proposition 3.3 of [7]. We now prove the "only if" part. Clearly Λ is reduced. Hence by Lemma 2.7, for every integer
$i, 1 \leq i \leq n$, we have an integer $\mu_{i} \neq i$ such that $\lambda_{\mu_{i, i}}+\lambda_{i, \mu_{i}}=1$. If $\mu_{i} \geq 2$ and $i \geq 2$, then by the hypothesis we have $\lambda_{\mu_{i, i}}+\lambda_{i, \mu_{i}} \geq 2$. Thus, if $i \geq 2$, then we must have $\mu_{i}=1$, so that $\lambda_{\mu_{i}, i}=\lambda_{1_{i}}=0$ and $\lambda_{i 1}=\lambda_{i, \mu_{i}}=1$. Hence $0<\lambda_{i j} \leq$ $\lambda_{i 1}+\lambda_{1 j} \leq 1$, whenever $i \geq 2$ and $i \neq j$. This completes the proof.

In [5] we have seen that the triangular tiled R-order $\Omega_{n}=\left(m^{\omega_{i j}}\right) \subseteq M_{n}(R)$, where $\omega_{i j}=i-j$ for $i>j$ and $\omega_{i j}=0$ otherwise, plays an important role. We now show that if $\Lambda=\left(\mathfrak{m}^{{ }^{\lambda} i j}\right) \subseteq M_{n}(R)$ is a tiled order of finite global dimension and if $\lambda_{i j}=n-1$ for some $i \neq j$, then Λ is permutationally conjugate to the tiled R-order $\Omega_{n^{\prime}}$. This in particular shows that if we disturb even slightly the "upper triangle" of Ω_{n} by replacing R by a proper ideal of R, then we end up with a tiled R-order of infinite global dimension. First we need a proposition.

Proposition 2.9. Let $\Lambda=\left(\mathrm{m}^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a tiled R-order. Assume that

$$
\begin{array}{lrr}
\lambda_{i, i-1}=1 & \text { for } 2 \leq i \leq n, & \lambda_{i, i-3}=3 . \\
\text { for } 4 \leq i \leq n, \\
\lambda_{i, i-2}=2 & \text { for } 3 \leq i \leq n, & \lambda_{i j} \geq 3
\end{array} \text { for } i-j \geq 4 .
$$

Then $\mathrm{gl} \operatorname{dim} \Lambda<\infty$ if and only if Λ is a triangular tiled R-order.
Proof. The "if" part follows from Theorem 1 of [5]. We now prove the "only if' part. First, we observe that if $\lambda_{i, i+1}=0$ for all i, then $\lambda_{i, i+2}=0$ for all i, since by 0.1 we have $0 \leq \lambda_{i, i+2} \leq \lambda_{i, i+1}+\lambda_{i+1, i+2} \leq 0$. Repeating this argument one can show that $\lambda_{i, i+j}=0$ for all $j \geq 1$, so that Λ is a triangular tiled R-order. Thus to prove the "only if" past it is enough to show that $\lambda_{i, i+1}=0$ for all $i \geq 1$. Since $\lambda_{i j}>0$ whenever $i>j, \Lambda$ is reduced. By the assumption $g l \operatorname{dim} \Lambda<\infty$, therefore by Lemma 2.7 we have natural numbers $\mu_{1} \neq 1$ and $\mu_{n} \neq n$ such that $\lambda_{1, \mu_{1}}+\lambda_{\mu_{1,1}}=1$ and $\lambda_{n, \mu_{n}}+\lambda_{\mu_{n}, n}=1$. Also by the hypothesis $\lambda_{21}=1$, $\lambda_{i 1} \geq 2$ for $3 \leq i \leq n$; and $\lambda_{n, n-1}=1, \lambda_{n i} \geq 2$ for $1 \leq i \leq n-2$. Hence, we must have $\mu_{1}=2, \mu_{n}=n-1$ and $\lambda_{12}=0=\lambda_{n-1, n}$. If $n=3$, then we are done. So assume that $n \geq 4$. Fix an integer k, where $2 \leq k \leq n-2$. Set $\alpha_{i}=2$ for $i \leq k-1, a_{k}=\alpha_{k+1}=1$ and $\alpha_{i}=0$ for $k+2 \leq i \leq n$. If $\lambda_{k, k+1}>0$, then one can easily check that the conditions of Lemma 1.7(1) and (2) for the right Λ-module B are satisfied with $s=k$, and therefore $\mathrm{hd}_{\boldsymbol{A}} B=\infty$. This contradicts the assumption that $\mathrm{gl} \operatorname{dim} \Lambda<\infty$. Thus we must have $\bar{\lambda}_{k, k+1}=0$. This completes the proof of the proposition.

Corollary 2.10. Let $\Lambda=\left(m^{\lambda^{i j}}\right) \subseteq M_{n}(R)$ be a tiled R-order. Assume that $\lambda_{i j}=i-j$ whenever $i>j$. Then $g 1 \operatorname{dim} \Lambda<\infty$ if and only if $\Lambda=\Omega_{n^{\prime}}$ where $\Omega_{n}=\left(\mathrm{m}^{\omega_{i j}}\right) \subseteq M_{n}(R)$ with $\omega_{i j}=i-j$ whenever $i>j$ and $\omega_{i j}=0$ otherwise.

Proof. The proof is a direct application of Proposition 2.9.

Theorem 2.11. Let R be a DVR with maximal ideal \mathfrak{m} and the quotient field K. Let $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ be a tiled R-order of finite global dimension. If $\lambda_{i j}=n-1$ for some $i \neq j$, then Λ is permutationally conjugate to Ω_{n}, where Ω_{n} is as defined in Corollary 2.10.

Proof. If Λ is not reduced, then we have $\lambda_{k l}=\lambda_{l k}=0$ for some $k \neq l$. Hence, Λ is Morita equivalent to the tiled R-order Γ obtained from Λ by deleting the l th row and the l th column. Since $g l \operatorname{dim} \Gamma=g l \operatorname{dim} \Lambda<\infty$, Theorem 2.3(1) yields $\lambda_{i j} \leq n-2$ for $1 \leq i, j \leq n, i \neq l, j \neq l$. By using 0.1 , it is easy to see that $\lambda_{k i}=\lambda_{l i}$ and $\lambda_{i k}=\lambda_{i l}$ for $1 \leq i \leq n$, and therefore we must have $\lambda_{i j} \leq n-2$ for all i, j. But by the hypothesis $\lambda_{i j}=n-1$ for some $i \neq j$; hence it follows that Λ is reduced. We now observe that to prove the theorem it is enough to show that Λ is permutationally conjugate to a tiled R-order $\Gamma=\left(\mathrm{m}^{\gamma i j}\right) \subseteq M_{n}(R)$, where $\gamma_{i j}=i-j$ for $i>j$, since then by Corollary 2.10 we have $\Gamma=\Omega_{n}$. By interchanging suitable rows and columns we may assume that $\lambda_{n 1}=n-1$. By Theorem 2.3(1) we have $\lambda_{i 1} \leq n-1$ for all i. By permuting rows and columns of Λ through 2 to n, we may further assume that $\lambda_{i 1}$ is an increasing function of i. But $\lambda_{n 1}=n-1$; therefore by Lemma 2.2(2) and (3) we must have $\lambda_{i 1}=i-1$ for $1 \leq i \leq n-1$. Hence, by 0.1 , we have $i=\lambda_{i+1,1} \leq \lambda_{i+1, i}+\lambda_{i 1}=\lambda_{i+1, i}+i-1$ for all i. This shows that $\lambda_{i+1, i} \geq 1$. By Lemma 2.1 we have integers $s \geq i+1$ and $j \leq i$ such that $\lambda_{s j} \leq 1$. By the monotonicity of $\lambda_{i 1}$ and 0.1 we have

$$
i=\lambda_{i+1,1} \leq \lambda_{s 1} \leq \lambda_{s j}+\lambda_{j 1} \leq 1+j-1=j \leq i
$$

Thus we have $i \leq s-1=\lambda_{s 1} \leq j \leq i$, and therefore $i=j=s-1$ and $\lambda_{i+1, i}=$ $\lambda_{s j} \leq 1$. All this shows that $\lambda_{i+1, i}=1$ for all i. We now show that $\lambda_{i j}=i-j$ whenever $i>j$. By 0.1 we have $\lambda_{i 1} \leq \lambda_{i j}+\lambda_{j 1}$, i.e., $i-1 \leq \lambda_{i j}+j-1$. Hence $\lambda_{i j} \geq i-j$. To show that $\lambda_{i j} \leq i-j$ whenever $i>j$ we use induction on i. When $i=2$, we have $j=1$. Since $\lambda_{21}=1$, the statement is true when $i=2$. Let $i \geq 3$ and let $j<i$. By 0.1 we have $\lambda_{i j} \leq \lambda_{i, i-1}+\lambda_{i-1, i}$. Hence by the induction hypothesis we have $\lambda_{i j} \leq 1+(i-1)-j=i-j$. This completes the induction and shows that $\lambda_{i j}=i-j$ whenever $i>j$. This completes the proof.
3. Characterization of triangular tiled orders. In this section we obtain an intrinsic characterization of a triangular tiled order, i.e., we give, in terms of $\lambda_{i j}$, a necessary and sufficient condition for a tiled R-order $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ to be conjugate to a triangular tiled R-order in $M_{n}(R)$. If $n=2, \Lambda$ is always conjugate to a triangular tiled R-order by Lemma 1.1. So throughout this section we assume that $n \geq 3$.

Lemma 3.1. Let $\Lambda=\left(m^{\lambda^{i j}}\right) \subseteq M_{n}(R)$ be a tiled R-order. Fix a natural number $i \leq n$. Let $\left\{i_{1}, i_{2}, \ldots, i_{n-1}\right\}$ be a permutation of the set $\{1,2, \ldots, i-1, i+1$, $\cdots, n\}$. If for some fixed integer j, where $1 \leq j \leq n-1$, we have $\lambda_{i, i_{s}}+$ $\lambda_{i_{s}, i_{s+1}}=\lambda_{i_{,} i_{s+1}}$ whenever $s \geq j$, then
(a) $\lambda_{i, i_{l}}+\lambda_{i_{l, i_{k}}}=\lambda_{i, i_{k}}$ for $k \geq l \geq j$.
(b) Furthermore, if Λ is reduced, then $\cdot \lambda_{i, i_{k}}+\lambda_{i_{k} i_{l}}>\lambda_{i, i_{l}}$ for $k>l \geq j$.

Proof. First, we prove (a) by using an induction on k. Fix $l \geq j$. Obviously (a) holds when $k=l$. By 0.1 we have

$$
\begin{aligned}
\lambda_{i, i_{k+1}} & \leq \lambda_{i, i_{l}}+\lambda_{i_{l}, i_{k+1}} \leq \lambda_{i, i_{l}}+\lambda_{i_{l}, i_{k}}+\lambda_{i_{k}, i_{k+1}} \\
& =\lambda_{i, i_{k}}+\lambda_{i_{k}, i_{k+1}}, \text { by the induction hypothesis, } \\
& =\lambda_{i, i_{k+1}} \quad \text { by the hypothesis as } k \geq j
\end{aligned}
$$

Thus we have proved that

$$
\lambda_{i, i_{k+1}} \leq \lambda_{i, i_{l}}+\lambda_{i_{l}, i_{k+1}} \leq \lambda_{i, i_{k+1}}
$$

Consequently, $\lambda_{i, i_{k+1}}=\lambda_{i, i_{l}}+\lambda_{i_{l}, i_{k+1}}$. This completes the induction and proves (a).

We now prove (b). By (a) we have $\lambda_{i, i_{k}}+\lambda_{i_{k}, i_{l}}=\lambda_{i, i_{l}}+\lambda_{i_{l}, i_{k}}+\lambda_{i_{k}, i_{l}}$ whenever $k \geq l \geq j$. Since Λ is reduced, $\lambda_{i_{l, i}}+\lambda_{i_{k}, i_{l}}>0$ whenever $k \neq l$. Thus we have $\lambda_{i, i_{k}}+\lambda_{i_{k}, i_{l}}>\lambda_{i, i_{l}}$ whenever $k>l \geq j$. This completes the proof of the lemma.
 integer i, where $1 \leq i \leq n$, there exists a permutation $\left\{i_{1}, i_{2}, \ldots, i_{n-1}\right\}$ of the set $\{1,2, \ldots, i-1, i+1, \ldots, n\}$ such that $\lambda_{i, i_{k}}+\lambda_{i_{k}, i_{k+1}}=\lambda_{i, i_{k+1}}$ for $1 \leq k \leq n-2$, then Λ is conjugate to a triangular tiled R-order.

Proof. Set $i_{0}=i$. Hence we have $\lambda_{i, i_{0}}+\lambda_{i_{0}, i_{k}}=\lambda_{i, i_{k}}$ for all $k \geq 0$. By the hypothesis $\lambda_{i, i_{k}}+\lambda_{i_{k}, i_{k+1}}=\lambda_{i, i_{k+1}}$ for $k \geq 1$, therefore using Lemma 3.1 with $j=1$ one concludes that

$$
\lambda_{i, i_{l}}+\lambda_{i_{l}, i_{k}}=\lambda_{i, i_{k}} \quad \text { whenever } k \geq l \geq 0
$$

Let $y=\left(y_{s j}\right)$ and $z=\left(z_{s j}\right)$ be the matrices in $M_{n}(K)$, where if $m=t R$, then

$$
y_{k+1, i_{k}}=t^{\lambda_{i, i_{k}}}, z_{i_{k}, k+1}=t^{-\lambda_{i, i_{k}}} \text { for } 0 \leq k \leq n-1 ;
$$

and

$$
y_{s j}=z_{s j}=0 \quad \text { otherwise. }
$$

Then, $y z=z y=1$. Set $\Gamma=y \Lambda y^{-1}$. We show that $\Gamma=\left(\Gamma_{s j}\right) \subseteq M_{n}(R)$ and is a a triangular tiled R-order. To show this we must show that $\Gamma_{s j}=R$ whenever $s \leq j, \Gamma_{s j} \subseteq R$ whenever $s>j$. Clearly, $\Gamma=y \Lambda y^{-1}=\left(y_{s j}\right)\left(\Lambda_{s j}\right)\left(z_{s j}\right)$; therefore using the matrix multiplication we get

$$
\begin{aligned}
\Gamma_{s j} & =\sum_{u, v} y_{s u} \Lambda_{u v} z_{v j}=y_{s, i_{s-1}} \Lambda_{i_{s-1}, i_{j-1}} z_{i_{j-1}, j} \\
& =t^{\lambda_{i, i_{s-1}}} \cdot \mathrm{~m}^{\lambda_{i}{ }_{s-1}, i_{j-1}} \cdot t^{-\lambda_{i, i_{j-1}}}=\mathrm{m}^{\lambda_{i, i_{s-1}}+\lambda_{i_{s-1}}, i_{j-1}-\lambda_{i, i_{j-1}}} .
\end{aligned}
$$

Now from 0.1 and (\#) it follows that $\Gamma_{s j} \subseteq R$ whenever $s>j$ and $\Gamma_{s j}=R$ whenever $s \leq j$. Thus Γ is a triangular tiled R-order.

Theorem 3.3. Let $\Lambda=\left(\mathrm{m}^{{ }^{i j}}\right) \subseteq M_{n}(R), n \geq 3$, be a reduced tiled R-order, where R is a DVR with maximal ideal m. Then Λ is conjugate to a triangular tiled R-order in $M_{n}(R)$ if and only if for some natural number $i \leq n$, there exists a permutation $\left\{i_{1}, i_{2}, \cdots, i_{n-1}\right\}$ of $\{1,2, \cdots, i-1, i+1, \ldots, n\}$ such that

$$
\lambda_{i, i_{k}}+\lambda_{i_{k}, i_{k+1}}=\lambda_{i, i_{k+1}} \quad \text { for } 1 \leq k \leq n-2 .
$$

Proof. The "if" part follows from Proposition 3.2. We now prove the "only if" part. So, assume that Λ is conjugate to a triangular tiled R-order in $M_{n}(R)$. By Proposition 1.9 of [7] we have a natural number $i \leq n$ such that

$$
\begin{equation*}
\bar{P}_{i} \supsetneqq \bar{P}_{i} J(\Lambda) \supsetneqq \cdots \supsetneqq \bar{P}_{i} J^{n-1}(\Lambda) \supsetneqq \bar{P}_{i} I^{n}(\Lambda)=0 \tag{*}
\end{equation*}
$$

is a composition series of \bar{P}_{i} considered as a right $\bar{\Lambda}$-module, where \bar{P}_{i} and $\bar{\Lambda}$ are as defined in $\S 1$ of this paper. Since $\left[\bar{P}_{i}: R / m\right]=n$ and since $(*)$ is a composition series, it follows that $\left.\left[\bar{P}_{i}\right]^{k}(\Lambda): R / m\right]=n-k$ for $k \geq 1$. We claim that there exists a permutation $\left\{i_{1}, i_{2}, \ldots, i_{n-1}\right\}$ of the set $\{1,2, \ldots, i-1$, $i+1, \ldots, n\}$ such that $\bar{P}_{i} J^{s+1}(\bar{\Lambda})$ is obtained from $\bar{P}_{i} J^{s}(\bar{\Lambda})$ by replacing the i_{s} th entry $\mathrm{m}^{\lambda_{i, i_{s}} / \mathrm{m}^{\lambda_{i, i_{s}}+1}}$ by zero. We will construct i_{s} inductively. Recall that, since Λ is reduced, $J(\bar{\Lambda})$ is obtained from $\bar{\Lambda}$ by replacing the diagonal entries R / m by zero. Since $\bar{P}_{i} J^{2}(\bar{\Lambda})$ is a right $\bar{\Lambda}$-module, $\bar{P}_{i} J^{2}(\bar{\Lambda}) \supseteq \bar{P}_{i} J^{2}(\bar{\Lambda}) \bar{e}_{j j}$ for all j. Also, $\left.\bar{P}_{i} J(\bar{\Lambda}) \geqslant \bar{P}_{i} J^{2}(\bar{\Lambda}),\left[\bar{P}_{i}\right]^{k}(\bar{\Lambda}): R / m\right]=n-k$ for $k=1$, 2. Therefore we obtain an integer $i_{1} \neq i$ such that $\bar{P}_{i} J^{2}(\bar{\Lambda})$ is obtained from $\bar{P}_{i} J(\bar{\Lambda})$ by replacing the i_{1} th entry $\mathrm{m}^{\boldsymbol{\lambda}_{i, i_{1}} / \mathrm{m}^{\lambda_{i, i_{1}}+1}}$ by zero. A similar argument and induction proves our claim. We observe that in particular $\bar{P}_{i} J^{s+1}(\bar{\Lambda})$ is obtained from $\bar{P}_{i} J(\bar{\Lambda})$ by replacing i_{k} th entry, $1 \leq k \leq s \leq n-1, m^{\lambda_{i, i_{k}} / m^{\lambda_{i, i}}{ }^{+1}}$ by zero. To complete the proof we now show that

$$
\lambda_{i, i_{k}}+\lambda_{i_{k}, i_{k+1}}=\lambda_{i, i_{k+1}} \quad \text { whenever } 1 \leq k \leq n-2
$$

Since $\bar{P}_{i} J^{n-1}(\bar{\Lambda})=\bar{P}_{i} J^{n-2}(\Lambda) J(\overline{ })$, it follows that

$$
\begin{gathered}
\left(m^{\lambda_{i, i}}{ }_{n-2} / m^{\lambda_{i, i}}{ }_{n-2}^{+1}\right) \cdot\left(m^{\lambda_{i n-2}, i_{n-1} / m^{\lambda_{i}}{ }_{n-2}, i_{n-1}+1}\right) \\
=m^{\lambda_{i, i}}{ }_{n-1} \bmod \mathrm{~m}^{\lambda_{i, i_{n-1}}+1}
\end{gathered}
$$

Since the multiplication in $\bar{\Lambda}$ is induced by that in Λ, and since by 0.1 we have $\lambda_{i, i_{n-2}}+\lambda_{i_{n-2}, i_{n-1}} \geq \lambda_{i, i_{n-1}}$, it follows that $\lambda_{i, i_{n-2}}+\lambda_{i_{n-2,} i_{n-1}}=$ $\lambda_{i, i_{n-1}}$. If $n=3$, we are done. If $n \geq 4$, we use an induction on s. So, assume that $\lambda_{i, i_{k}}+\lambda_{i_{k}, i_{k+1}}=\lambda_{i, i_{k+1}}$ for $k \geq s+2$.

Then Lemma 3.1(b) yields $\lambda_{i, i_{k}}+\lambda_{i_{k, i}}>\lambda_{i, i_{s+2}}$ whenever $k>s+2$. Since $\bar{P}_{i} j^{j+1}(\Lambda)$ is obtained from $\bar{P}_{i} J(\bar{\Lambda})$ by replacing the i_{l} th entry, $1 \leq l \leq i \leq$ $n-1$, by zero, and since $\bar{P}_{i} J^{s+2}(\bar{\Lambda})=\bar{P}_{i} J^{s+1}(\bar{\Lambda}) J(\bar{\Lambda})$, we must have

$$
\begin{aligned}
\left(\mathrm{m}^{\lambda_{i, i}}{ }_{s+2} / \mathrm{m}^{\lambda_{i, i}}{ }_{s+2}^{+1}\right) & =\sum_{l=s+1 ; l \neq s+2}^{n-1}\left(\mathrm{~m}^{\lambda_{i, i}}{ }_{l / m}{ }^{\lambda_{i, i}+1}\right) \cdot\left(\mathrm{m}^{\lambda_{i}, i_{s+2} / m^{\lambda_{i}}{ }^{\prime} i_{s+2}+1}\right) \\
& \equiv \sum_{l=s+1 ; l \neq s+2}^{n-1}\left(\mathrm{~m}^{\lambda_{i, i}+\lambda_{i, i}, i_{s+2}}\right) \bmod m^{\lambda_{i, i}+2}+1
\end{aligned}
$$

This together with the induction hypothesis yields $\lambda_{i, i_{s+1}}+\lambda_{i_{s+1, i_{s+2}}}=$ $\lambda_{i, i_{s+2}}$.This completes the induction on s and also completes the proof of the "only if" part.
4. Tiled orders in $M_{n}(K)$, where $2 \leq n \leq 4$. In this section we study tiled R - orders in $M_{n}(K)$ of finite global dimension with the restriction that $2 \leq n \leq 4$. The machinery developed in the first three sections enables us to give a complete classification of tiled R-orders in $M_{4}(K)$ of finite global dimension (Theorem 4.2). As another application of the developed machinery we prove Proposition 4.1, first proved by R. B Tarsey ([11], [12]). Our proof is different from that given by Tarsey and is also less computational. Throughout this section Ω_{n} will denote the tiled R-order $\left(\mathrm{m}^{\omega_{i j}}\right) \subseteq M_{n}(R)$, where $\omega_{i j}=i-j$ for $i>j$ and $\omega_{i j}=0$ otherwise.

Proposition 4.1. (a) Let Λ be a tiled R-order in $M_{n}(K)$, where $n=2$ or 3. Then $\mathrm{gl} \operatorname{dim} \Lambda<\infty$ if and only if Λ is conjugate to a triangular tiled R-order in $M_{n}(R)$ of finite global dimension.
(b) $M_{2}(R)$ and Ω_{2} are, up to conjugation, the only tiled R-orders in $M_{2}(K)$ of finite global dimension.
(c) There are, up to conjugation, only four tiled R-orders in $M_{3}(K)$ of finite global dimension, and these are defined as follows: (i) $M_{3}(R)$, (ii) Ω_{3}; (iii) $\Gamma=\left(m^{\gamma_{i j}}\right) \subseteq M_{3}(R)$, where $\gamma_{i j}=1$ whenever $i>j$ and $\gamma_{i j}=0$ otherwise; (iv) $\Gamma=\left(\mathrm{m}^{\gamma_{i j}}\right) \subseteq M_{3}(R)$, where $\gamma_{31}=\gamma_{32}=1$ and $\gamma_{i j}=0$ otherwise.

Proof. The "if" part of (a) is trivial. We now prove (b), (c) and the "only if' part of (a) simultaneously. As seen before Λ is conjugate to a tiled R-order containing $e_{i i}, 1 \leq i \leq n$. So we may as well assume that Λ is of the form $\Lambda=\left(\mathrm{m}^{\lambda_{i j}}\right) \subseteq M_{n}(K)$. By Lemma 1.1 we may further assume that $\lambda_{i j} \geq 0$ for all i, j; and $\lambda_{1 i}=0$ for all i. Now let $n=2$. If Λ is not reduced then we must have $\lambda_{21}=0$, so that $\Lambda=M_{2}(R)$. If Λ is reduced then by Theorem 2.3(1) we have $\lambda_{21}=1$ i.e., $\Lambda=\Omega_{2}$. Now let $n=3$. By Theorem 2.3 we have $\lambda_{i j} \leq 2$ for all i, j; and if $\lambda_{i j}=2$ for some $i \neq j$, then by Theorem 2.11 we have that Λ is conjugate to the tiled R-order Ω_{3}. So assume that $\lambda_{i j} \leq 1$. If Λ is reduced, then by Lemma 1.3 we may further assume that $\lambda_{i j}=1$ for $i>j$ and $\lambda_{23}=0$ or 1 . If $\lambda_{23}=0$ then Λ is the tiled R-order defined in (iii) of (c). If $\lambda_{23}=1$, then let $y=\left(y_{i j}\right)$ in $M_{3}(K)$, where $y_{12}=1, y_{21}=y_{33}=t$ (where $t R=m$), and $y_{i j}=0$ otherwise. A direct computation shows that $y \Lambda y^{-1}=\Omega_{3}$. Now assume that Λ is not reduced. Then we have $\lambda_{k l}=\lambda_{l k}=0$ for some $k \neq l$. If $l=1$, then by interchanging suitable rows and columns we may assume that $k=2$, i.e., $\lambda_{21}=$ $\lambda_{12}=0$. Then using (0.1) one gets that $\lambda_{23}=0$ and $\lambda_{31}=\lambda_{32} \leq 1$.

So, either $\Lambda=M_{3}(R)$ or Λ is the order defined in (iv) of (c). Now assume that both of k and l are different from 1 , so that $\lambda_{23}=\lambda_{32}=0$. By 0.1 , we have $\lambda_{21}=\lambda_{31} \leq 1$. If $\lambda_{21}=\lambda_{31}=0$, then $\Lambda=M_{3}(R)$. If not, set $y=\left(y_{i j}\right)$ in $M_{3}(K)$, where $y_{12}=y_{23}=1, y_{31}=t$ and $y_{i j}=0$ otherwise. Then $y \Lambda y^{-1}$ is the tiled R-order defined in (iv) of (c).

Lastly it is easy to see that none of the tiled R-orders defined in (c) is conjugate to the other. This completes the proof of the proposition.

Theorem 4.2. Let R be a discrete valuation ring with maximal ideal m generated by t, and quotient field K. Let Λ be a tiled R-order in $M_{4}(K)$. Then $g 1 \operatorname{dim} \Lambda<\infty$ if and only if Λ is conjugate to a triangular tiled R-order in $M_{4}(R)$ of finite global dimension or Λ is conjugate to the tiled R-order $\Gamma=\left(\mathrm{m}^{\boldsymbol{\gamma}} \boldsymbol{i j}\right) \subseteq$ $M_{4}(R)$, where $\gamma_{1_{i}}=0=\gamma_{i i}$ for all i, and $\gamma_{i j}=1$ otherwise.

Proof. The "if" part follows from Corollary 2.8. We now prove the "only if" part. As Λ is conjugate to a tiled R-order in $M_{4}(K)$ containing $e_{i i}, 1 \leq i \leq 4$, we may as well assume that Λ is of the form $\Lambda=\left(m^{\lambda i j}\right) \subseteq M_{4}(K)$. By Lemma 1.1, we may further assume that $\lambda_{i j} \geq 0, \lambda_{1 i}=0$ for all i, j. First we consider the case when Λ is reduced. Then, by Lemma 1.3, we may in addition assume that
$\lambda_{i j}>0$ whenever $i>j$. Thus we have $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{4}(R)$ with $\lambda_{i i}=\lambda_{1_{i}}=0$ for all i and $\lambda_{21}, \lambda_{31}, \lambda_{32}, \lambda_{41}, \lambda_{42}, \lambda_{43}$ are strictly positive. Hence we must consider various cases according as $\lambda_{23}, \lambda_{24}, \lambda_{34}$ are strictly positive or not. It is easy to see that up to conjugation we have to discuss only the following five types of tiled R-orders:

Type I. $\lambda_{23}=\lambda_{24}=\lambda_{34}=0$.
Type II. $\lambda_{23}, \lambda_{24}, \lambda_{34}>0$.
Type III. $\lambda_{23}, \lambda_{24}>0, \lambda_{34}=0$.
Type FV. $\lambda_{23}=0=\lambda_{24}, \lambda_{34}>0$.
Type V. $\lambda_{23}>0, \lambda_{24}=\lambda_{34}=0$.
Since Type I is a case of triangular tiled R-order, this case is settled. In Type II, since $g 1 \operatorname{dim} \Lambda<\infty$, we must have $\lambda_{i j}=1$ whenever $i \neq j$ and $i \geq 2$, by Corollary 2.8. Thus $\Lambda=\Gamma$. Now let us discuss Type III. Clearly Λ is reduced, gl dim $\Lambda<\infty, \lambda_{23}+\lambda_{32} \geq 2$ and $\lambda_{24}+\lambda_{42} \geq 2$; therefore, by applying Lemma 2.7 with $k=2$, we get that $\lambda_{21}=1$. Since $0<\lambda_{2 i} \leq \lambda_{21}+\lambda_{1 i}=1$ for $i=3,4, \lambda_{23}=\lambda_{24}=1$. But then $\lambda_{21}+\lambda_{13}=\lambda_{23}$ and $\lambda_{23}+\lambda_{34}=\lambda_{24}$. Therefore Proposition 3.2 applies with $i=2$ for the permutation $\left(\begin{array}{lll}1 & 3 & 4 \\ 1 & 3 & 4\end{array}\right)$, so that Λ is conjugate to a triangular tiled R-order. We now look at Type IV. Since $\lambda_{1 j}=$ $\lambda_{2 j}=0$ for $j=2,3,4$, therefore $e_{11} \Lambda e^{\prime}$ is a projective right $e^{\prime} \Lambda e^{\prime}$-module, where $e^{\prime}=\Sigma_{i=2}^{4} e_{i i}$. Hence by the analogue of Theorem 2.5 of [7], we have gl $\operatorname{dim} e^{\prime} \Lambda e^{\prime}$ $<\infty$ and $\Sigma_{i \neq 1}^{i} m^{\lambda_{1 i}+\lambda_{i 1}}=R$ or \mathfrak{m} as m is the only proper ideal I of R with $\mathrm{gl} \mathrm{dim}(R / I)<\infty$. Since $\lambda_{1 i}=0$ for all i, we have $\Sigma_{i \neq 1} \mathfrak{m}^{\lambda_{1 i}+\lambda_{i 1}}=\Sigma \mathfrak{m}^{\lambda_{i 1}}$. Since Λ is reduced, $\lambda_{i 1}>0$ for $i \neq 1$. Hence we must have $\Sigma_{i \neq 1} m^{\lambda_{i 1}}=m$. Thus $\lambda_{i 1}=1$ for some $i \geq 2$. Since $\lambda_{23}=0=\lambda_{24}$ and since $0<\lambda_{21} \leq \lambda_{2 i}+\lambda_{i 1}=\lambda_{i 1}$ for $i=3,4$, therefore it follows that $\lambda_{21}=1$. Again, $\lambda_{32}, \lambda_{34}, \lambda_{42}, \lambda_{43}>0$ and $\mathrm{gl} \operatorname{dim} e^{\prime} \Lambda e^{\prime}<\infty$, therefore by Corollary 2.8 we must have $\lambda_{32}=\lambda_{34}=\lambda_{42}=\lambda_{43}=1$. Clearly $0<\lambda_{i 1} \leq \lambda_{i 2}+\lambda_{21}=2$ for $i=3$, 4 ; therefore $\lambda_{i 1}=1$ or 2 whenever $i=3$ or 4. If $\lambda_{31}=1$ then $\lambda_{31}+\lambda_{12}=\lambda_{32}, \lambda_{32}+\lambda_{24}=\lambda_{34}$, so that Λ is conjugate to a triangular tiled R-order, by Proposition 3.2. If $\lambda_{41}=1$, then $\lambda_{41}+\lambda_{12}=\lambda_{42}, \lambda_{42}+\lambda_{23}=\lambda_{43}$, so again, by Proposition 3.2, we have that Λ is conjugate to a triangular tiled R-order. If $\lambda_{31}=\lambda_{41}=2$, then let $y=\left(y_{i j}\right)$ in $M_{4}(K)$, where $y_{12}=1=y_{33}=y_{44}, y_{21}=t, y_{i j}=0$ otherwise. Computation shows that $y \Lambda y^{-1}=\Gamma$.

Lastly we turn to Type V. Since the number of R in Λ is 9 and since the number of R in Ω_{4} is $10, \Lambda$ cannot be permutationally conjugate to Ω_{4}. Thus, by Theorems 2.3(1) and 2.11, we must have $\lambda_{i j} \leq 2$ for all i, j. Since $\lambda_{i 4}=0$ for all i, we have, by Lemma 2.7 applied to Λ with $k=4$, that $\lambda_{4 i}=1$ for some $i \leq 3$. If $\lambda_{41}=1$, then, since Λ is a ring, it follows, by 0.1 , that $\lambda_{21}=\lambda_{23}=1$. Hence we have $\lambda_{24}+\lambda_{41}=\lambda_{21}, \lambda_{21}+\lambda_{13}=\lambda_{23}$. Thus, by Proposition 3.2, Λ
is conjugate to a triangular tiled R-order. So assume that $\lambda_{41}=2$ and $\lambda_{4 i}=1$ for $i=2$ or 3 . By interchanging the 2 nd and the 3 rd rows and columns we may assume that $\lambda_{43}=1$. Note that this permutation keeps us in Type V. Since $0<\lambda_{23} \leq \lambda_{24}+\lambda_{43}=1, \lambda_{23}=1$. Also, by Lemma 2.7, applied to Λ with $k=1$, we have $\lambda_{21}=1$ or $\lambda_{31}=1$. Since all $\lambda_{i j} \leq 2$, to complete the discussion of Type V , we have to discuss the following three subcases:
(a) $\lambda_{21}=1=\lambda_{31}$;
(b) $\lambda_{21}=2, \lambda_{31}=1$;
(c) $\lambda_{21}=1, \lambda_{31}=2$.

Case (a). Let $\lambda_{21}=\lambda_{31}=1$. Clearly, $0<\lambda_{32} \leq \lambda_{31}+\lambda_{12}=1$; therefore $\lambda_{32}=1$. If $\lambda_{42}=1$, then it is easy to check that

$$
t P_{1}+P_{4}=J_{2}, \quad t P_{1} \cap P_{4} \simeq J_{1} ; \quad P_{2}+P_{3}=J_{1}, \quad P_{2} \cap P_{3}=J_{2}
$$

where $P_{i}=e_{i i} \Lambda$ and $J_{i}=e_{i i} J(\Lambda)$. By Theorem 1 of [10], Λ is a semiperfect ring; therefore, by using Remarks (1) and (3) at the end of $\S 1$ of [7], it is easy to see that none of J_{1} and J_{2} is projective as a right Λ-module. Hence by using obvious short exact sequences and Theorem 2 of [8, p. 169] it follows that $h d_{A} J_{2}=\infty$. But this contradicts the hypothesis that $\mathrm{gl} \operatorname{dim} \Lambda<\infty$. Thus $\lambda_{42}=2$. But then we have $\lambda_{43}+\lambda_{31}=\lambda_{41}, \lambda_{41}+\lambda_{12}=\lambda_{42}$, so that Λ is conjugate to a triangular tiled R-order, by Proposition 3.2.

Case (b). Let $\lambda_{21}=2, \lambda_{31}=1$. Since $\lambda_{23}=1$, we have $\lambda_{24}+\lambda_{43}=\lambda_{23}$, $\lambda_{23}+\lambda_{31}=\lambda_{21}$. Hence Λ is conjugate to a triangular tiled R-order, by Proposition 3.2.

Case (c). Let $\lambda_{21}=1, \lambda_{31}=2$. Recall that $\lambda_{41}=2$. Hence by Lemma 3.1, applied with $k=2$, we have $\lambda_{32}=1$ or $\lambda_{42}=1$. Since $0<\lambda_{32} \leq \lambda_{34}+\lambda_{42}$ and $\lambda_{34}=0$, we have, in any case, $\lambda_{32}=1$. Further if $\lambda_{42}=1$, then we have $\lambda_{34}+$ $\lambda_{42}^{34}=\lambda_{32}, \lambda_{32}+\lambda_{21}=\lambda_{31}$. Thus Proposition 3.2 guarantees that Λ is conjugate to a triangular tiled R-order. So assume that $\lambda_{42}=2$. Then one shows, since $\mathfrak{m}=t R$, that

$$
\begin{aligned}
P_{2}+P_{3} & =J_{1}, & P_{2} \cap P_{3}=J_{3}, \\
t P_{2}+P_{4} & =J_{3}, & t P_{2} \cap P_{4}=t J_{2} \simeq J_{2} \\
t P_{1}+P_{4} & =J_{2}, & t P_{1} \cap P_{4}=J_{4}, \\
t^{2} P_{1}+t P_{3} & =J_{4}, & t^{2} P_{1} \cap t P_{3}=t^{2} J_{1} \simeq J_{1}
\end{aligned}
$$

Then by using obvious short exact sequences and Theorem 2 of [8, p. 169] we get $\mathrm{hd}_{\Delta} J_{i}=\infty$ for all i. Thus $\lambda_{42}=2$ is impossible. This completes the discussion of Cases (a), (b), and (c) anf hence of Type V also. Thus the assertion of the theorem is proved when Λ is reduced.

Now assume that Λ is not reduced. Then we have $\lambda_{k l}=\lambda_{l k}=0$ for some $k \neq l$. Recall that $\Lambda=\left(\mathrm{m}^{\lambda_{i j}}\right) \subseteq M_{4}(R)$ and $\lambda_{i i}=\lambda_{1 i}=0$ for all i. First suppose that $\lambda_{k 1}=\lambda_{1 k}=0$ for some $k \geq 2$. We may assume that $k=2$. Then, since Λ is a ring, $\lambda_{23}=\lambda_{24}=0$. If one of λ_{34} or λ_{43} is zero, then clearly Λ is permutationally conjugate to a triangular tiled R-order. So assume that $\lambda_{34}, \lambda_{43}>0$. Since Λ is a ring we have $\lambda_{31}=\lambda_{32}>0, \lambda_{41}=\lambda_{42}>0$. Clearly $e_{11} \Lambda e^{\prime}$ is a projective right $e^{\prime} \Lambda e^{\prime}$-module where $e^{\prime}=e_{22}+e_{33}+e_{44}$, and $\mathrm{gl} \mathrm{dim} \Lambda<\infty$; therefore by the analogue of Proposition 1.10(2) of [7] we have $\mathrm{gl} \mathrm{dim} e^{\prime} \Lambda e^{\prime}<\infty$. Hence by Corollary 2.8 we have $\lambda_{31}=\lambda_{32}=\lambda_{34}=\lambda_{41}=\lambda_{42}=\lambda_{43}=1$. Then $\lambda_{31}+\lambda_{12}=\lambda_{32}, \lambda_{32}+\lambda_{24}=\lambda_{34}$, so that Λ is conjugate to a triangular tiled R-order by Proposition 3.2. Now assume that $\lambda_{k l}=\lambda_{l k}=0$ where $k \neq l, k, l \geq 2$. The proof of this case is similar to the above and we leave it to the reader. This completes the proof of the theorem.

Corollary 4.3. If $\Lambda \subseteq M_{n}(K), 2 \leq n \leq 4$, is an arbitrary tiled R-order of finite global dimension, then $\mathrm{gl} \operatorname{dim} \Lambda \leq n-1$.

Proof. Follows from Proposition 4.1, Theorem 4.2, Theorem 1 of $[5]$ and Proposition 3.3 of [7].

The above corollary shows that the conjecture of R. B. Tarsey [12] about the bound on the global dimension is true when $n \leq 4$.

Theorem 4.4. Let R be a Dedekind domain with quotient field K. Let Λ be an arbitrary tiled R-order in $M_{n}(K)$, where $2 \leq n \leq 4$. If gldim $\Lambda<\infty$, then $\mathrm{gl}^{1} \operatorname{dim} \boldsymbol{\Lambda} \leq \boldsymbol{n}-1$.

Proof. Follows from Corollary 4.3 and the corollary to Proposition 2.6 of [1].
K. L. Fields [4] in answer to a question of Kaplansky has constructed orders T and S in a central simple algebra Q over the quotient field of a DVR, such that $T \subset S \operatorname{gldim} T=2$ and $g l \operatorname{dim} S=\infty$. We give simpler examples showing even worse behavior, viz., we construct a sequence of orders $\Lambda_{1} \varsubsetneqq \Lambda_{2} \varsubsetneqq \Lambda_{3} \varsubsetneqq \Lambda_{4}$ with $g l \operatorname{dim} \Lambda_{1}=g l \operatorname{dim} \Lambda_{3}=\infty, g l \operatorname{dim} \Lambda_{2}=3, g l \operatorname{dim} \Lambda_{4}=2$. Let R be a DVR with maximal ideal m, generated by t, and quotient field K. Define $\Lambda_{i}, 1 \leq i \leq 4$, by

$$
\begin{aligned}
\Lambda_{1}=\left(\begin{array}{llll}
R & R & R & R \\
\mathfrak{m} & R & \mathfrak{m} & R \\
\mathfrak{m}^{2} & \mathfrak{m} & R & R \\
\mathfrak{m}^{2} & \mathfrak{m}^{2} & \mathfrak{m} & R
\end{array}\right), & \Lambda_{2}=\left(\begin{array}{llll}
R & R & R & R \\
\mathfrak{m} & R & \mathfrak{m} & R \\
\mathfrak{m} & \mathfrak{m} & R & R \\
\mathfrak{m}^{2} & \mathfrak{m}^{2} & \mathfrak{m} & R
\end{array}\right), \\
\Lambda_{3}=\left(\begin{array}{llll}
R & R & R & R \\
\mathfrak{m} & R & \mathfrak{m} & R \\
\mathfrak{m} & \mathfrak{m} & R & R \\
\mathfrak{m}^{2} & \mathfrak{m} & \mathfrak{m} & R
\end{array}\right), & \Lambda_{4}=\left(\begin{array}{llll}
R & R & R & R \\
\mathfrak{m} & R & R & R \\
\mathfrak{m} & \mathfrak{m} & R & R \\
\mathfrak{m}^{2} & \mathfrak{m} & \mathfrak{m} & R
\end{array}\right) .
\end{aligned}
$$

Clearly $\Lambda_{1} \varsubsetneqq \Lambda_{2} \varsubsetneqq \Lambda_{3} \varsubsetneqq \Lambda_{4}$, and one can easily verify that the Λ_{i} 's are rings, hence tiled R-orders in $M_{4}(K)$. In the proof of Theorem 4.2 we have seen that $g 1 \operatorname{dim} \Lambda_{1}=\infty$ and $g 1 \operatorname{dim} \Lambda_{3}=\infty$. Since Λ_{4} is not hereditary, therefore by Theorems 1 and 2 of $[5]$ we have $\mathrm{gl} \operatorname{dim} \Lambda_{4}=2$. We now show that $\mathrm{gl} \mathrm{dim} \Lambda_{2}=3$. Let $J_{i}=e_{i i} J\left(\Lambda_{2}\right), P_{i}=e_{i i} \Lambda_{2}$. It is easy to check that

$$
\begin{gathered}
t P_{1}+P_{4}=J_{2}, \quad t P_{1} \cap P_{4}=J_{4}=t P_{3} \simeq P_{3} \\
P_{2}+P_{3}=J_{1}, \quad P_{2} \cap P_{3}=J_{2} \simeq J_{3}
\end{gathered}
$$

and J_{2} is not a projective right Λ_{2}-module. Using obvious short exact sequences and Theorem 2 of $[8, \mathrm{p} .169]$ one conclucies that $\mathrm{hd} J\left(\Lambda_{2}\right)=2$, so that gl dim Λ_{2} $=3$, by Lemma 1.2 of [7].
5. Some remarks. Let R be a DVR with maximal ideal m and quotient field K. Let Λ be a triangular tiled R-order in $M_{n}(K)$, i.e., $\Lambda=\left(m^{i j}\right) \subseteq M_{n}(R)$, where $\lambda_{i j}=0$ whenever $i \leq j$. Let $e=\sum_{i=1}^{n-1} e_{i i}$. Then, since $e \Lambda e_{n n}$ is a projective left $e \Lambda e$-module, from Theorem 2.5 of [7] it follows that $\mathrm{gl} \operatorname{dim} \Lambda<\infty$ if and only if $\mathrm{gl} \operatorname{dim} e \Lambda e<\infty$ and $J(\Lambda) e_{n n}$ is a projective left Λ-module.

It is also easy to see that if $\Gamma=\left(\mathrm{m}^{\gamma_{i j}}\right) \subseteq M_{4}(R)$ is a tiled R-order where $\gamma_{1_{i}}=0$ for all i, and $\gamma_{i j}=1$ for $i \geq 2$ and $i \neq j$, then $J(\Gamma) e_{44}$ is a projective left Γ-module and that, by Corollary 2.8, gl dim $e \Gamma e<\infty$, where $e=e_{11}+e_{22}+e_{33}$.

All this together with the classification given in Proposition 4.1 and Theorem 4.2 shows that, if Λ is a tiled R-order in $M_{n}(K), 2 \leq n \leq 4$, containing n orthogonal idempotents $f_{1}, f_{2}, \cdots, f_{n}$, then $g 1 \operatorname{dim} \Lambda<\infty$ if and only if there exists a natural number $l \leq n$ such that $J(\Lambda) f_{l}$ is a projective left Λ-module and $g 1 \operatorname{dim} g \Lambda g<\infty$, where $g=\Sigma_{i \neq l} l_{i}$.

We say that a tiled R-order Λ in $M_{n}(K)$ containing n orthogonal idempotents $f_{1}, f_{2}, \cdots, f_{n}$ has the property \mathbf{P} if there exists a natural number $l \leq n$ such that
$\left(\mathbf{P}_{1}\right) J(\Lambda) f_{l}$ is a projective left Λ-module or $f_{l} J(\Lambda)$ is a projective right Λ-module,
$\left(\mathrm{P}_{2}\right) \mathrm{gldim} g \Lambda g<\infty$, where $g=\Sigma_{i \neq l} f_{i}$.
We conjecture that if Λ is a tiled R-ogder in $M_{n}(K)$, then $g l \operatorname{dim} \Lambda<\infty$ if and only if Λ has the property P. Since every tiled R-order $\Lambda \cdot$ in $M_{n}(K)$ is conjugate to a tiled R-order in $M_{n}(R)$ containing $e_{i i}, 1 \leq i \leq n$, it is enough to prove the conjecture for the class of tiled R-orders $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{n}(R)$. One can show that if $\Lambda=\left(\mathrm{m}^{\lambda_{i j}}\right) \subseteq M_{n}(R)$ is a tiled R-order and if $J(\Lambda) e_{l l}$ (resp. $e_{l l} J(\Lambda)$) is a projective left (resp. right) Λ-module, then $\left(\Lambda e_{l l}\right.$ (resp. $\left.e_{l l} \Lambda f\right)$ is a projective left (resp. right) $/ \Lambda /$-module, where $f=\Sigma_{i \neq 1} e_{i i}$; furthermore $\Sigma_{i \neq l} \mathrm{~m}^{\lambda_{l i} \mathrm{~m}^{\prime}{ }^{i l}=R \text { or } \mathrm{m}_{0} .}$ Hence if our conjecture is true, then from Theorem 2.5 of [7] and induction it will follow that $\mathrm{gl} \operatorname{dim} \Lambda \leq n-1$. This then would show that the conjecture of R. B.

Tarsey [12] about the bound on the global dimension of orders in $M_{n}(K)$ is true at least for the class of tiled R-orders. We note that the "sufficiency" of our conjecture follows from Theorem 2.5 of [7]. Lastly we construct an example of a tiled R-order $\Lambda=\left(m^{\lambda_{i j}}\right) \subseteq M_{5}(R)$ to show that the alternatives permitted in condition $\left(P_{1}\right)$ are necessary.

Let $\Lambda=\left(\mathfrak{m}^{\lambda_{i j}}\right) \subseteq M_{5}(R)$, where $\lambda_{23}=\lambda_{45}=\lambda_{1 j}=\lambda_{j j}=0$ for all $j, \lambda_{31}=\lambda_{51}=$ $\lambda_{52}=2$ and $\lambda_{i j}=1$ otherwise. One can easily check that Λ is a ring hence a tiled R-order and that $J(\Lambda) e_{55} \cong \Lambda e_{44}$. Hence $J(\Lambda) e_{55}$ is a projective left Λ-module. Computation shows that hd $J_{1}=1=$ hd J_{3}, hd $J_{2}=2=$ hd J_{5}, hd $J_{4}=3$, where $J_{i}=e_{i i} J(\Lambda)$. Thus, by Lemma 1.2 of [7], $\mathrm{gl} \operatorname{dim} \Lambda=4$. Also, if $e=\sum_{i=1}^{4} e_{i i}$, $\mathrm{gl} \operatorname{dim} e \Lambda e=3$; and none of J_{i} is a projective right Λ-module. Hence the alternatives permitted in the condition (\mathbf{P}_{1}) are necessary.

At the end we make the following remark:
Remark. One can observe that in $\S 1$ to 4 , we have not made any use of commutativity of R. Hence all the proofs go through when R is a local left and right principal ideal domain.

BIBLIOGRAPHY

1. M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24. MR 22 \#8034.
2. N. Bourbaki, Eléments de mathématique. Part. 1. Fasc. VI. Livre II: Algèbre. Chap. 2: Algèbre linéaire, 3ième éd., Actualités Scị. Indust., no. 1236, Hermann, Paris, 1962. MR 27 \#5765.
3. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 \#2519.
4. K. L. Fields, Examples of orders over discrete valuation rings, Mach. Z. 111 (1969), 126-130. MR 40 \# 182.
5. Vasanti A. Jategaonkar, Global dimension of triangular orders over a discrete valuation ring, Proc. Amer. Mach. Soc. 38 (1973), 8-14.
6. \longrightarrow Global dimension of tiled orders over a $D V R$, Notices Amer. Math. Soc. 19 (1972), A-299. Abstract \#72T-A66.
7. Global dimension of tiled orders over commutative noetherian domains, Trans. Amer. Math. Soc. 190 (1974), 357-374.
8. Irving Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, Ill., 1969. MR 42 \#4345.
9. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966.

MR 34 \#5857.
10. Bruno J. Mueller, On semiperfect rings, Illinois J. Math. 14(1970), 464-467. MR 41 \#6909.
11. R. B. Tarsey, Orders, Thesis, The University of Chicago, Chicago, III. 1969.
12. \qquad Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335340. MR 42 \#3125.

[^0]: Presented to the Society, January 12, 1972; received by the editors June 15, 1973. AMS (MOS) subject classifications (1970). Primary 16A60.
 Key words and phrases. Orders, tiled orders, discrete valuation ring, Dedekind domain, global dimension.
 (1) This paper contains a part of author's Ph.D. thesis written at Comell University under the direction of Professor Alex Rosenberg, whom the author wishes to thank for his help and encouragement.

