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The problems on global dissipativity and global exponential dissipativity are investigated
for uncertain discrete-time neural networks with time-varying delays and general activation
functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing linear
matrix inequality technique, several new delay-dependent criteria for checking the global
dissipativity and global exponential dissipativity of the addressed neural networks are established
in linear matrix inequality (LMI), which can be checked numerically using the effective LMI
toolbox in MATLAB. Illustrated examples are given to show the effectiveness of the proposed
criteria. It is noteworthy that because neither model transformation nor free-weighting matrices
are employed to deal with cross terms in the derivation of the dissipativity criteria, the obtained
results are less conservative and more computationally efficient.

1. Introduction

In the past few decades, delayed neural networks have found successful applications in
many areas such as signal processing, pattern recognition, associative memories, parallel
computation, and optimization solvers [1]. In such applications, the qualitative analysis of
the dynamical behaviors is a necessary step for the practical design of neural networks [2].
Many important results on the dynamical behaviors have been reported for delayed neural
networks; see [1–16] and the references therein for some recent publications.

It should be pointed out that all of the abovementioned literatures on the dynamical
behaviors of delayed neural networks are concerned with continuous-time case. However,
when implementing the continuous-time delayed neural network for computer simulation,
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it becomes essential to formulate a discrete-time system that is an analogue of the continuous-
time delayed neural network. To some extent, the discrete-time analogue inherits the
dynamical characteristics of the continuous-time delayed neural network under mild or no
restriction on the discretization step-size, and also remains some functional similarity [17].
Unfortunately, as pointed out in [18], the discretization cannot preserve the dynamics of
the continuous-time counterpart even for a small sampling period, and therefore there is a
crucial need to study the dynamics of discrete-time neural networks. Recently, the dynamics
analysis problem for discrete-time delayed neural networks and discrete-time systems with
time-varying state delay has been extensively studied; see [17–21] and references therein.

It is well known that the stability problem is central to the analysis of a dynamic
system where various types of stability of an equilibrium point have captured the attention
of researchers. Nevertheless, from a practical point of view, it is not always the case that
every neural network has its orbits approach a single equilibrium point. It is possible that
there is no equilibrium point in some situations. Therefore, the concept on dissipativity
has been introduced [22]. As pointed out in [23], the dissipativity is also an important
concept in dynamical neural networks. The concept of dissipativity in dynamical systems
is a more general concept and it has found applications in the areas such as stability theory,
chaos and synchronization theory, system norm estimation, and robust control [23]. Some
sufficient conditions checking the dissipativity for delayed neural networks and nonlinear
delay systems have been derived, for example, see [23–33] and references therein. In [23, 24],
authors analyzed the dissipativity of neural network with constant delays, and derived some
sufficient conditions for the global dissipativity of neural network with constant delays. In
[25, 26], authors considered the global dissipativity and global robust dissipativity for neural
network with both time-varying delays and unbounded distributed delays; several sufficient
conditions for checking the global dissipativity and global robust dissipativity were obtained.
In [27, 28], by using linear matrix inequality technique, authors investigated the global
dissipativity of neural network with both discrete time-varying delays and distributed time-
varying delays. In [29], authors developed dissipativity notions for nonnegative dynamical
systems with respect to linear and nonlinear storage functions and linear supply rates, and
obtained a key result on linearization of nonnegative dissipative dynamical systems. In [30],
the uniform dissipativity of a class of nonautonomous neural networks with time-varying
delays was investigated by employing M-matrix and the techniques of inequality. In [31–
33], the dissipativity of a class of nonlinear delay systems was considered; some sufficient
conditions for checking the dissipativity were given. However, all of the abovementioned
literatures on the dissipativity for delayed neural networks and nonlinear delay systems
are concerned with continuous-time case. To the best of our knowledge, few authors have
considered the problem on the dissipativity of uncertain discrete-time neural networks with
time-varying delays. Therefore, the study on the dissipativity of uncertain discrete-time
neural networks is not only important but also necessary.

Motivated by the above discussions, the objective of this paper is to study the problem
on global dissipativity and global exponential dissipativity for uncertain discrete-time neural
networks. By employing appropriate Lyapunov-Krasovskii functionals and LMI technique,
we obtain several new sufficient conditions for checking the global dissipativity and global
exponential dissipativity of the addressed neural networks.

Notations. The notations are quite standard. Throughout this paper, I represents the unitary
matrix with appropriate dimensions; N stands for the set of nonnegative integers; R

n and
R

n×m denote, respectively, the n-dimensional Euclidean space and the set of all n × m real
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matrices. The superscript “T” denotes matrix transposition and the asterisk “∗” denotes the
elements below the main diagonal of a symmetric block matrix. |A| denotes the absolute-
value matrix given by |A| = (|aij |)n×n; the notation X ≥ Y (resp., X > Y ) means that X and
Y are symmetric matrices, and that X − Y is positive semidefinite (resp., positive definite).
‖ · ‖ is the Euclidean norm in R

n. For a positive constant a, [a] denotes the integer part of a.
For integers a, b with a < b, N[a, b] denotes the discrete interval given by N[a, b] = {a, a +

1, . . . , b − 1, b}. C(N[−τ, 0],Rn) denotes the set of all functions φ: N[−τ, 0] → R
n. Matrices, if

not explicitly specified, are assumed to have compatible dimensions.

2. Model Description and Preliminaries

In this paper, we consider the following discrete-time neural network model

x(k + 1) = Cx(k) +Ag(x(k)) + Bg(x(k − τ(k))) + u (2.1)

for k ∈ N, where x(k) = (x1(k), x2(k), . . . , xn(k))
T ∈ R

n, xi(k) is the state of the ith neuron at
time k; g(x(k)) = (g1(x1(k)), g2(x2(k)), . . . , gn(xn(k)))

T ∈ R
n, gj(xj(k)) denotes the activation

function of the jth neuron at time k; u = (u1, u2, . . . , un)
T is the input vector; the positive

integer τ(k) corresponds to the transmission delay and satisfies τ ≤ τ(k) ≤ τ (τ ≥ 0 and τ ≥ 0
are known integers); C = diag{c1, c2, . . . , cn}, where ci (0 ≤ ci < 1) describes the rate with
which the ith neuron will reset its potential to the resting state in isolation when disconnected
from the networks and external inputs; A = (aij)n×n is the connection weight matrix; B =

(bij)n×n is the delayed connection weight matrix.
The initial condition associated with model (2.1) is given by

x(s) = ϕ(s), s ∈ N[−τ, 0]. (2.2)

Throughout this paper, we make the following assumption [6].

(H) For any j ∈ {1, 2, . . . , n}, gj(0) = 0 and there exist constants G−
j and G+

j such that

G−
j ≤

gj(α1) − gj(α2)

α1 − α2
≤ G+

j , ∀α1, α2 ∈ R, α1 /=α2. (2.3)

Similar to [23], we also give the following definitions for discrete-time neural networks
(2.1).

Definition 2.1. Discrete-time neural networks (2.1) are said to be globally dissipative if there
exists a compact set S ⊆ R

n, such that for all x0 ∈ R
n, ∃ positive integer K(x0) > 0, when

k ≥ k0 + K(x0), x(k, k0, x0) ⊆ S, where x(k, k0, x0) denotes the solution of (2.1) from initial
state x0 and initial time k0. In this case, S is called a globally attractive set. A set S is called a
positive invariant if ∀x0 ∈ S implies x(k, k0, x0) ⊆ S for k ≥ k0.

Definition 2.2. Let S be a globally attractive set of discrete-time neural networks (2.1).
Discrete-time neural networks (2.1) are said to be globally exponentially dissipative if there
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exists a compact set S∗ ⊃ S in R
n such that ∀x0 ∈ R

n \ S∗, there exist constantsM(x0) > 0 and
0 < β < 1 such that

inf
x∈Rn\S∗

{‖x(k, k0, x0) − x̃‖ : x̃ ∈ S∗} ≤ M(x0)β
k−k0 . (2.4)

Set S∗ is called globally exponentially attractive set, where x ∈ R
n \ S∗ means x ∈ R

n but
x /∈S∗.

To prove our results, the following lemmas are necessary.

Lemma 2.3 (see [34]). Given constant matrices P , Q, and R, where PT = P , QT = Q, then

[
P R

RT −Q

]
< 0 (2.5)

is equivalent to the following conditions:

Q > 0, P + RQ−1RT < 0. (2.6)

Lemma 2.4 (see [35, 36]). Given matrices P , Q, and R with PT = P , then

P +QF(k)R + RTFT (k)QT < 0 (2.7)

holds for all F(k) satisfying FT (k)F(k) ≤ I if and only if there exists a scalar ε > 0 such that

P + ε−1QQT + εRRT < 0. (2.8)

3. Main Results

In this section, we shall establish our main criteria based on the LMI approach. For
presentation convenience, in the following, we denote

G1=diag
{
G−

1 , G
−
2 , . . . , G

−
n

}
, G2=diag

{
G+

1 , G
+
2 , . . . , G

+
n

}
, G3=diag

{
G−

1G
+
1 , G

−
2G

+
2 , . . . , G

−
nG

+
n

}
,

G4 = diag

{
G−

1 +G+
1

2
,
G−

2 +G+
2

2
, . . . ,

G−
n +G+

n

2

}
, δ =

[
τ + τ

2

]
.

(3.1)
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Theorem 3.1. Suppose that (H) holds. If there exist nine symmetric positive definite matrices P > 0,
W > 0, R > 0, Qi > 0 (i = 1, 2, 3, 4, 5, 6), and four positive diagonal matrices Di > 0 (i = 1, 2),
Hi > 0 (i = 1, 2), such that the following LMI holds:

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 Π14 Π15 0 0

∗ Π22 Π23 Π24 0 0 0

∗ ∗ Π33 Π34 0 Π36 0

∗ ∗ ∗ Π44 0 0 0

∗ ∗ ∗ ∗ Π55 0 Π57

∗ ∗ ∗ ∗ ∗ Π66 0

∗ ∗ ∗ ∗ ∗ ∗ Π77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.2)

whereΠ11 = CTPC − P +Q1 + (1+ τ − τ)(Q2 − 2G1D1 + 2G2D2)−G3H1 + (C − I)T (Q4 +Q6)(C −

I) − (1/δ2)Q4 + Q5 +W , Π12 = CTPA + (1 + τ − τ)(D1 − D2) + G4H1 + (C − I)T (Q4 + Q6)A,
Π13 = CTPB + (C − I)T (Q4 + Q6)B, Π14 = CTP + (C − I)T (Q4 + Q6), Π15 = (1/δ2)Q4, Π22 =

(1 + τ − τ)Q3 − H1 + AT (P + Q4 + Q6)A, Π23 = AT (P + Q4 + Q6)B, Π24 = AT (P + Q4 + Q6),
Π33 = −Q3 − H2 + BT (P + Q4 + Q6)B, Π34 = BT (P + Q4 + Q6), Π36 = −D1 + D2 + G4H2,
Π44 = P + Q4 + Q6 − R, Π55 = −Q1 − (1/δ2)Q4 − (1/(τ − δ)2)Q6, Π57 = (1/(τ − δ)2)Q6,
Π66 = −Q2 + 2G1D1 − 2G2D2 −G3H2, and Π77 = −Q5 − (1/(τ − δ)2)Q6, then discrete-time neural
network (2.1) is globally dissipative, and

S =

⎧
⎨
⎩x : ‖x‖ ≤

(
uTRu

λmin(W)

)1/2
⎫
⎬
⎭ (3.3)

is a positive invariant and globally attractive set.

Proof. For positive diagonal matrices D1 > 0 and D2 > 0, we know from assumption (H) that

(
g(x(k)) −G1x(k)

)T
D1x(k) ≥ 0,

(
G2x(k) − g(x(k))

)T
D2x(k) ≥ 0. (3.4)

Defining η(k) = x(k + 1) − x(k), we consider the following Lyapunov-Krasovskii
functional candidate for model (2.1) as

V (k, x(k)) =
8∑

i=1

Vi(k, x(k)), (3.5)
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where

V1(k, x(k)) = xT (k)Px(k),

V2(k, x(k)) =
k−1∑

i=k−δ

xT (i)Q1x(i),

V3(k, x(k)) =
k−1∑

i=k−τ(k)

xT (i)Q2x(i) +
k−τ∑

l=k−τ+1

k−1∑

i=l

xT (i)Q2x(i),

V4(k, x(k)) =
k−1∑

i=k−τ(k)

gT (x(i))Q3g(x(i)) +
k−τ∑

l=k−τ+1

k−1∑

i=l

gT (x(i))Q3g(x(i)),

V5(k, x(k)) = 2
k−1∑

i=k−τ(k)

(
g(x(i)) −G1x(i)

)T
D1x(i) + 2

k−τ∑

l=k−τ+1

k−1∑

i=l

(
g(x(i)) −G1x(i)

)T
D1x(i),

V6(k, x(k)) = 2
k−1∑

i=k−τ(k)

(
G2x(i) − g(x(i))

)T
D2x(i) + 2

k−τ∑

l=k−τ+1

k−1∑

i=l

(
G2x(i) − g(x(i))

)T
D2x(i),

V7(k, x(k)) =
1

δ

−1∑

l=−δ

k−1∑

i=k+l

ηT (i)Q4η(i),

V8(k, x(k)) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k−1∑

i=k−τ

xT (i)Q5x(i) +
1

τ − δ

k−τ−1∑

l=k−δ

k−1∑

i=l

ηT (i)Q6η(i), τ ≤ τ(k) ≤ δ,

k−1∑

i=k−τ

xT (i)Q5x(i) +
1

τ − δ

k−δ−1∑

l=k−τ

k−1∑

i=l

ηT (i)Q6η(i), δ < τ(k) ≤ τ.

(3.6)

Calculating the difference of Vi(k) (i = 1, 2, 3) along the positive half trajectory of (2.1), we
obtain

ΔV1(k, x(k)) = xT (k)
(
CTPC − P

)
x(k) + 2xT (k)CTPAg(x(k))

+ 2xT (k)CTPBg(x(k − τ(k))) + 2xT (k)CTPu

+ gT (x(k))ATPAg(x(k)) + 2gT (x(k))ATPBg(x(k − τ(k)))

+ 2gT (x(k))ATPu + gT (x(k − τ(k)))BTPBg(x(k − τ(k)))

+ 2gT (x(k − τ(k)))BTPu + uTPu,

(3.7)

ΔV2(k, x(k)) = xT (k)Q1x(k) − xT (k − δ)Q1x(k − δ), (3.8)
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ΔV3(k, x(k)) =
k∑

i=k+1−τ(k+1)

xT (i)Q2x(i) −
k−1∑

i=k−τ(k)

xT (i)Q2x(i)

+
k+1−τ∑

l=k−τ+2

k∑

i=l

xT (i)Q2x(i) −
k−τ∑

l=k−τ+1

k−1∑

i=l

xT (i)Q2x(i)

=
k−τ∑

i=k+1−τ(k+1)

xT (i)Q2x(i)+
k−1∑

i=k−τ+1

xT (i)Q2x(i)+x
T (k)Q2x(k)−

k−1∑

i=k−τ(k)+1

xT (i)Q2x(i)

− xT (k − τ(k))Q2x(k − τ(k)) + (τ − τ)xT (k)Q2x(k) −
k−τ∑

l=k−τ+1

xT (l)Q2x(l)

≤ (1 + τ − τ)xT (k)Q2x(k) − xT (k − τ(k))Q2x(k − τ(k)).

(3.9)

Similarly, one has

ΔV4(k, x(k)) ≤ (1 + τ − τ)gT (x(k))Q3g(x(k)) − gT (x(k − τ(k)))Q3g(x(k − τ(k))),

ΔV5(k, x(k)) ≤ 2(1 + τ − τ)
(
g(x(k)) −G1x(k)

)T
D1x(k)

− 2
(
g(x(k − τ(k))) −G1x(k − τ(k))

)T
D1x(k − τ(k)),

ΔV6(k, x(k)) ≤ 2(1 + τ − τ)
(
G2x(k) − g(x(k))

)T
D2x(k)

− 2
(
G2x(k − τ(k)) − g(x(k − τ(k)))

)T
D2x(k − τ(k)),

ΔV7(k, x(k)) = ηT (k)Q4η(k) −
1

δ

k−1∑

i=k−δ

ηT (i)Q4η(i)

≤ ηT (k)Q4η(k) −
1

δ2

k−1∑

i=k−δ

ηT (i)Q4

k−1∑

i=k−δ

η(i)

= xT (k)(C − I)TQ4(C − I)x(k) + 2xT (k)(C − I)TQ4Ag(x(k))

+ 2xT (k)(C − I)TQ4Bg(x(k − τ(k))) + 2xT (k)(C − I)TQ4u

+ gT (x(k))ATQ4Ag(x(k)) + 2gT (x(k))ATQ4Bg(x(k − τ(k)))

+ 2gT (x(k))ATQ4u + gT (x(k − τ(k)))BTQ4Bg(x(k − τ(k)))

+ 2gT (x(k − τ(k)))BTQ4u + uTQ4 +
1

δ2

[
x(k)

x(k − δ)

]T[
−Q4 Q4

Q4 −Q4

][
x(k)

x(k − δ)

]
.

(3.10)
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When τ ≤ τ(k) ≤ δ,

ΔV8(k, x(k)) = xT (k)Q5x(k) − xT (k − τ)Q5x(k − τ)

+
δ − τ

τ − δ
ηT (k)Q6η(k) −

1

τ − δ

k−τ−1∑

i=k−δ

ηT (i)Q6η(i)

≤ xT (k)Q5x(k) − xT (k − τ)Q5x(k − τ)

+ ηT (k)Q6η(k) −
1

(τ − δ)(δ − τ)

k−τ−1∑

i=k−δ

ηT (i)Q6

k−τ−1∑

i=k−δ

η(i)

≤ −xT (k − τ)Q5x(k − τ) + xT (k)
(
(C − I)TQ6(C − I) +Q5

)
x(k)

+ 2xT (k)(C − I)TQ6Ag(x(k)) + 2xT (k)(C − I)TQ6Bg(x(k − τ(k)))

+ 2xT (k)(C − I)TQ6u + gT (x(k))ATQ6Ag(x(k))

+ 2gT (x(k))ATQ6Bg(x(k − τ(k))) + 2gT (x(k))ATQ6u

+ gT (x(k − τ(k)))BTQ6Bg(x(k − τ(k)))

+ 2gT (x(k − τ(k)))BTQ6u + uTQ6u

+
1

(τ − δ)2

[
x(k − τ)

x(k − δ)

]T[
−Q6 Q6

Q6 −Q6

][
x(k − τ)

x(k − δ)

]
.

(3.11)

When δ < τ(k) ≤ τ ,

ΔV8(k, x(k)) = xT (k)Q5x(k) − xT (k − τ)Q5x(k − τ)

+ ηT (k)Q6η(k) −
1

τ − δ

k−δ−1∑

i=k−τ

ηT (i)Q6η(i)

≤ xT (k)Q5x(k) − xT (k − τ)Q5x(k − τ)

+ ηT (k)Q6η(k) −
1

(τ − δ)2

k−δ−1∑

i=k−τ

ηT (i)Q6

k−δ−1∑

i=k−τ

η(i)

= −xT (k − τ)Q5x(k − τ) + xT (k)
(
(C − I)TQ6(C − I) +Q5

)
x(k)

+ 2xT (k)(C − I)TQ6Ag(x(k)) + 2xT (k)(C − I)TQ6Bg(x(k − τ(k)))

+ 2xT (k)(C − I)TQ6u + gT (x(k))ATQ6Ag(x(k))

+ 2gT (x(k))ATQ6Bg(x(k − τ(k))) + 2gT (x(k))ATQ6u

+ gT (x(k − τ(k)))BTQ6Bg(x(k − τ(k)))
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+ 2gT (x(k − τ(k)))BTQ6u + uTQ6u

+
1

(τ − δ)2

[
x(k − τ)

x(k − δ)

]T[
−Q6 Q6

Q6 −Q6

][
x(k − τ)

x(k − δ)

]
.

(3.12)

For positive diagonal matrices H1 > 0 and H2 > 0, we can get from assumption (H)

that [6]

0 ≤

[
x(k)

g(x(k))

]T[
−G3H1 G4H1

G4H1 −H1

][
x(k)

g(x(k))

]
, (3.13)

0 ≤

[
x(k − τ(k))

g(x(k − τ(k)))

]T[
−G3H2 G4H2

G4H2 −H2

][
x(k − τ(k))

g(x(k − τ(k)))

]
. (3.14)

Denoting α(k) = (xT (k), gT (x(k)), gT (x(k − τ(k))), uT , xT (k − δ), xT (k − τ(k)), ξT (k))T ,
where

ξ(k) =

⎧
⎨
⎩
x(k − τ), τ ≤ τ(k) ≤ δ,

x(k − τ), δ < τ(k) ≤ τ,
(3.15)

it follows from (3.7) to (3.14) that

ΔV (k, x(k)) ≤ xT (k)
(
CTPC − P +Q1 + (1 + τ − τ)(Q2 − 2G1D1 + 2G2D2) −G3H1

+(C − I)T (Q4 +Q6)(C − I) −
1

δ2
Q4 +Q5

)
x(k)

+ 2xT (k)
(
CTPA + (1 + τ − τ)(D1 −D2) +G4H1 + (C − I)T (Q4 +Q6)A

)
g(x(k))

+ 2xT (k)
(
CTPB + (C − I)T (Q4 +Q6)B

)
g(x(k − τ(k)))

+ 2xT (k)
(
CTP + (C − I)T (Q4 +Q6)

)
u + 2

1

δ2
xT (k)Q4x(k − δ)

+ gT (x(k))
(
ATPA + (1 + τ − τ)Q3 −H1 +AT (Q4 +Q6)A

)
g(x(k))

+ 2gT (x(k))
(
ATPB +AT (Q4 +Q6)B

)
g(x(k − τ(k)))

+ 2gT (x(k))
(
ATP +AT (Q4 +Q6)

)
u

+ gT (x(k − τ(k)))
(
BTPB −Q3 −H2 + BT (Q4 +Q6)B

)
g(x(k − τ(k)))
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+ 2gT (x(k − τ(k)))
(
BTP + BT (Q4 +Q6)

)
u

+ 2gT (x(k − τ(k)))(−D1 +D2 +G4H2)x(k − τ(k))

+ uT (P +Q4 +Q6)u + xT (k − δ)

(
−Q1 −

1

δ2
Q4 −

1

(τ − δ)2
Q6

)
x(k − δ)

+ 2
1

(τ − δ)2
xT (k − δ)Q6ξ(k)

+ xT (k − τ(k))(−Q2 + 2G1D1 − 2G2D2 −G3H2)x(k − τ(k))

+ xT (k − τ)

(
−Q5 −

1

(τ − δ)2
Q6

)
x(k − τ)

= −xT (k)Wx(k) + uTRu + αT (k)Πα(k).

(3.16)

From condition (3.2) and inequality (3.16), we get

ΔV (k, x(k)) ≤ −xT (k)Wx(k) + uTRu ≤ −λmin(W)‖x‖2 + uTRu < 0, (3.17)

when x ∈ R
n \ S, that is, x /∈S. Therefore, discrete-time neural network (2.1) is a globally

dissipative system, and the set S is a positive invariant and globally attractive set as LMI
(3.2) holds. The proof is completed.

Next, we are now in a position to discuss the global exponential dissipativity of
discrete-time neural network (2.1) as follows.

Theorem 3.2. Under the conditions of Theorem 3.1, neural network (2.1) is globally exponentially
dissipative, and

S =

⎧
⎨
⎩x : ‖x‖ ≤

(
uTRu

λmin(W)

)1/2
⎫
⎬
⎭ (3.18)

is a positive invariant and globally attractive set.

Proof. When x ∈ R
n \ S, that is, x /∈S, we know from (3.16) that

ΔV (k, x(k)) ≤ −λmin(−Π)‖x(k)‖2. (3.19)

From the definition of V (k) in (3.5), it is easy to verify that

V (k) ≤ λmax(P)‖x(k)‖
2 + ρ

k−1∑

i=k−τ

‖x(i)‖2, (3.20)
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where

ρ = λmax(Q1) + (1 + τ − τ)(λmax(Q2) + λmax(Q3)λmax(L) + 2λmax(LD1)

+2λmax(|G1D1|) + 2λmax(LD2) + 2λmax(|G2D2|))

+
4τ

δ
λmax(Q4) + λmax(Q5) + 4(τ − τ)λmax(Q6).

(3.21)

For any scalar µ > 1, it follows from (3.19) and (3.20) that

µj+1V
(
j + 1

)
− µjV

(
j
)
= µj+1ΔV

(
j
)
+ µj(µ − 1

)
V
(
j
)

≤
[
µj(µ − 1

)
λmax(P) − µj+1λmin(−Π)

]∥∥x(j)
∥∥2

+ ρµj(µ − 1
) j−1∑

i=j−τ

‖x(i)‖2.

(3.22)

Summing up both sides of (3.22) from 0 to k − 1 with respect to j, we have

µkV (k) − V (0) ≤
[(
µ − 1

)
λmax(P) − µλmin(−Π)

]k−1∑

j=0

µj
∥∥x

(
j
)∥∥2

+ ρ
(
µ − 1

)k−1∑

j=0

j−1∑

i=j−τ

µj‖x(i)‖2.

(3.23)

It is easy to compute that

k−1∑

j=0

j−1∑

i=j−τ

µj‖x(i)‖2 ≤

⎛
⎝

−1∑

i=−τ

i+τ∑

j=0

+
k−1−τ∑

i=0

i+τ∑

j=i+1

+
k−1∑

i=k−τ

k−1∑

j=i+1

⎞
⎠µj‖x(i)‖2

≤ τµτ sup
s∈N[−τ,0]

‖x(s)‖2 + τµτ
k−1∑

i=0

µi‖x(i)‖2.

(3.24)

From (3.20), we obtain

V (0) ≤
(
λmax(P) + ρτ

)
sup

s∈N[−τ,0]

‖x(s)‖2. (3.25)

It follows from (3.23)–(3.25) that

µkV (k) ≤ L1

(
µ
)

sup
s∈N[−τ,0]

‖x(s)‖2 + L2

(
µ
) k∑

j=0

µi‖x(i)‖2, (3.26)
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where

L1

(
µ
)
= λmax(P) + ρτ + ρ

(
µ − 1

)
τµτ ,

L2

(
µ
)
=

(
µ − 1

)
λmax(P) − µλmin(−Π) + ρ

(
µ − 1

)
τµτ .

(3.27)

Since L2(1) < 0, by the continuity of functions L2(µ), we can choose a scalar γ > 1 such that
L2(γ) ≤ 0. Obviously, L1(γ) > 0. From (3.26), we get

γkV (k) ≤ L1

(
γ
)

sup
s∈N[−τ,0]

‖x(s)‖2. (3.28)

From the definition of V (k) in (3.5), we have

V (k) ≥ λmin(P)‖x(k)‖
2. (3.29)

Let M =
√
L1(γ)/λmin(P), β =

√
1/γ , then M > 0, 0 < β < 1. It follows from (3.28) and (3.29)

that

‖x(k)‖ ≤ Mβk sup
s∈N[−τ,0]

‖x(s)‖ (3.30)

for all k ∈ N, which means that discrete-time neural network (2.1) is globally exponentially
dissipative, and the set S is a positive invariant and globally attractive set as LMI (3.2) holds.
The proof is completed.

Remark 3.3. In the study on dissipativity of neural networks, the assumption (H) of this paper
is as same as that in [28], the constants G−

j and G+
j (j = 1, 2, . . . , n) in assumption (H) of this

paper are allowed to be positive, negative, or zero. Hence, assumption (H), first proposed by
Liu et al. in [6], is weaker than the assumption in [23–27, 30].

Remark 3.4. The idea of constructing Lyapunov-Krasovskii functional (3.5) is that we divide
the delay interval [τ, τ] into two subintervals [τ, δ] and [δ, τ], thus the proposed Lyapunov-
Krasovskii functional is different when the time-delay τ(k) belongs to different subinterval.
The main advantage of such Lyapunov-Krasovskii functional is that it makes full use of the
information on the considered time-delay τ(k).

Now, let us consider the case when the parameter uncertainties appear in the discrete-
time neural networks with time-varying delays. In this case, model (2.1) can be further
generalized to the following one:

x(k + 1) = (C + ΔC(k))x(k) + (A + ΔA(k))g(x(k)) + (B + ΔB(k))g(x(k − τ(k))) + u,
(3.31)
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whereC,A, B are known real constant matrices, and the time-varyingmatricesΔC(k),ΔA(k)
andΔB(k) represent the time-varying parameter uncertainties that are assumed to satisfy the
following admissible condition:

[
ΔC(k) ΔA(k) ΔB(k)

]
= MF(k)

[
N1 N2 N3

]
, (3.32)

where M and Ni (i = 1, 2, 3) are known real constant matrices, and F(k) is the unknown
time-varying matrix-valued function subject to the following condition:

FT (k)F(k) ≤ I. (3.33)

For model (3.31), we have the following result readily.

Theorem 3.5. Suppose that (H) holds. If there exist nine symmetric positive definite matrices P > 0,
W > 0, R > 0, Qi > 0 (i = 1, 2, 3, 4, 5, 6), and four positive diagonal matrices Di > 0 (i = 1, 2),
Hi > 0 (i = 1, 2), such that the following LMI holds:

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ1 Γ2 Γ3 Γ4 0 εΓ5

∗ −P 0 0 PM 0

∗ ∗ −Q4 0 Q4M 0

∗ ∗ ∗ −Q6 Q6M 0

∗ ∗ ∗ ∗ −εI 0

∗ ∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.34)

where

Γ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 0 0 Ω15 0 0

∗ Ω22 0 0 0 0 0

∗ ∗ Ω33 0 0 Ω36 0

∗ ∗ ∗ Ω44 0 0 0

∗ ∗ ∗ ∗ Ω55 0 Ω57

∗ ∗ ∗ ∗ ∗ Ω66 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Γ2 =
[
PC PA PB P 0 0 0

]T
,

Γ3=
[
Q4(C − I) Q4A Q4B Q4 0 0 0

]T
,

Γ4 =
[
Q6(C − I) Q6A Q6B Q6 0 0 0

]
,

Γ5 =
[
N1 N2 N3 0 0 0 0

]
,

(3.35)
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and Ω11 = −P + Q1 + (1 + τ − τ)(Q2 − 2G1D1 + 2G2D2) − G3H1 − (1/δ2)Q4 + Q5 + W , Ω12 =

(1 + τ − τ)(D1 − D2) + G4H1, Ω15 = (1/δ2)Q4, Ω22 = (1 + τ − τ)Q3 − H1, Ω33 = −Q3 − H2,
Ω36 = −D1+D2+G4H2,Ω44 = −R,Ω55 = −Q1−(1/δ

2)Q4−(1/(τ−δ)
2)Q6,Ω57 = (1/(τ−δ)2)Q6,

Ω66 = −Q2+2G1D1−2G2D2−G3H2, andΩ77 = −Q5−(1/(τ −δ)
2)Q6, then uncertain discrete-time

neural network (3.31) is globally dissipative and globally exponentially dissipative, and

S =

⎧
⎨
⎩x : ‖x‖ ≤

(
uTRu

λmin(W)

)1/2
⎫
⎬
⎭ (3.36)

is a positive invariant and globally attractive set.

Proof. By Lemma 2.3, we know that LMI (3.34) is equivalent to the following inequality:

⎡
⎢⎢⎢⎢⎢⎣

Γ1 Γ2 Γ3 Γ4

∗ −P 0 0

∗ ∗ −Q4 0

∗ ∗ ∗ −Q6

⎤
⎥⎥⎥⎥⎥⎦
+ ε−1

⎡
⎢⎢⎢⎢⎢⎣

0

PM

Q4M

Q6M

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0

PM

Q4M

Q6M

⎤
⎥⎥⎥⎥⎥⎦

T

+ ε

⎡
⎢⎢⎢⎢⎢⎣

Γ5

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Γ5

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

T

< 0. (3.37)

From Lemma 2.4, we know that (3.37) is equivalent to the following inequality:

⎡
⎢⎢⎢⎢⎢⎣

Γ1 Γ2 Γ3 Γ4

∗ −P 0 0

∗ ∗ −Q4 0

∗ ∗ ∗ −Q6

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

0

PM

Q4M

Q6M

⎤
⎥⎥⎥⎥⎥⎦
F(k)

⎡
⎢⎢⎢⎢⎢⎣

Γ5

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

T

+

⎡
⎢⎢⎢⎢⎢⎣

Γ5

0

0

0

⎤
⎥⎥⎥⎥⎥⎦
FT (k)

⎡
⎢⎢⎢⎢⎢⎣

0

PM

Q4M

Q6M

⎤
⎥⎥⎥⎥⎥⎦

T

< 0, (3.38)

that is

⎡
⎢⎢⎢⎢⎢⎣

Γ1 Γ2 + Γ5F
T (k)MTP Γ3 + Γ5F

T (k)MTQ4 Γ4 + Γ5F
T (k)MTQ6

∗ −P 0 0

∗ ∗ −Q4 0

∗ ∗ ∗ −Q6

⎤
⎥⎥⎥⎥⎥⎦

< 0. (3.39)

LetΦ = Γ2 +Γ5F
T (k)MTP ,Ψ = Γ3 +Γ5F

T (k)MTQ4, Υ = Γ4 +Γ5F
T (k)MTQ6. As an application

of Lemma 2.3, we know that (3.39) is equivalent to the following inequality:

Γ1 + ΦP−1ΦT + ΨQ−1
4 ΨT + ΥQ−1

6 ΥT < 0. (3.40)
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By simple computation and noting that [ΔC(k) ΔA(k) ΔB(k)] = MF(k)[N1 N2 N3],
we have

Φ =
[
P(C + ΔC) P(A + ΔA) P(B + ΔB) P 0 0 0

]T
,

Ψ =
[
Q4(C + ΔC − I) Q4(A + ΔA) Q4(B + ΔB) Q4 0 0 0

]T
,

Υ =
[
Q6(C + ΔC − I) Q6(A + ΔA) Q6(B + ΔB) Q6 0 0 0

]T
.

(3.41)

Therefore, inequality (3.40) is just the same as inequality (3.2)when we use C +ΔC, A +ΔA,
B + ΔB to replace C, A, B of inequality (3.2), respectively. From Theorems 3.1 and 3.2, we
know that uncertain discrete-time neural network (3.31) is globally dissipative and globally
exponentially dissipative, and

S =

⎧
⎨
⎩x : ‖x‖ ≤

(
uTRu

λmin(W)

)1/2
⎫
⎬
⎭ (3.42)

is a positive invariant and globally attractive set. The proof is then completed.

4. Examples

Example 4.1. Consider a discrete-time neural network (2.1)with

C =

[
0.04 0

0 0.01

]
, A =

[
0.01 0.08

−0.05 0.02

]
, B =

[
−0.05 0.01

0.02 0.07

]
, u =

[
−0.21

0.14

]
,

g1(x) = tanh(0.7x) − 0.1 sinx, g2(x) = tanh(0.4x) + 0.2 cosx, τ(k) = 7 − 2 sin

(
kπ

2

)
.

(4.1)

It is easy to check that assumption (H) is satisfied, and G−
1 = −0.1, G+

1 = 0.8, G−
2 = −0.2,

G+
2 = 0.6, τ = 5, τ = 9. Thus,

G1 =

[
−0.1 0

0 −0.2

]
, G2 =

[
0.8 0

0 0.6

]
, G3 =

[
−0.08 0

0 −0.12

]
, G4 =

[
0.35 0

0 0.2

]
, δ = 7.

(4.2)
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By the Matlab LMI Control Toolbox, we can find a solution to the LMI in (3.2) as follows:

Q1 =

[
7.1693 −0.0107

−0.0107 7.3526

]
, Q2 =

[
1.5095 −0.0059

−0.0059 1.6330

]
, Q3 =

[
2.2455 0.0336

0.0336 2.7158

]
,

Q4 =

[
2.3895 −0.0065

−0.0065 1.8946

]
, Q5 =

[
7.1927 −0.0108

−0.0108 7.3714

]
, Q6 =

[
2.4575 −0.0064

−0.0064 1.8764

]
,

P =

[
57.3173 −0.0727

−0.0727 57.7631

]
, W =

[
5.0249 −0.0110

−0.0110 5.1411

]
, R =

[
72.2368 0.0445

0.0445 71.4916

]
,

D1 =

[
1.2817 0

0 1.7411

]
, D2 =

[
2.1180 0

0 2.3157

]
,

H1 =

[
19.7946 0

0 23.7062

]
, H2 =

[
9.1110 0

0 10.5938

]
.

(4.3)

Therefore, by Theorem 3.1, we know that model (2.1)with above given parameters is globally
dissipative and globally exponentially dissipative. It is easy to compute that the positive
invariant and global attractive set are S = {x : ‖x‖ ≤ 0.9553}.

The following example is given to illustrate that when the sufficient conditions
ensuring the global dissipativity are not satisfied, the complex dynamics will appear.

Example 4.2. Consider a discrete-time neural network (2.1)with

C =

[
0.12 0

0 0.68

]
, A =

[
16.7 42

5.3 8.4

]
, B =

[
−9.9 −29.7

19.2 −19.7

]
, u =

[
10.9

−3.4

]
,

g1(x) = tanh(0.7x) − 0.1 sinx, g2(x) = tanh(0.4x) + 0.2 cosx, τ(k) = 7 − 2 sin

(
kπ

2

)
.

(4.4)

It is easy to check that the linear matrix inequality (3.2) with Gi (i = 1, 2, 3, 4) and δ of
Example 4.1 has not a feasible solution. Figure 1 depicts the states of the considered neural
network (2.1) with initial conditions x1(s) = 0.5, x2(s) = 0.45, s ∈ N[−9, 0]. One can see from
Figure 1 that the chaos behaviors have appeared for neural network (2.1) with above given
parameters.

5. Conclusions

In this paper, the global dissipativity and global exponential dissipativity have been
investigated for uncertain discrete-time neural networks with time-varying delays and
general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals
and employing linear matrix inequality technique, several new delay-dependent criteria
for checking the global dissipativity and global exponential dissipativity of the addressed
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Figure 1: State responses of x1(k) and x2(k).

neural networks have been derived in terms of LMI, which can be checked numerically
using the effective LMI toolbox in MATLAB. Illustrated examples are also given to show
the effectiveness of the proposed criteria. It is noteworthy that because neither model
transformation nor free weighting matrices are employed to deal with cross terms in the
derivation of the dissipativity criteria, the obtained results are less conservative and more
computationally efficient.
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