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Abstract
This work introduces distance-based criteria for segmenta-
tion of object trajectories. Segmentation leads to simplifica-
tion of the original objects into smaller, less complex prim-
itives that are better suited for storage and retrieval pur-
poses. Previous work on trajectory segmentation attacked
the problem locally, segmenting separately each trajectory of
the database. Therefore, they did not directly optimize the
inter-object separability, which is necessary for mining op-
erations such as searching, clustering, and classification on
large databases. In this paper we analyze the trajectory seg-
mentation problem from a global perspective, utilizing data
aware distance-based optimization techniques, which opti-
mize pairwise distance estimates hence leading to more effi-
cient object pruning. We first derive exact solutions of the
distance-based formulation. Due to the intractable complex-
ity of the exact solution, we present an approximate, greedy
solution that exploits forward searching of locally optimal so-
lutions. Since the greedy solution also imposes a prohibitive
computational cost, we also put forward more lightweight
variance-based segmentation techniques, which intelligently
“relax” the pairwise distance only in the areas that affect
the least the mining operations.

Categories and Subject Descriptors: H.2.8 [Database Man-
agement]: Database Applications, Data Mining

General Terms: Algorithms

Keywords: Data simplification, DNA visualization

1. INTRODUCTION
Despite the dramatic increase in processing power, com-

puter systems and networks are still being challenged by
the ongoing information avalanche, which necessitates the
design of efficient data storage and retrieval mechanisms.
Redundant data need to be discarded and potentially useful
data can be compressed (simplified), in order to facilitate
their efficient visualization, retrieval and processing. In this
work, we are attacking the problem of trajectory segmen-
tation, that is, the simplification of a multi-dimensional se-
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quence of values into smaller and simpler primitives, which
require a significantly reduced memory footprint than the
original object.

Most data-mining tasks operate on a compressed data di-
mension to speed up operations such as clustering, classifica-
tion or Nearest-Neighbor search. The data simplification is
performed in a disciplined way, so as to provide certain qual-
ity guarantees on the data-mining results (such as absence
of misclassification). Those guarantees are typically pro-
vided by exploiting lower [2] or upper bounds [15] on the dis-
tance between the simplified representations. Orthonormal
dimensionality reductions techniques (such as SVD, Fourier
or wavelets) can provide such guarantees.

Therefore, in this work we provide techniques for “simpli-
fication” of trajectories, but in a principled manner. We use
Minimum Bounding Rectangles (MBRs) as the simplified
primitive structures for approximating trajectories, because
of their tight integration with existing multidimensional in-
dexes in commercial DBMS systems (such as R-trees). Addi-
tionally, such a representation has been successfully used in
a variety of applications, ranging from signature compres-
sion of handwritten image data [15], to storage of motion
capture data [4, 11] and even for online anomaly detection
in time-series data [5]. The notions and techniques presented
in this paper are generic enough, and can be adapted into
other approximating functions (such as piecewise linear or
polynomial functions) with minimal or no changes whatso-
ever.

Figure 1 illustrates the concept of segmentation on a 2-
dimensional trajectory, which is approximated with ten Bound-
ing Rectangles.

Trajectory segmentation is important in numerous fields:

1. In spatio-temporal databases the position of moving
objects (such as cars on highways) are registered and
stored on continually evolving databases. The effec-
tive simplification of the object movement can lead to
database compaction, thus enabling the fast and effi-
cient support of applications such as matching of tra-
jectory patterns, prediction of future congested areas,
and so on.

2. In video tracking, motion segmentation [12] is a com-
mon procedure, allowing the effective modeling, char-
acterization and annotation of an object’s movement.

3. Sensor network devices have gained momentum lately
because of their minuscule size which renders them
pervasive in a multitude of applications. Much of the
limited energy of these devices is spent on transmitting
data, therefore significant savings can be induced by
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Figure 1: Segmentation of a 2D trajectory into
bounding rectangles.

utilizing online versions of data segmentation/ simpli-
fication procedures, which can help enhance autonomy
of such devices.

4. In many visualization applications the original data
are so complex, that cannot be easily manipulated
without proper simplification. For example, CAD/CAM
systems (e.g., design of an airplane at Boeing) need to
facilitate the manipulation and visualization of hun-
dreds of thousands of concurrently visible components [1].
Effective visualization of complex scenes can therefore
be achieved only through adaptive object simplifica-
tion, allowing for faster rendering on screen. Later
on, we will depict how the complex DNA structures
can be easily visualized and compared using the MBR
segmentation techniques.

5. Finally, in video games the approximation of complex
objects and their motion trajectories into simplified
rectangles is not uncommon, typically for speeding up
operations such as collision detection [6].

Previous approaches that approximate trajectories with
MBRs, manipulate each trajectory separately from the re-
maining sequences [8], with the objective of minimizing the
overlap between MRBs through volume minimization. How-
ever, most mining operations are based on distance. Con-
sider, for example, the problem of clustering or outlier de-
tection. With this observation in mind, we try to design
segmentation schemes that will approximate as tightly as
possible the inter-trajectory distances. More accurate dis-
tance estimates on the data approximations are bound to
provide higher quality mining results.

Therefore, instead of examining separately each trajec-
tory (like previous techniques do), here we present segmen-
tation techniques that collectively utilize information from
the whole dataset and attempt to satisfy global, distance-
based criteria. The contributions and merits of our work
are summarized below:

1. We instigate a study of the global, distance-based seg-
mentation techniques. We provide a rigorous formu-
lation of the distance-based segmentation problem for
trajectories, and show that the exact solution to the
problem (based on dynamic programming) is compu-
tationally intractable.

2. We present approximate solutions at various compu-
tational granularities. The first is a greedy based ap-
proximation to the optimal, which nonetheless is still
computationally demanding, therefore we also design
a variance based technique with significantly reduced
running cost and only minimal impact on segmenta-
tion quality from a querying perspective.

3. Finally, we demonstrate with an application the use-
fulness of our techniques for visualization of huge and
complex data, such as DNA strings.

2. RELATED WORK
Previous work on trajectory segmentation looked at the

problem mainly from a database organization perspective
and not from a data-mining point of view. For example [13]
examines cost models for evaluating splitting strategies, so
as to answer effectively range queries (i.e., “which trajecto-
ries pass within area X between times t1 and t2”). However,
in this work we are interested in optimizing search opera-
tions, that is, given a query Q identify as quickly as pos-
sible the k most similar trajectories to Q, which reside in
the database. The operations that we consider are heavily
distance based, which explains our rationale for maximiz-
ing the approximated pairwise distances between trajectory
segmentations.

Our work also exhibits similarities with the work of [8],
which considers local criteria such as volume minimization,
for mitigating the effect of MBR overlap in the index or-
ganization. To our best knowledge, this is the first work
that looks at the problem of trajectory segmentation using
global, distance-based criteria.
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Figure 2: Illustration of distance-based segmenta-
tion.

We consider scenarios where the majority of operations in-
volve comparison of trajectories (which is the basis of many
data-mining operations, such as clustering, aggregation, and
so on), therefore, maintaining tight distance approximations



is bound to lead to more accurate results. As already men-
tioned, previous approaches incorporate different optimiza-
tion criteria and are not suitable for distance preservation.
In order to make this observation more lucid, we depict a
brief visual comparison between a volume based segmenta-
tion technique and a distance-based one. Figure 2 depicts
an example where two trajectories are approximated with 5
MBRs. The top figure illustrates the segmentation achieved
by a volume-based optimization criterion, which results in a
total volume consumption of 76.29 and pairwise Euclidean
distance between the resulting MBRs of 103.11. The bot-
tom schematic illustrates the distance-based segmentation,
which (while consuming more space) achieves a tighter dis-
tance estimate of 125.73 (i.e., it is closer to the original dis-
tance between the raw trajectories).

In the sections that follow we introduce global approxima-
tion criteria, based on the total pairwise distances between
trajectories. Due to the high computational overhead of the
exact approach, in Section 4.2 we present a greedy-based
approximation. Section 5 presents an even more lightweight
distance-based segmentation technique that utilizes variance
for identifying fast candidate areas for “relaxing” the pair-
wise distance.

3. NOTATION AND PROBLEM FORMULA-
TION

We assume that we are dealing with 2-dimensional tra-
jectories of objects that move on the plane. Extensions to
higher-order trajectories are straightforward. We proceed
by describing the model and giving some formal definitions.

The input consists of a collection of trajectories T =
{T1, . . . , Tn}. Each trajectory Ti is a mapping Ti : {0, 1, . . . , m−
1} 7→ R, from the set of integers {0, 1, . . . , m − 1} (which
correspond to discrete time steps) to the range R. In our
setting, as we mentioned, usually Ti corresponds to a 2-
dimensional trajectory, so R = R

2, that is, Ti(t) = (xi(t), yi(t)).
Our results hold for any number of dimensions, while we
also consider a discrete range set, single dimensional (R =
{1, 2, . . . , R}) or multidimensional.

A given trajectory Ti can be approximated by a set of
“Minimum Bounding Rectangles” (MBRs) that completely
contain the original multi-dimensional sequence on all di-
mensions (see Figure 1).

For R = R
2, an MBR Bj for a trajectory Ti is repre-

sented as a parallelepiped (rectangle) Bj = [tj

b, t
j

f ]×[`j
x, hj

x]×

[`j
y , hj

y ], and we require that `j
x ≤ xi(t) ≤ hj

x and `j
y ≤

yi(t) ≤ hj
y for all Ti(t) = (xi(t), yi(t)) such that tb ≤ t ≤ tf .

Then a segmentation S(Ti) for a trajectory Ti is defined
as a set of MBRs, S(Ti) = {B1, B2, . . . , Br}, and we require

that t1b = 0, tj

b ≤ tj

f for j = 1, . . . , r, tj+1
b = tj

f + 1 for
j = 1, . . . , r − 1, and tr

f = m − 1.
For a segmentation S(Ti) of a trajectory we define P (S(Ti), t)

as the projection of the MBR Bj ∈ S(Ti), for which tj

b ≤

t ≤ tj
f , at time t:

P (S(Ti), t) = [`j
x, hj

x] × [`j
y , hj

y ],

where tj

b ≤ t ≤ tj

f . The area of the projection at time t is

Area(P (S(Ti), t)) = (hj
x − `j

x)(hj
y − `j

y).

The volume of a segmentation is

V (S(Ti)) =
m−1
X

t=0

Area(P (S(Ti), t)).

The distance between two points xi, xj ∈ R
2 is their Eu-

clidean distance:

d(xi, xj) = ‖xi − xj‖2,

but one can consider any other metric. For example, when
we consider trajectories that take values in the discrete range
R = {1, 2, . . . , R} we use as distance the function d(xi, xj) =
|xi − xj |. We also define the distance between two segmen-
tations at time t as the distance between the rectangles at
time t. Formally:

d(S(Ti), S(Tj), t) = min
xi∈P (S(Ti),t)
xj∈P (S(Tj),t)

d(xi,xj).

Finally, the distance between two segmentations is the sum
of the distances between them at every time instant:

d(S(Ti), S(Tj)) =
m−1
X

t=0

d(S(Ti), S(Tj), t).

The distance between the trajectory MBRs is a lower bound
(see Figure 3) of the original distance between the raw data,
which is an essential property for guaranteeing correctness
of results for most mining tasks (such as kNN search).

Trajectory distance = 330.5382

MBR distance = 153.424

Trajectory A 

Trajectory B 

Figure 3: Top: Distance between trajectories.
Bottom : Distance between their respective MBRs
(shown in 1D for clarity).

One can define a variety of segmentation problems de-
pending on the function to be optimized. Given a function f
that takes as input a segmentation for each trajectory and
returns the “cost” of the segmentation (for a minimization
problem) the corresponding segmentation problem is posed
as follows. Find a segmentation S(Ti) for each trajectory Ti

that minimizes

f(S(T1), . . . , (Tn)).

A maximization problem is defined similarly.
Usually the objective is to find segmentations for all the

trajectories such that the cost is minimized, given a lim-
ited storage capacity (i.e., the total number of rectangles is
bounded by some number K).

Typically, the computation of the global minimum (or
maximum) of function f is quite costly, and exact approaches
might need time and space that increases exponentially to
the input size; in Section 4.1 we see some examples. There-
fore, one can resort to heuristic approaches that utilize a
forward search of locally optimal solutions whose approxi-
mation quality in practice is very close to the optimal solu-
tion. The skeleton of such an algorithm is given in Figure 4.



1. Function forwardSearch(T1, . . . , Tn, K)
2. /* Assume cost function fd. */
3. Start with each point on its own MBR for every

trajectory Ti

4. while (#MBRs > K)
5. Merge the two consecutive MBRs that lead to best

local results of fd

6. Update costs of affected MBRs
7. end while

Figure 4: Generic forward search algorithm.

The various greedy segmentation algorithms differentiate
themselves at step 2 (optimization function), step 5 (MBR
merging) and step 6 (update of statistics). In the next Sec-
tion we present one such greedy approach where the opti-
mization function is the total distance minimization, while
in Section 5 we present another approach where the opti-
mization function is based on variance minimization.

4. DISTANCE-BASED SEGMENTATION
The distance-based segmentation criterion attempts to

create MBRs in such a way that the original pairwise dis-
tances between all trajectories are preserved as well as pos-
sible. Therefore, the objective function is reduced to the
following maximization problem:

f(S(Ti)i=1...n) =

(

−∞, if
Pn

i=1|S(Ti)| > K,
P

1≤i<j≤n
d(S(Ti, Tj)), otherwise.

(1)
The intuition behind maximizing the pairwise distances is

that this would be beneficial for operations such as cluster-
ing, or kNN search, since it will provide better inter-object
separability.

4.1 A Dynamic Programming Approach
Exhaustive search on the aforementioned problem is com-

putationally prohibitive, as we now show. For simplicity,
assume that there are only two trajectories; the extension
to multiple trajectories is straightforward. The total number
of possible segmentations equals

K−1
X

K1=1

 

m

K1 − 1

! 

m

K − K1 − 1

!

=

 

2m

K − 2
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K
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To see why the expression in the left hand side gives the
number of segmentations, notice that if the first trajectory
contains K1 rectangles (and each trajectory must have at
least one bounding rectangle, so K1 ranges from 1 to K −
1), there are

`

m

K1−1

´

ways to select the starting point for

all but the first rectangle, and similarly
`

m

K−K1−1

´

for the

second one. The first equality follows by properties of the
binomials. This means that the number of choices that have
to be considered grows exponentially with the number of
available rectangles K.

A more efficient exact solution is based on dynamic pro-
gramming. For conciseness we present our main theorem
considering only two trajectories, with a range of values
taken from a discrete set R = {1, 2, . . . , R}. The results can
be extended for multiple trajectories and higher-dimensional
spaces, while in the case that the range is continuous we can
achieve an approximation by discretizing the range set.

Theorem 1. Let T1 and T2 be trajectories of length m,
taking values in the range {1, 2, . . . , R}. There exists a dy-
namic programming algorithm that assigns K MBRs to two
trajectories so that the distance between the resulting seg-
mentations is maximized. The algorithm computes the opti-
mal bounding-rectangle assignment in time O(KmR8), using
space O(KmR4).

Proof. Given in the appendix.

This algorithm, although polynomial to the range R and
the time m, is very impractical even for two trajectories.
Even worse, the straightforward extension for more trajec-
tories is exponential in the number of trajectories. Hence,
we study approximate solutions to the problem.

4.2 A Greedy Solution
We now begin a study of heuristic approaches to the distance-

based segmentation problem, which will allow for a more
computationally efficient algorithm, at the expense of the
quality of the results. The first algorithm that we present is
a greedy forward-search technique, which constitutes a vari-
ation on the generic forward-search approach as presented
in Figure 4.

For concreteness, assume that we try to solve the prob-
lem of maximizing the sum of the distances between the
segmentations, as presented in Equation (1). A detailed de-
scription of the algorithm appears in Figure 5. For ease of
exposition we present a simple variation of the algorithm.
In practice, this algorithm can be substantially improved in
terms of computational cost, as will be discussed shortly.

The algorithm starts by assigning each point of all tra-
jectories (for a total of nm points) in its own MBR (lines
2–7). Subsequently, as long as the total number of MBRs is
larger than K the algorithm merges two consecutive MBRs
for any trajectory Ti, such that the merge will result in the
least change of the total pairwise distance (lines 11–26). Af-
ter each merge, the pairwise distances on the affected time
instances are updated and the process is repeated (line 10).

Theorem 2. Assume that we execute the Forward Search
algorithm with n trajectories, m points per trajectory, and K
MBRs, where n ≤ K ≤ nm. Then the time required to
execute the algorithm is O(n3m2).

Proof. First notice that the while loop (lines 10-27) is
executed nm − K times. Let us now analyze the running
time of each iteration. In every iteration, the algorithm ex-
amines all the n trajectories (for loop, line 11). Assume
that the algorithm examines trajectory Ti and that the cor-
responding segmentation is Si = {B1

i , B2
i , . . . , Br

i }. In lines
13–22, the algorithm attempts to merge each MBR with
the one next to it. If r = 1, then there is nothing to do
and the algorithm proceeds to the next trajectory. Other-
wise it creates the merged MBR (line 14), merging Bj

i with

Bj+1
i , and calculates the cost difference between the new

and the current segmentation (lines 15–16). Line 15 can be
executed in constant time, while line 16 can be executed in
time (n − 1)(∆j + ∆j+1), where ∆j = tj

f − tj

b + 1 is the

temporal length of the jth MBR. Since every MBR Bj
i is

considered twice—once when it is merged with the previous
one and once when it is merged with the next one, except
for B1

i and Br
i which are considered only once— the total

time to calculate the cost difference for a given segmentation
is (n − 1)(2m − ∆0 − ∆r < 2nm). Therefore each iteration
of the for loop of line 11 can be executed in time 2n2m,
so the total running time of the algorithm is bounded by
(nm − K)2n2m = O(n3m2).



1. Function forwardSearch(T1, . . . , Tn, K)
2. for (i = 1 to n)
3. for (j ← 0 to m− 1)

4. B
j+1
i
← [j, j]× [xi(t), xi(t)]× [yi(t), yi(t)]

5. end for

6. Si ← {B
1
i , B2

i , . . . , Bm
i }

7. end for
8. #MBRs← n ·m
9. minDist←∞
10. while (#MBRs > K)
11. for (i← 1 to n)

12. /* assume that B
j
i = [tj

b
, t

j

f
]× [`j

x, h
j
x]× [`j

y, h
j
y],

for j = 1, 2, . . . , |Si|, and that
Si = {B1

i , B2
i , . . . , Br

i } */
13. for (j ← 1 to |Si| − 1) /* estimate the cost of

merging B
j
i with B

j+1
i */

14. Bnew ← mergeMBRs(Bj
i , B

j+1
i )

15. Snew ← Si ∪ {Bnew} \ {B
j
i , B

j+1
i }

16. currentDiff←
P

r 6=i

P

t
j+1

f

t=t
j
b

d(Si, Sr, t)− d(Snew, Sr , t)

17. if (minDiff > currentDiff) /* we found a
better merging */

18. minDist← currentDiff
19. iBest← i
20. Sbest ← Snew

21. end if
22. end for

23. end for

24. /* now we perform the best merge that we have
found */

25. SiBest ← Sbest

26. #MBRs← #MBRs− 1
27. end while

1. Function mergeMBRs(Bj
i , B

j+1
i ) /* returns the MBR

that results after combining the two consecutive MBRs

B
j
i and B

j+1
i */

2. return [tj
b
, t

j+1
f

]× [min{`j
x, `

j+1
x }, max{hj

x, h
j+1
x }]×

[min{`j
y, `

j+1
y }, max{hj

y , h
j+1
y }]

Figure 5: Greedy distance-based segmentation algo-
rithm.

Notice that the analysis above considers a straightfor-
ward, albeit inefficient implementation; our implementation
is more efficient. For example, many quantities are being cal-
culated multiple times. A more efficient implementation can
maintain a priority queue with the cost difference of merg-
ing two consecutive MBRs belonging to the same trajectory.
When the two MBRs at the top of the queue are merged,
one can update only the cost differences of the other MBRs
that are affected (the ones that intersect with the merged
MBRs in time). Nevertheless, even this simplified analy-
sis demonstrates that while the greedy approach achieves a
significant computational leap from the exact solution, for
practical purposes the usefulness of the greedy algorithm
can be quite limited.

Another greedy approach is the backward search: the al-
gorithm initially approximates each trajectory in a single
MBR and then starts splitting, until it eventually reaches
K MBRs, always performing the split that leads to the
least distance deterioration. Nevertheless, even though this

approach superficially seems less expensive, in practice the
bookkeeping costs per iteration render it even more expen-
sive than the forward search approach.

5. VARIANCE-BASED SEGMENTATION
Even though the greedy approach is much more efficient

than the exact solution, it is still prohibitively expensive
when we are dealing with very large datasets and lengthy
trajectories. Indicatively, some simulations presented in Sec-
tion 6 required several days to run to completion. Therefore,
we attempt to develop even faster algorithms.
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Figure 6: The mean and variance of three one-
dimensional trajectories at every time point. Notice
that in dense areas the variance is low.

The main reason for the slow performance of the greedy
distance-based algorithm is that whenever two consecutive
MBRs are merged, a total recomputation of the pairwise dis-
tances between all trajectories needs to be performed. One
approach for speeding up this algorithm is based on the idea
that at heavily clustered locations (i.e., time points where
a large number of trajectories concentrate around the same
area) one can afford to have coarser trajectory approxima-
tions since the total pairwise distance in these areas is very
small in practice in the first place. This idea is illustrated
in Figure 6.

To identify the heavily clustered time points efficiently
one can compute for every time step an empirical mean and
variance of the trajectories. Consecutive time instants with
similar means and small variances intuitively contain clus-
ters of trajectories. After such sequences of time instants
have been found, the algorithm can start approximating the
trajectories contained therein without substantially affect-
ing the overall pairwise distance. In practice, the algorithm
identifies the most clustered sequence of time instants, per-
forms one merge operation, recomputes the mean and vari-
ance of the affected time points after the merge, and con-
tinues iteratively with the next candidate. Figure 7 shows a
high-level description of the algorithm.

There are several issues that need to be discussed. First,
notice that the value of a trajectory at a given time point
is a two-dimensional vector. We define the mean and the
variance of n elements xi as

µ =
1

n

n
X

i=1

xi Var =
1

n

n
X

i=1

(xi − µ)T · (xi − µ),

where xT is the transpose vector of x. Notice that the



1. Function varianceSegmentation(T1 , . . . , Tn, K)
2. Start with one MBR per point per trajectory Ti

3. foreach time point t
4. Compute µ(t), V (t)
5. while (#MBRs > K)
6. t∗ ← denseAreaEstimate /* We decide to merge

two MBRs between time points t∗ and t∗ + 1 */
7. T ∗ ← leastVolumeIncrease
8. Merge T ∗’s MBRs [·, t∗] and [t∗ + 1, ·]
9. Update the values µ(t) and V (t) for the time

instants spanned by the two merged MBRs
10. end while

Figure 7: Variance-based segmentation algorithm.

mean is a two-dimensional vector, while the variance is a
real value.

The mean and variance can easily be computed if each tra-
jectory is represented by a 1D point for a given time instant.
Nevertheless, as trajectories are continually approximated
with MBRs, for some time instants a number of trajecto-
ries will be represented by line segments (the projection of
the MBR on that time instant; see Figure 8). While com-
puting the mean

Pn

i=1 Ti(t)/n when there are no rectangles
is straightforward, computing the mean and the variance
when some of the trajectories contain bounding rectangles
at time t must involve both ends of the rectangle.

time t 

mean value
at time t 

time t 

mean value 
at time t 

? 

Figure 8: The definition of the mean and the vari-
ance have to be generalized to take into account the
existence of the MBRs.

So, for the general case, we define the mean estimate to
be the two-dimensional quantity

µ(t) =
1

2n

n
X

i=1

`

`i(t) + hi(t)
´

,

and our variance estimate as the real value

V (t) =
1

2n

n
X

i=1

`

(`i(t) − µ(t))T · (`i(t) − µ(t))

+ (hi(t) − µ(t))T · (hi(t) − µ(t))
´

.

After we have computed the means and variances of all the
time points, we select a heavily clustered time point (line 7).
Our estimator returns a time point t∗ where the means µ(t∗)
and µ(t∗+1) are close and the variances V (t∗) and V (t∗+1)
are small. In detail, here is how we compute t∗. For each
time point, define ∆µ(t) = ‖µ(t) − µ(t + 1)‖. For some
constant k (in our experiments we used k ∈ {1, . . . , 50})
we compute the set C∗ = {t∗1 , . . . , t∗k} of candidates, which

are the k time points with smallest corresponding ∆µ(t).
Having computed the set C∗, we set t∗ equal to

t∗ = arg min
t∗
i

‖(V (t∗i ), V (t∗i + 1))‖,

where we denote with (V (t∗i ), V (t∗i +1)) the two-dimensional
vector with elements V (t∗i ) and V (t∗i + 1) (see Figure 9).
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*

t5
*

t7
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t2
*

t3
*

t* = t4
*

Figure 9: We select the time point t∗ such that
both V (t∗) and V (t∗ + 1) are small.

Having selected the time point t∗, we select at line 7 the
trajectory whose MBRs we combine. Ideally we would like
to merge the MBRs that will lead to the smallest decrease in
the total pairwise distance. This approach, however, suffers
from similar efficiency problems with the greedy approach:
in the worst case we need to compute O(mn) pairwise dis-
tances per MBR. A good compromise is to employ a local
optimization criterion, namely we select to merge the two
MBRs that will lead to a minimal total increase of volume.

As we show in the next theorem, the running time of
the variance-based algorithm is much lower than the greedy
algorithm.

Theorem 3. Assume that we execute the variance-based
algorithm with n trajectories, m points per trajectory, and K
MBRs, where n ≤ K ≤ nm. Then the time required to
execute the algorithm is in the worst case O(m2n log n).

Proof. The initial computation of the mean and vari-
ances takes O(mn) steps, while creating a heap with the
pairwise differences of the means of consecutive time in-
stants, which is useful in determining the denser time points,
takes O(m) steps. We perform the main loop of the algo-
rithm nm−K times. The dense area estimation can be com-
puted in k log k steps. Choosing which trajectory to merge
after the time point has been selected and updating the
necessary data structure can be accomplished in O(m log n)
steps (we keep a sorted list of all the trajectories for each
time instance, but in every merge up to m lists might be up-
dated resulting in time O(m log n)), and updating the mean
and variance of the affected time points in constant time for
the means (we maintain the differences ∆µ(t) of the means,
and only three of those values change), and O(m) time for
the variances. Finally, updating the list of mean differences
requires O(log m) time. By accumulating all those steps, we
conclude that in the worst case the time complexity of the
algorithm is O(m2n log n).

6. EMPIRICAL EVALUATION
We conduct a performance evaluation of the proposed

algorithms using a number of real and synthetic datasets,



with the objective of demonstrating the accuracy and per-
formance of these techniques in practice. We compare all
flavors of distance-based segmentation; the optimal dynamic
programming algorithm, the greedy distance-based algorithm,
and the variance-based segmentation techniques. We also
include in our comparisons the local volume-based MBR
segmentation [8, 15]. All algorithms were implemented in
C++ and executed on a 3GHZ Pentium 4 with 1GB RAM.

6.1 Comparison to the optimal algorithm
The first experiment evaluates the qualitative affinity of

all techniques to the optimal distance-based dynamic pro-
gramming algorithm. We capture this by recording the sum
of pairwise distance between the simplified trajectories (dis-
tance between the final MBRs).

For this experiment we utilize a large dataset pool, since
the performance of each technique is highly dependent on
the data characteristics. We use a number of real datasets
from the UCR time-series data mining archive [9], which
span a wide variety of areas, such as computer networks,
medicine, environmental measurements, and more. Each
dataset consists of 50 sequences with length of 512 points.
We note that the datasets used in this experiment are 1D
and not 2D. This was necessary in order to keep the running
requirements of the optimal dynamic programming segmen-
tation algorithm within the limits of the computational and
storage capabilities of our computer testbed.

The performance of all strategies against the optimal ap-
proach is shown at the top of Figure 10. This figure depicts
the results for each dataset separately. The y axis shows
the sum of pairwise distances between all the objects, nor-
malized by the total pairwise distance of the optimal algo-
rithm. Numbers closer to 1 indicate better distance preser-
vation. Each pair of sequences was simplified using 100
MBRs (K = 100). From the plots we can observe that in
general the the greedy distance-based preserves closely the
sum of pairwise distances achieved by the optimal, while
the variance-based preserves a smaller amount of the pair-
wise distance sum. This is expected since the variance-based
technique introduces many distance simplifications, in order
to expedite the running performance. The distance affinity
of the local volume-based algorithm stands between the two
(non-optimal) distance-based algorithms.

Notice, that the previous experiment captures how close
absolute distances are to the optimal algorithm. An even
more meaningful experiment for data-mining operations, is
how well relative distances are preserved. For example, if
for the optimal algorithm the distances between objects A,
B and C are d(A,B) = 5 and d(B,C) = 10 this will lead to a
distance ratio of 1/2. In this setting, any algorithm X pro-
viding distance approximations of d(A,B) = 1 and d(B,C)
= 2 might be weighted more favorably against another al-
gorithm Y with respective distances of 3 and 4. Intuitively,
the output of algorithm X can provide more similar behav-
ior to the original data for clustering/classification opera-
tions, since relative relative object spacing will be affected
the least (similar objectives are achieved by data embeddings
[3]). The results for the relative distances are reported at
the bottom of Figure 10 and in this experiment numbers
approaching zero are closer to the optimal. One can ob-
serve that the variance based algorithm depicts better rela-
tive distance preservation than the volume-based for 25% of
the datasets. These are primarily the datasets that contain
multiple data bursts (e.g., earthquake, eeg, packet).

In general, the optimal and greedy distance-based algo-
rithms present the best distance preservation. However, the
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Figure 10: Affinity of heuristic algorithms to the op-
timal dynamic programming solution. Top: Close-
ness of absolute distances to optimal (numbers
closer to 1 are better). Bottom: Closeness of rel-
ative distances to optimal (numbers closer to 0 are
better).

optimal algorithm for any practical purpose is completely
infeasible; our experiments for it took several days. The
greedy-based runs in the order of minutes or hours and the
variance- and volume-based require only seconds, for the
data instances of this experiment. Each simplification typ-
ically detracts at least an order of magnitude in running
time, which was also depicted with the complexity anal-
ysis of each algorithm. The most efficient algorithms are
the local volume-based and the global variance-based. The
first one exhibits better approximations for smooth datasets,
while the second one is better for ‘busier’ datasets, where the
global dataset view can provide a much better indication of
which areas need to be simplified.

6.2 k-Nearest Neighbor Performance
Here we focus more closely on the performance of the

the variance-based segmentation algorithm which is the only
computationally feasible approach, and hence practical for
real-world applications. We measure its performance on a k-
Nearest-Neighbor (k-NN) retrieval experiment using a larger
dataset instance, with synthetic datasets that simulate a
road network of moving objects. We create multiple dataset
instances with various object cardinalities (500, 2000, 4000
trajectories), where each object has length of 256 points.

The above dataset is utilized for evaluating the efficiency
of the algorithm under k-NN search using the Euclidean
distance metric. The segmented versions of the trajectories
can speed up the search as follows. The trajectory segmen-
tations represent a compressed version of the dataset, which
essentially prioritize the retrieval of the raw trajectories from
disk, by guiding the k-NN search.

Assume that the original trajectories are kept on disk but
their simplifications (MBRs) are small enough to be stored
in memory. The distance between the MBRs of two trajecto-
ries represent a lower bound of the original distance between
the raw trajectories [15]. To identify the nearest neighbor
one can compute a lower bound of the distances between



the sequence approximations (given by each algorithm) and
the query. The raw trajectories are then retrieved from disk
in the order suggested by the lower bound (i.e., we examine
the most likely candidates first). The best-so-far distance
is potentially updated with every raw trajectory retrieved
from disk. One can guarantee that the best match to the
query is found when the currently examined compressed tra-
jectory has a lower bound distance larger the distance of the
best-so-far match. The number of retrieved matches from
disk is an implementation invariant way of computing the
efficiency of each segmentation method.

Note that the above search technique does not introduce
any false dismissals, that is, the returned answer set will
be exactly the same, as the k-NN search on the raw data.
This is guaranteed by the lower bounding properties of the
MBR approximation and is in accordance with the GEMINI
indexing framework [2].

We perform the above k-NN search experiment using 100
different queries (not already found in the dataset) and in
Figure 11 we plot the percentage of raw trajectories that
are retrieved when searching for 20-NN, using different tra-
jectory approximations (5, 10 and 20 MBRs per sequence).
The above measure is an implementation independent way
of measuring the efficiency of the representation. The ex-
periment suggests that we consistently examine only a very
small portion of the dataset, which reduces gracefully with
finer trajectory approximations (i.e., use of more MBRs).
While k-NN search on the raw data requires access to all
trajectories on the disk, using the above simple technique
we can prune from examination most of the trajectories.

The good k-NN search performance using distance-driven
MBRs approximations is attributed to the fact that this
type of segmentation essentially relaxes the distance in the
already dense areas (small variance), and hence in practice it
does not penalize the search performance, which is primar-
ily impacted by the areas of large variance [7]. Additionally,
we can observe that the preprocessing time required for seg-
menting the trajectories is kept in very realistic levels. The
MBR generation time is shown in Figure 12 as a function of
the dataset size.

We conducted the data-pruning experiment using also
the volume-based segmentation technique (which shares the
closest computational complexity with the variance based
algorithm). The results are almost identical data pruning
efficiency. Additional experiments are still needed for ascer-
taining whether these results can be generalized for other
classes of datasets. Additionally it would be interesting to
examine under what circumstances local techniques can be
a viable alternative to global ones (see for example compar-
ison of APCA vs SVD [10]).

As concluding remarks, with this empirical evaluation we
have highlighted a lightweight version of global distance-
based segmentation, which comes in the form of the variance-
based segmentation. This method achieves significantly lower
preprocessing times, while at the same time accomplishing
distance relaxation only where needed, therefore not penaliz-
ing performance. This flavor of distance-based segmentation
depicts excellent pruning power and therefore is suitable for
any algorithm that utilizes k-NN search operations.

6.3 Application to DNA visualization
We conclude our experimental section with an interesting

application and technique, which clearly highlights the im-
portance of segmentation for manipulation and visualization
of complex data. Specifically, we show how trajectory seg-
mentation techniques can be used for visualizing and com-
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Figure 11: Evaluation of k-nearest neighbor queries.
Percentage of retrieved disk resident trajectories for
20-NN search.
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Figure 12: Segmentation time for K=20 MBRs with
respect to dataset size.

paring the affinity of DNA strings.
Visual comparison of DNA symbol strings can be particu-

larly troublesome to perform, because typical DNA datasets
contains thousands of symbols. Humans cannot easily com-
pare or visually represent bulk of text; our brains are much
more efficient at comparing lines or shapes. Therefore, first
we provide a technique for converting a DNA string into
a two-dimensional trajectory. Given a string of length n
drawn from the alphabet A,T,C,G, which we will denote as
speciesDNA, we wish to convert it to a two-dimensional vec-
tor of length n+1, which we will denote as speciesTrajectory.
We can use the following rule to build the trajectory vector:

speciesT rajectory(i) = speciesT rajectory(i− 1) + B,

where B is a basis vector constructed as follows:

B =

8

>

>

>

<

>

>

>

:

[0 1], if speciesDNA(i) = A

[1 0], if speciesDNA(i) = T

[0 -1], if speciesDNA(i) = C

[-1 0], if speciesDNA(i) = G.

Example: Suppose that speciesTrajectory(1) = [0 0]. Thus,
for the DNA string AATCG, we get the trajectory vector {[0
0],[0 1],[0 2],[1 2],[1 1],[0 1]}.

The resulting trajectories can be quite long, therefore it is
more meaningful to be represented with fewer MBRs, which
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Figure 13: MtDNA dendrogram of 11 species. Transformation to trajectories and variance-based segmenta-
tion into 20 MBRs.

significantly aids their manipulation or on-screen depiction.
Additionally, since the variance-based segmentation can ac-
curately capture relative object distances, tasks such as clas-
sification, taxonomy categorization and dendrogram visual-
ization, are expected to perform very effectively even on the
simplified data. We demonstrate this later with an exam-
ple. For simplicity we consider only mitochondrial DNA
(mtDNA). mtDNA is passed on only from the mother dur-
ing sexual reproduction, meaning that the mitochondria are
clones. This means that there is little change in the mtDNA
from generation to generation (i.e rare mutations), unlike
nuclear DNA which changes by 50% each generation. This
gives mtDNA a long memory.

Utilizing the mtDNA of 11 species (human, chimp, ele-
phant, etc.), we create their respective trajectories using the
technique described above and finally we segment each re-
sulting trajectory into 20 MBRs using the variance-based al-
gorithm. For this datasets the length of each mtDNA string
consists of approximately 16000 symbols (with mtDNA of
humans being 16,569 symbols long, and all other mammals
mtDNA are within plus or minus 1% of this). The final
MBR representation of every mtDNA, essentially represents
a coarse signature of every symbol string. Notice that not
only have we managed to represent the DNA string into
a format that is amenable to visualization, but we have
effectively compressed our dataset, since we have reduced
16000 points down to 20 MBRs. Every MBR can be repre-
sented by 4 numbers (lower and upper 2D points), there-
fore we have effectively compressed the original data by
(16000/(20 × 4)) = 200 times.

After computing the pairwise distance matrix between the
MBR representation of all species, we create the (average
linkage) dendrogram depicted on Figure 13. The first thing
that one can notice is that even though the representation
is highly compressed, the dendrogram correctly captures the
taxonomy between the different species. A second observa-

tion on the figure is that, at first glance, the grouping of
the hippo with whales might seem like a mistake. Intu-
itively the hippo should depict a greater affinity with the
elephants. Interestingly, this is not the case; the hippos are
more closely related to whales than to any other mammals!
Whales and hippos diverged a mere 54 million years ago,
whereas the whale/hippo group parted from the elephants
about 105 million years ago. The group that includes hippo
and whales/dolphins, but excludes all other mammals above
is called Cetartiodactyla [14].

While this figure serves merely as a demonstration of the
effectiveness of our MBR approach to capture structure in
trajectories, we feel that such a representational transforma-
tion, combined with our MBR and other indexing tools and
techniques could have great utility for mining large sequence
collections. Recall that the full DNA sequence of a human is
approximately 3 billion symbols long. Matching substrings,
either within or between species is a computationally de-
manding task. While we are not suggesting this method to
replace sophisticated string alignment methods, it could be
used as a initial filtering step for finding promising candidate
substrings.

7. CONCLUSIONS
In this work we motivated the need for global distance ori-

ented segmentation techniques. We present different flavors
of distance-based segmentation algorithms that operate at
various scales of computational granularities. We introduce
an optimal and a greedy version, and we show analytically
and empirically that they are computationally impractical.
However, we conclude the paper by presenting a variance-
based hybrid variation that can provide an excellent com-
promise between running time and approximation quality.
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APPENDIX

Optimal Distance-Based Dynamic Programming
Solution
Here we describe in detail the dynamic programming algo-
rithm of Section 4 and we prove Theorem 1.

The algorithm maintains a matrix A, where A[t, k, `1, h1, `2, h2]
contains the value of the optimal way for assigning exactly k
bounding rectangles to the two trajectories for time 0 up
to and including time t (for t ∈ {0, 1, . . . , m − 1}, k ∈
{0, 1, . . . , K}, and `1, h1, `2, h2 ∈ {1, 2, . . . , R}), with the
rightmost rectangle of trajectory i being on the range [`i, hi].
This value is −∞ if there is no valid assignment of bounding
rectangles (e.g., when T1(t) > h1).

We define the distance of two ranges to be:

d([l1, r1], [l2, r2]) = min
x1∈[l1,r1]
x2∈[l2,r2]

d(x1, x2).

For the time step 0 we set the entries of A to:
• A[0, k, `1, h1, `2, h2] = −∞, for k 6= 2;
• A[0, 2, `1, h1, `2, h2] = −∞, for T1(0) 6∈ [`1, h1], or T2(0) 6∈

[`2, h2];

• A[0, 2, `1, h1, `2, h2] = d([`1, h1], [`2, h2]), for T1(0) ∈
[`1, y1], and T2(0) ∈ [`2, y2].

We now complete the table for increasing values of t. As-
sume that we know all the values A[t−1, ·, ·, ·, ·, ·]. We want
to compute all the values A[t, ·, ·, ·, ·, ·]. For T1(t) 6∈ [`1, h1]
we set A[t, k, `1, h1, `2, h2] = −∞, for all k, `2, h2. Similarly,
for T2(t) 6∈ [`2, h2] we set A[t, k, `1, h1, `2, h2] = −∞, for all
k, `2, h2.
Finally, for T1(t) ∈ [`1, h1] and T2(t) ∈ [`2, h2], we let for
every k, `1, h1, `22, h2:

A[t, k, `1, h1, `2, h2] = d([`1, h1], [`2, h2])+

max{A[t − 1, k, `1, h1, `2, h2],

max
ˆ̀
1,ĥ1

A[t − 1, k − 1, ˆ̀
1, ĥ1, `2, h2],

max
ˆ̀
2,ĥ2

A[t − 1, k − 1, `1, h1, ˆ̀
2, ĥ2],

max
ˆ̀
1,ĥ1, ˆ̀

2,ĥ2

A[t − 1, k − 2, ˆ̀
1, ĥ1, ˆ̀

2, ĥ2]}.

The value of the optimal assignment of bounding rectan-
gles is given by:

max
ˆ̀
1,ĥ1, ˆ̀

2,ĥ2

A[m − 1, k, ˆ̀
1, ĥ1, ˆ̀

2, ĥ2].

In order to compute the optimal assignment we backtrack
on array A, as is typical in dynamic programming.

First we show by induction that the algorithm computes
an optimal assignment. Assume that for all t′ ≤ t−1, all the
entries A[t′, ·, ·, ·, ·, ·] give the values of the optimal assign-
ments of bounding rectangles. We show that our algorithm
gives the value of the optimal assignment for the entries
A[t, ·, ·, ·, ·, ·].

Assume that this is not the case and that for some value
of k, there is another optimal assignment that gives a higher
value. Let V be the value of the assignment produced by
our algorithm, and V ∗ be that of the optimal assignment.
Assume that the coordinates of the rightmost rectangles (at
time t) in the assignment given by our algorithm (the maxi-
mum of the assignments of A[t, ·, ·, ·, ·, ·]) are `1 and h1 for the
first trajectory, and `2 and h2 for the second, and those cor-
responding to the optimal assignment are `∗1, h∗

1, `∗2, and h∗
2.

Let us focus on the optimal assignment. We look at the
assignment of rectangles up to time t − 1 in that one and
assume that it uses k′ rectangles (since we consider the case
where the optimal uses k rectangles we have that k − 2 ≤
k′ ≤ k). By the induction hypothesis, an assignment at least
as good as the optimal is the one corresponding to the entry

max{A[t − 1, k, `∗1, h
∗
1, `

∗
2, h

∗
2],

max
ˆ̀
1,ĥ1

A[t − 1, k − 1, ˆ̀
1, ĥ1, `

∗
2, h

∗
2],

max
ˆ̀
2,ĥ2

A[t − 1, k − 1, `∗1, h
∗
1, ˆ̀

2, ĥ2],

max
ˆ̀
1,ĥ1, ˆ̀

2,ĥ2

A[t − 1, k − 2, ˆ̀
1, ĥ1, ˆ̀

2, ĥ2]}.

Since our algorithm examines all those cases it would have
found it, so we end with a contradiction. Therefore, even-
tually the algorithm finds the optimal assignment.

For the space complexity, notice that the size of A is m×
K × R × R × R × R, while for the time complexity, notice
that in order to compute each entry of A we need to perform
at most O(R4) operations.


