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Global distribution of particle phase state
in atmospheric secondary organic aerosols
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Spyros N. Pandis7, Jos Lelieveld5,8, Thomas Koop9 & Ulrich Pöschl2

Secondary organic aerosols (SOA) are a large source of uncertainty in our current under-

standing of climate change and air pollution. The phase state of SOA is important for

quantifying their effects on climate and air quality, but its global distribution is poorly char-

acterized. We developed a method to estimate glass transition temperatures based on the

molar mass and molecular O:C ratio of SOA components, and we used the global chemistry

climate model EMAC with the organic aerosol module ORACLE to predict the phase state of

atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are

mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-

latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA

should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and

organic molecules could kinetically limit gas–particle interactions of SOA in the free and

upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and

toxic organic pollutants embedded in SOA.
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S
econdary organic aerosols (SOA) account for a large
fraction of submicron particles in the atmosphere, impact-
ing clouds, climate, air quality and public health1,2. SOA

particles influence climate by scattering sunlight and serving as
nuclei for cloud droplets and ice crystals. SOA represent a large
source of uncertainty in current understanding of global climate
change and air pollution2,3. Traditionally, SOA particles have
been assumed to be homogeneous and well-mixed liquids. Recent
laboratory experiments as well as atmospheric measurements,
however, have demonstrated that they can occur in amorphous
solid or semi-solid phase states depending on chemical
composition, relative humidity (RH) and temperature4–6.
The particle phase state is crucial for various atmospheric
gas–particle interactions7, including SOA formation and
partitioning8–10, heterogeneous and multiphase reactions11,12

and ice nucleation13–16. The glass transition temperature (Tg)
characterizes the non-equilibrium phase change from a glassy
solid state to a more pliable semi-solid state as the temperature
increases5. It is important to know the SOA phase state in
multicomponent atmospheric particles for better quantification of
aerosol effects on climate and air quality; but little information is
available on the spatial distribution of the particle phase state of
SOA on regional and global scales.

Here we developed a method to estimate Tg of SOA
components and provided a first estimate of the global
distribution of the SOA phase state by applying the global
chemistry climate model. In the planetary boundary layer, we
found that SOA are liquid in tropical and polar air with high RH,
semi-solid in the mid-latitudes and solid over dry lands. In the
middle and upper troposphere, SOA should be mostly in a glassy
state, which may promote ice nucleation and facilitate long-range
transport of organic pollutants embedded in SOA.

Results
Molecular corridor and glass transition temperature. Our
analysis of SOA phase state builds on the molecular corridor
approach17,18, which is a two-dimensional framework of volatility
and molar mass of SOA components constrained by boundary
lines of low and high molecular O:C ratio. Figure 1a shows the
interdependence of volatility, molar mass and Tg for 654 SOA
components composed of C, H and O formed upon oxidation of

biogenic precursors (isoprene, a-pinene, limonene, glyoxal) as
well as anthropogenic precursors (C12 alkanes)

17. The upper and
lower bounds of the corridor into which the data fall are given by
two lines representing n-alkanes (CnH2nþ 2) with O:C¼ 0 and
sugar alcohols (CnH2nþ 2On) with O:C¼ 1.

Figure 1b shows how Tg depends primarily on the molar mass
and secondarily on the O:C ratio of the organic molecules, as
previously demonstrated by Koop et al.5 and further illustrated in
Supplementary Fig. 1a. Based on the available measurement data,
we developed a new parameterization of Tg as a function of molar
mass and O:C ratio as detailed in the method section. Figure 1c
shows that the Tg values predicted with the new parameterization
agree well with the Tg values measured in experiments or
estimated by the Boyer–Kauzmann rule (see Methods), with a
correlation coefficient of 0.93. The Tg of individual compounds
can be predicted within±20K, however, this uncertainty may be
reduced to ±3K for multicomponent SOA mixtures under ideal
mixing conditions.

The parameterization scheme has been implemented into the
global chemistry climate model EMAC19 that includes the
organic aerosol module ORACLE, based on a computationally
efficient description of primary and secondary organic aerosol
sources, phase-partitioning and chemical evolution20. ORACLE
uses the volatility basis set (VBS) framework21 for distributing
SOA oxidation products into four logarithmically spaced
volatility bins with effective saturation concentrations C* of 1,
10, 102 and 103 mgm� 3, respectively20. In this work the values of
molar mass and O:C ratio of oxidation products in different
volatility bins were assigned based on molecular corridors17,18

and previous studies (Supplementary Table 1). Tg of dry SOA
products in each volatility bin was calculated using the new
parameterization. Tg of atmospheric SOA mixed with water due
to hygroscopic growth was estimated using the Gordon–Taylor
approach5 (see Methods). Sensitivity simulations show that
variations of the key parameters including molar mass,
hygroscopicity and the Gordon–Taylor constant lead to changes
of Tg within 15% (Supplementary Material).

The SOA phase state can be inferred using the inverse ambient
temperature (1/T) scaled by the glass transition temperature of
SOA, that is, Tg/T. When the ambient temperature is below Tg
(that is, Tg/TZ1), an amorphous particle behaves as a solid and
kinetic limitations occur; in contrast, when Tg/To1, a particle
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Figure 1 | Characteristic relations between molecular properties and glass transition temperature of organic compounds. (a) Molecular corridor of

molar mass plotted against volatility of 654 SOA compounds17 colour-coded by glass transition temperature (Tg) estimated with the Boyer–Kauzmann

rule5. The upper dashed line indicates the low O:C bound of the molecular corridor (linear alkanes CnH2nþ 2 with O:C¼0), the lower dotted line indicates

the high O:C bound (sugar alcohols CnH2nþ 2On with O:C¼ 1). (b) Measured (circles) and estimated (squares) Tg of organic compounds plotted against

molar mass. Organic compounds with measured Tg are from Koop et al.
5 and Dette et al.

51. The markers are colour-coded by molecular O:C ratio. (c)

Predicted Tg using a parameterization developed in this study compared to measured (circles) and estimated (squares) Tg with the Boyer–Kauzmann rule.

The solid line shows 1:1 line and the dashed and dotted lines show 68% confidence and prediction bands, respectively.
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exists in semi-solid or liquid states. The threshold between semi-
solid and liquid states depends on the so-called fragility of the
SOA compounds; in this study, we assume an average fragility
value of various organic compounds22, resulting in the threshold
of Tg/TE0.8.

Figure 2 shows global simulations of the annual average of Tg/T
at mean RH at the surface, 850 hPa (B1.35 km) and 500 hPa
(B5.5 km), using simulated ambient RH and T data for the years
2005–2009. These global patterns of the SOA phase state are
strongly influenced by RH, as an increase leads to a significant
decrease of Tg due to hygroscopic growth of particles
(Supplementary Figs 2,3,4). Near the Earth’s surface, SOA is
mostly liquid in the tropics—including the Amazon rainforest—
and in polar air with high RH. This result is consistent with
recent particle bounce measurements reporting that SOA
particles over the Amazon basin are liquid at RH higher than
80% during both the wet and dry seasons23.

Global modelling of SOA phase state. In mid-latitudes and
semi-arid regions such as in the western US, Mexico, Europe,
India and Australia, a semi-solid organic phase is predicted. This
is in line with measurements showing that organic particles col-
lected in California, Mexico City and Chile may have higher
viscosities24. Marine SOA are also predicted to be semi-solid even
at high RH, as they typically have a high molar mass and O:C
ratio due to extended chemical aging. SOA particles are likely to
be amorphous solids in arid regions of the dust belt (for example,
Sahara, Arabian, Gobi) in North Africa, the Middle East and
Central Asia with low RH. A glassy solid state is predicted over
the boreal forest, for example, in Finland at RH ofr30%
(Supplementary Fig. 4), in agreement with observations based on
particle bounce measurements4, corroborating that SOA particles
are amorphous solids.

Convective transport of SOA particles to higher altitudes leads
to more frequent occurrence of solid or semi-solid phases as
shown in Fig. 2. At 850 hPa solid particles prevail over most of the
continents at low and mid latitudes, while particles remain semi-
solid or liquid over the continents in the tropics and at high
latitudes as well as over the oceans. After further uplifting to

500 hPa, corresponding to an average altitude of about 5.5 km,
almost all SOA particles are expected to undergo transition into a
glassy solid state. The occurrence of viscous states at low
temperature is consistent with recent chamber experiments,
showing that a-pinene-derived SOA particles exist in a viscous
state at low temperatures corresponding to the cirrus cloud
altitude region of the free troposphere25.

Figure 3a shows the mean vertical profiles of Tg/T calculated
for selected regions in the Amazon basin, Europe, East China, US,
India and Sahara, as specified by black boxes in the top panel of
Fig. 2. Over the Amazon basin, SOA particles are predicted to
remain liquid or semi-solid up to 5 km and are solidified only
above about 5 km. Amazonian-SOA particles have relatively low
molar mass and O:C, due to the dominance of strong isoprene
emissions and shorter chemical aging times, which in combina-
tion with relatively high temperature and RH results in low Tg. In
contrast, an amorphous solid state is expected for SOA particles
at near-surface altitudes over the Sahara, where RH is usually
lower than B40% up to B8 km (Supplementary Fig. 5b). Mass
concentrations of SOA over the Sahara are very low, being remote
from sources, but SOA particles are highly aged due to chemical
processing during long-range transport, and thus are expected to
have higher molar mass and Tg. In other regions, SOA particles
are expected to be liquid up to B2 km in the planetary boundary
layer, above which they undergo a glass transition when the
temperature becomes lower than B270K (Supplementary
Fig. 5a).

Characteristic diffusion timescales. As illustrated in Fig. 3b, SOA
particles serve as nuclei for clouds and precipitation, sustaining the
hydrological cycle26. Figure 3c shows characteristic diffusion
timescales (tcd) of water molecules in SOA particles with a
diameter of 200nm. These are of the order of microseconds at the
Earth’s surface and seconds at 850 hPa. These timescales are short,
so that inhibition of activation of cloud condensation nuclei
(CCN) is not expected, in agreement with previous particle
trajectory modelling27. In contrast, the particle phase state is
fundamental for different ice nucleation (IN) pathways: liquid
particles can freeze homogeneously, whereas (semi-)solid
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Figure 2 | SOA phase state in the global atmosphere. Modelled annual averages of the inverse ambient temperature (1/T) scaled by the glass transition

temperature (Tg) of SOA (Tg/T) at the surface, 850 and 500hPa, respectively, for the years 2005–2009. Tg/T is an indicator of the particle phase state:

Tg/TZ1, solid; B0.8oTg/To1, semi-solid; Tg/Tr B0.8, liquid. The black squares in the top panel indicate specific areas over the Amazon basin, US,

Europe, Sahara, India and East China, respectively (Fig. 3a).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15002 ARTICLE

NATURE COMMUNICATIONS | 8:15002 | DOI: 10.1038/ncomms15002 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


particles can be expected to form ice crystals heterogeneously14,16.
For example, at 500 hPa, timescales of water diffusion can be up to
several hours. In that case, glassy states and solid/liquid core-shell
morphologies can persist sufficiently long, so that heterogeneous
ice nucleation in the deposition and immersion modes may
dominate over homogeneous ice nucleation at lower temperatures
(o B240K)15.

Figure 3d shows global distributions of characteristic mixing
timescales of organic molecules within the SOA matrix. They are
generally several orders of magnitude larger than mixing
timescales of water molecules, because bulk diffusivities of
organic molecules are lower than those of water due to their
larger molar mass11. Characteristic mixing times are shorter than
minutes over oceans, tropics and high latitudes at the surface and
850 hPa, indicating that particles are homogeneously mixed and
are likely to be in equilibrium between the gas and particulate
phases. However, characteristic timescales are more than a day
over dry regions at the surface, over most continental regions at
850 hPa and over the entire globe at 500 hPa, where particles are

practically ‘frozen’ and subject to strong kinetic limitations of
bulk diffusion of organic molecules. In such conditions, kinetic
partitioning8–10 may be driving new particle formation and
subsequent particle growth in the free troposphere28.

Discussion
These results have also important implications for long-range
transport of persistent organic pollutants and polycyclic aromatic
hydrocarbons. There are numerous observations of high
concentrations of such hazardous and toxic compounds at
remote sites such as the Arctic and the Antarctic29. This is
unexpected, as chemical half-lives of these compounds against
degradation by atmospheric oxidants such as O3, OH and NO3

have been estimated to be much shorter than the transport
timescale. One plausible explanation arising from this study is
that toxic compounds are embedded within glassy SOA matrices
with low-bulk diffusivities and long mixing timescales, which can
effectively shield them from chemical degradation by atmospheric
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photo-oxidants, facilitating efficient long-range transport in the
atmosphere30–32.

The results of this study highlight that due to a strong
dependence of the particle phase state on RH and ambient
temperature, the latter parameters determine the spatiotemporal
distributions of SOA phase state worldwide. Several important
aspects should be further explored in dedicated studies, such as
diel and seasonal variations of the phase state, dependence of
phase state on particle size33 and various anthropogenic and
biogenic precursors, interactions with inorganic components in
particles, and effects of extremely low-volatile organic compounds
(ELVOCs)34 as well as particle- and aqueous-phase chemistry35.
These results indicate that further development of advanced and
detailed formalisms for the SOA lifecycle description in
atmospheric models, and the effects on climate, air quality and
public health is required.

Methods
ORACLE module. The organic aerosol module ORACLE considers the oxidation
of alkanes, aromatics and isoprene by OH, and the oxidation of olefins and
monoterpenes by O3, OH and NO3 (ref. 20). The global emission inventories of the
considered SOA precursors are described in detail in Tsimpidi et al.20. The model
system is applied to simulate the period 2005–2009 with a horizontal grid
resolution of 1.875�� 1.875� and 31 vertical layers extending to about 25 km
altitude (10 hPa). The model system has been evaluated by comparisons to
observations, showing good performance in reproducing the spatial distributions
and mass concentrations of SOA36.

The VBS approach assumes equilibrium partitioning. Ye et al.37 conducted
chamber experiments, and found that a-pinene SOA mixes relatively quickly above
40% RH at room temperature. Liu et al.38 also observed a rapid partitioning of SOA
compounds above 20–30% RH for anthropogenic SOA and for all RH values for
biogenic SOA. These new studies strongly suggest that kinetic limitations in the
bulk may not significantly affect SOA partitioning in the boundary layer, justifying
the use of equilibrium partitioning in this part of the atmosphere. As shown in
Supplementary Fig. 5c, in the current model, most SOA formation (around 95%)
occurs in the boundary layer with conditions similar to the above experimental
studies. Therefore, the apparent inconsistency may be relevant to only a small
fraction (around 5%) of the SOA formation in this modelling study, and does not
significantly affect our results and our conclusions. Application of a model such as
the kinetic multi-layer model of gas–particle interactions (KM-GAP39,40) in both
the interpretation of laboratory measurements and in the global model should be
explored in future work, but is beyond the scope of the current study.

The ORACLE module simulates SOA components with effective saturation
concentrations as low as 0.01 mg m� 3 at 298K for SOA from semi-volatile and
intermediate volatility compounds. Compounds of even lower volatility (low-VOCs
and extremely low-VOCs)34 are not simulated for reasons of computational
efficiency and because the predicted OA mass concentration fields are relatively
insensitive to their explicit simulation. The simulation of the extremely low
volatility compounds is mostly relevant for the prediction of number
concentrations due to their role in the formation and growth of new particles41.
Nevertheless, these compounds are implicitly included in the corresponding lower
volatility bin of the VBS during the fitting of the corresponding smog chamber
results. The accuracy of this simplification has been evaluated in previous
applications of ORACLE and the comparisons of its predictions with available field
measurements36.

Global simulations of Tg. The values of molar mass for anthropogenic and bio-
genic SOA compounds in different volatility bins were assigned based on molecular
corridors as specified in Supplementary Table 1. The slopes of molecular corridors
correspond to the increase in molar mass required to decrease volatility by one
order of magnitude, –dM/dlogC0, which ranges from B15 gmol� 1 for isoprene
toB25 gmol� 1 for C12 alkane

17. According to the corridor slopes, the molar mass
in every volatility bin of 1, 10, 102 and 103 mgm� 3 was assigned for SOA oxidation
products formed from VOCs. Note that the molar mass assigned for the volatility
bin of 1 mgm� 3 is assumed to have relatively high molar mass based on molecular
corridors to compensate for the fact that the current model does not consider lower
volatility bins with higher molar mass. The assignment of O:C ratios for each
volatility bin was based on previous studies42,43. Both molar mass and the O:C ratio
were varied for sensitivity studies to investigate the effects of these parameters on
global simulations of Tg.

In this work, we implicitly assume that SOA particles are externally mixed with
inorganic compounds such as sulfate and nitrate, similar to the current treatment
in most large-scale models. If they were internally mixed, phase separation of
organic and inorganic compounds can be expected. Experimental44,45 and
modelling46–48 studies as well as field observations of phase separated particles49,50

demonstrate that a liquid–liquid phase separation is very likely to occur when

O:Co0.5 for the organic fraction, but unlikely (that is, one mixed phase occurs)
when O:C40.7. SOA predicted in this work usually show O:Co0.7
(Supplementary Fig. 1); thus, an organic phase is likely to be phase separated from
the inorganic phase. Nevertheless, phase partitioning of internal mixing of organic
and inorganic compounds is subject to future studies.

Glass transition temperatures of SOA products in each volatility bin (Tg,i) were
calculated using the following parameterization developed in this study, with the
average molar mass and O:C ratio of SOA compounds in each volatility bin,
assigned based on molecular corridors and previous studies.

Tg;i ¼ AþBMþCM2 þD O:Cð ÞþEM O:Cð Þ ð1Þ

The units of Tg,i and M are K and gmol� 1, respectively, while O:C is
dimensionless. Values of coefficients (A, B, C, D, E) were obtained by fitting with
multi-linear least squares analysis with 68% prediction and confidence intervals to
the experimental Tg of 179 CH and CHO compounds, resulting in A¼ � 21.57
(±13.47) (K), B¼ 1.51 (±0.14) (Kmol g� 1), C¼ � 1.7� 10� 3 (±3.0� 10� 4)
(Kmol2 g� 2), D¼ 131.4 (±16.01) (K) and E¼ � 0.25 (±0.085) (Kmol g� 1),
respectively. Tg,i is assumed to represent average glass transition temperature of a
complex mixture of thousands of organic molecules in each volatility bin. Even
though this is an approximation, it is a good starting point for global Tg estimation,
making use of the VBS and molecular corridor approach.

Equation (1) was also applied to predict Tg of 654 SOA compounds17 to
compare with their estimated Tg (Fig. 1c). The melting points (Tm) of these SOA
compounds were calculated by the Estimation Programs Interface Suite software
and Tg was subsequently estimated using the Boyer–Kauzmann rule of Tg¼ g?Tm
with g¼ 0.7 (see validation of this method in Supplementary Fig. 1b)5. As shown in
Fig. 1c, equation (1) predicts Tg well and some of the variations in Fig. 1c may be
related in part to experimental uncertainties in the determination of Tg, originating
from different experimental protocols, temperature calibration issues, differences in
sample purity and treatment5,51.

Tg of mixtures of SOA compounds under dry conditions (Tg,org) were
calculated using the Gordon–Taylor approach with a linear relationship51:
Tg;org ¼

P

wiTg;i; where wi is the mass fraction of organic compound i, which can
be derived using mass concentrations of SOA products simulated by the ORACLE
module. This equation is a simplified form of the Gordon–Taylor equation that is
valid when the Gordon–Taylor constants are equal to 1 (ref. 51). Under humid
conditions, SOA particles take up water by hygroscopic growth in response to
ambient RH. Tg of organic–water mixtures can be simulated as well using the
Gordon–Taylor equation5:

TgðworgÞ ¼
ð1�worgÞTg;wþ

1
kGT

worgTg;org

ð1�worgÞþ
1

kGT
worg

ð2Þ

where worg is the mass fraction of organics, Tg,w is the glass transition temperature
of pure water (136 K) and kGT is the Gordon–Taylor constant which is assumed to
be 2.5 (±1.0) (refs 5,13).

The Gordon–Taylor approach has been applied and validated for a wide range
of mixtures including organic solvent/polymer, water/polymer, molecular organics/
molecular organics, as well as water/molecular organics mixtures13,52,53. For SOA
compounds the approach has been validated for mixtures of the a-pinene oxidation
products 3-MBTCA and pinonic acid51 and we assume that it can be also applied
to multicomponent mixtures. It has been pointed out previously that the Gordon–
Taylor approach may fail in the case of adduct or complex formation5, which,
however, is more likely to occur in binary or ternary mixtures, where the two
strongly interacting compounds occur at high mole fractions. However, adduct or
complex formation is highly unlikely in multicomponent mixtures such as SOA
with hundreds of compounds, because the individual mole fractions are very small.
Thus, in multicomponent mixtures particular interactions between individual
compounds are more likely to average out, thus favoring a mean-field type
Gordon–Taylor approach.

The mass concentration of water (mH2O) absorbed by SOA particles can be
calculated using the effective hygroscopicity parameter (k) as: mH2O ¼ krwmSOA

rSOA
1
aw

� 1ð Þ
(ref. 54). The density of water (rw) is 1 g cm

� 3, the density of SOA particles (rSOA)
is assumed to be 1.4 g cm� 3 (ref. 55), mSOA is the simulated total mass
concentrations of SOA and aw is the water activity calculated as aw¼RH/100. k is
assumed to be 0.1 (±0.05) based on field measurements56–59, laboratory
experiments60–63 and global simulations64.

Viscosity (Z) can be estimated from the Tg-scaled Arrhenius plot of Z versus
Tg/T (ref. 22) as shown in Supplementary Fig. 6. This relation depends on the
fragility parameter D: larger D leads to Arrhenius (or strong) behaviour, while
smaller D leads to fragile behaviour. Typical D values for organic compounds are in
the range of B5–20 (ref. 65). As D values for SOA compounds are unknown, we
assume D¼ 10 for the base case leading to the threshold of liquid and semi-solid at
Tg/T¼ 0.79 (±0.1). Bulk diffusivities of organic molecules (Supplementary Fig. 7)
can be converted from viscosities assuming the Stokes–Einstein relation11. Using
the derived bulk diffusivities, the characteristic timescales of bulk diffusion (tcd) in
a particle with diameter dp can be calculated as tcd¼ dp

2/4p2Db (ref. 11). The
Stokes–Einstein relation may break down when Tg is close to T (ref. 66), leading to
underestimation of bulk diffusivities, and hence, overestimation of characteristic
timescales of the bulk diffusion of organic molecules.
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Water diffusivities and characteristic mixing timescales. For the estimation of
diffusivities of small molecules (for example, H2O) diffusing through a (semi-)solid
matrix, the Stokes–Einstein equation is not applicable11,15,47,66,67. Diffusion
coefficients of water (DH2O) in SOA have been estimated using a semi-empirical
method of Berkemeier et al.15. The method can estimate water diffusivities over a
large range in T and RH, when the glass transition temperature and hygroscopicity
of a target organic mixture are known. This is achieved by extrapolating from a
reference substance of sucrose68 under the assumption that the target organic
mixture is chemically similar to the reference substance and thus exhibits a similar
Vogel–Fulcher–Tammann (VFT) parameter B (ref. 22) in the VFT equation15.

log10 DH2Oð Þ ¼ Aþ
B

T �T0
ð3Þ

A and B for the VFT equation were directly adopted from Zobrist et al.68 as below:

A ¼ 3þ 0:175 � 1� 46:46 1� aw;suc

� �� �

ð4Þ

B ¼ 262:867 � 1þ 10:53 1� aw;suc

� �

� 0:3 1� aw;suc

� �2
� �

ð5Þ

For determination of T0,SOA from T0,suc, target (SOA) and reference (sucrose)
substances are compared at identical mass fraction. Given the density of the
organic material rorg (g cm

� 3) and hygroscopicity k, the mass fraction of SOA can
be calculated at a given RH5.

wSOA ¼
rorg 1� RH

100

� �

RH
100

k�rorg þ
rorg
RH
100

� � ð6Þ

The water activity in sucrose at the given SOA weight fraction can be calculated
as68:

aw;suc ¼
1þ a�wSOA

1þ b�wSOA þ c�w2
SOA

þ T �Trefð Þ d�wSOA þ e�w2
SOA þ f �w3

SOA þ g�w4
SOA

� �

ð7Þ

where a¼ � 1, b¼ � 0.99721, c¼ 0.13599, d¼ 0.001688, e¼ � 0.005151,
f¼ 0.009607, g¼ � 0.006142 and Tref¼ 298.15. By knowledge of aw,suc, the Vogel
temperature of sucrose T0,suc can be calculated as68:

T0;suc ¼ 127:9 � 1þ 0:4514 1� aw;suc

� �

� 0:5 1� aw;suc

� �1:7
� �

ð8Þ

Then, the Vogel temperature of the target substance is given by

T0;SOA ¼ T0;suc�
Tg;SOA

Tg;suc
ð9Þ

This calculation is performed at equal composition (organic mass fraction) and as a
function of T and RH. Supplementary Fig. 8 shows that the humidity dependence of
water diffusivity in a-pinene SOA obtained using the semi-empirical estimation
scheme is consistent with laboratory measurements27. At 298K, both methods
coincide closely over the entire RH range. At lower temperatures, divergence at low RH
develops, which is shown here for 260K. Note, however, that the measurement
accuracy is low under these cold and dry conditions. Moreover, such low RH is rare in
the troposphere. For example, in the upper troposphere, where the glassy phase state
plays a role in affecting ice nucleation processes and thus cloud formation, RHmust be
at or above ice saturation (Sice¼ 1) before nucleation can occur, corresponding to 72 %
RH at 240K. These differences detected in DH2O between estimates and laboratory
measurements are small compared to the large range caused by the altitude-dependent
temperature in the atmosphere.

Sensitivity studies. Effects of important parameters including M, O:C, kGT and k

on Tg predictions are examined by sensitivity simulations. Changes of molar
masses by 20% in each volatility bin (as specified in Supplementary Table 2) led to
variations of Tg of dry SOA by B5–10% over most continental areas
(Supplementary Fig. 9). The base case O:C ratio was assigned based on the first-
generation SOA products42, which can be considered as the lower end. When the
O:C ratio of each volatility bin was increased by 50%, Tg of dry SOA was increased
only by B4%, indicating that the impact of O:C ratio is much smaller than that of
molar mass. kGT was varied by±1 (refs 5,51,69), which led to changes of Tg within
10%, and more significant impact is found over higher RH regions (for example,
ocean and high latitude; Supplementary Fig. 10). The hygroscopicity parameter also
exerts an important effect on the prediction over high RH areas, where a variation
of ±0.05 in k led to changes of Tg by B5–15% (Supplementary Fig. 11).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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limitations in gas-particle reactions arising from slow diffusion in secondary
organic aerosol. Faraday Discuss. 165, 391–406 (2013).

31. Zelenyuk, A. et al. Synergy between secondary organic aerosols and long-range
transport of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 46,
12459–12466 (2012).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15002

6 NATURE COMMUNICATIONS | 8:15002 | DOI: 10.1038/ncomms15002 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


32. Shrivastava, M. et al. Global long-range transport and lung cancer risk from
polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proc.
Natl Acad. Sci. USA 114, 1246–1251 (2017).

33. Cheng, Y., Su, H., Koop, T., Mikhailov, E. & Pöschl, U. Size dependence of
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