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Microorganisms in wastewater treatment plants (WWTPs) are essential for water
purification to protect public and environmental health. However, their diversity and the
factors that control it are poorly understood. Using a systematic global-sampling effort, we
analyzed the 16S rRNA gene sequences from ~1,200 activated sludge samples taken from
269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global
activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a
Poisson lognormal diversity distribution. Despite this high diversity, activated sludge has a
small global core bacterial community (n = 28 OTUs) that is strongly linked to activated
sludge performance. Meta-analyses with global datasets associate the activated sludge
microbiomes most closely to freshwater populations. In contrast to macroorganism
diversity, activated sludge bacterial communities show no latitudinal gradient.
Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by
stochastic processes (dispersal, drift), although deterministic factors (temperature, organic
input) also are important. Our findings enhance mechanistic understanding of the global
diversity and biogeography of activated sludge bacterial communities within a theoretical
ecology framework and have important implications for microbial ecology and wastewater

treatment processes.
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Introduction

Microorganisms, the most diverse group of life on Earth', play crucial roles in the
biogeochemical cycling of carbon (C), nitrogen (N), sulfur (S), phosphorus (P), and various
metals. Unraveling the mechanisms generating and underlying microbial biodiversity is key to
predicting ecosystem responses to environmental changes® and improving bioprocesses, such as
wastewater treatment and soil remediation®. With recent advances in metagenomic technologies®,
microbial biodiversity and distribution are being intensively studied in a wide variety of
environments””, including the human gut, oceans, freshwater, air, and soil. However, we are just
beginning to understand the diversity and biogeography of microbial communities in wastewater

treatment plants (WWTPs)>"".

More than 300 km® of wastewater is produced globally each year’. This volume equals one
seventh of the global river volume'’. About 60% of this wastewater is treated prior to release,
and biological processes such as activated sludge are widely used in WWTPs’. Activated sludge
employs microbial flocs or granules to remove C, N, P, micropollutants (e.g., toxins, pesticides,
hormones, pharmaceuticals), and pathogens''. Activated sludge relies on complex and
incompletely defined microbial communities. As the largest application of biotechnology in the
world'?, activated sludge is a vital infrastructure of modern urban societies'®. Despite recent

advances in understanding the microbial ecology of activated sludge'*"®

, the global picture of
microbial diversity and distribution remains elusive. This information is essential to resolving
controversies concerning the relative importance of stochastic versus deterministic community

assembly in activated sludge’. Such information is also important for identifying key players in

the process and providing a basis for targeted manipulation of activated sludge microbiomes.
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We created a Global Water Microbiome Consortium (GWMC) (http://gwmc.ou.edu/) and

conducted a global campaign for systematically collecting and analyzing activated sludge
microbiomes. We collected activated sludge samples from 269 WWTPs in 86 cities, 23
countries, and 6 continents (Fig. 1a, Supplementary Table 1). Deep sequencing and analysis of
16S rRNA genes were performed to address fundamental ecological questions, including: (i)
What is the extent of global diversity of activated sludge microbial communities? (ii) Does a
core microbiome exist in activated sludge processes across different continents? (iii) Do
activated sludge microbiomes show a latitudinal diversity gradient (LDG)? (iv) Is microbial
biodiversity important to function in activated sludge processes? and (v) What is the relative
importance of deterministic versus stochastic factors in regulating the composition, distribution,

and functions of activated sludge microbial communities?

Species abundance distributions

Species abundance distribution (SAD), a universal tool in ecology'’ and central to biodiversity
theory, has not been rigorously tested in microbial ecology until recently'®. Here, we tested
common SAD models, including Poisson lognormal, log-series, Broken-stick, and Zipf. The
Poisson lognormal model explained 99% of the variation of the activated sludge bacterial SADs,
compared with 72% for log-series, 94% for Zipf model, and 14% for Broken-stick (Fig. 1b;
Supplementary Table 2). Consistent with previous studies'®, the Poisson lognormal model gave

the best fit to the observed SADs.
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Extent of global microbial diversity

One grand challenge in biodiversity research is determining the number of species in an
ecological system'”. We estimated the global richness of activated sludge bacterial communities
based on two parameters'*’. One is the total number of individuals (Nt), which was estimated
as 4 - 6 x 10™ bacteria in the global activated sludge community, based on published data’. The
other is the quantity of the most abundant taxa (Nmax), Which can be estimated based on either
our sequence data or the dominance-scaling law'®. The lognormal model predicts 1.1 (+ 0.07) x
10° species in activated sludge systems globally, with Ny at 1.2% of Nt based on our sequence
data. The number of species increases only slightly, to 2.0 (+ 0.2) x 10° species, using Nmax =
0.4xN1™* from the dominance-scaling law'® (Fig. 1c). The estimates of global activated sludge
bacterial richness are only about one order of magnitude lower than that of the global ocean
microbiome'” (~ 10'%), even though the world’s oceans represent an enormously larger
ecosystem, which could be attributed to the higher volumetric productivity, thus higher

concentration of bacterial cells, in activated sludge.

Global core bacterial community

Previous studies have reported the core community in WWTPs at regional scales. For example,
core genera existed in Danish'* and Asian'> WWTPs, but less than 10% of the genera overlapped.

Thus, a global core cannot be established from those regional studies.
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At the global scale, occupancy-frequency and occupancy-abundance analyses revealed a hyper-
dominant pattern (Supplementary Fig. 1a) in which the 866 most abundant OTUs (1.39% of the
total OTU number) accounted for 50.06% of the total abundance. Similar hyper-dominance

patterns were observed in other macro->' and microbial communities®.

A core bacterial community was determined based on abundance and occurrence frequency of
OTUs (see Methods for details). About 0.05% (28 OTUs) constituted a global core that
accounted for 12.4% % 0.2% (mean * SE) of the sequences in activated sludge samples (Fig. 2a;
Supplementary Table 3). Most (82%) of the core community members belonged to
Proteobacteria, with 15 OTUs classified as f-Proteobacteria (Fig. 2b). The most abundant OTU,
accounting for 1.14% £ 0.05% of the sequence abundance in activated sludge samples and
occurring in 85% of all samples, was 99% similar to the y-proteobacterium Dokdonella
kunshanensis DC-3 *. The second most abundant OTU (0.89% + 0.06% in relative abundance
and occurring in 96% of all samples) belonged to Zoogloea, a dominant genus in activated
sludge communities'”, with Z ramigera known to enhance the flocculation of activated sludge®*.
A Nitrospira OTU (OTU_6) was also identified as a core taxon, reflecting its importance for
nitrite oxidation or complete ammonia oxidation in activated sludge®2°. OTU 7 is closely
related to Arcobacter species, which are highly abundant in raw sewage”’ and include potential
pathogens, such as A. cryaerophilus, A. butzleri, and A. skirrowii**. Furthermore, two putative
polyphosphate- accumulating organisms (PAOs), a “Candidatus Accumulimonas” OTU
(OTU_37) and a “Candidatus Accumulibacter” OTU (OTU _25), were identified as core taxa,

although only 149 out of the 269 sampled WWTPs operate as enhanced biological P removal
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(EBPR) systems. Apparently, “Candidatus Accumulimonas” and “Candidatus Accumulibacter”

exhibit some metabolic versatility.

The global core community has some overlap with previous studies. For example, Zoogloea
species were proposed as core denitrifiers, and certain Saprospiraceae species play an important
role in hydrolysis in EBPR systems®’. However, some discrepancies also occurred. Saunders et al.
showed Nitrotoga rather than Nitrospira as primary nitrite-oxidizers in Danish WWTPs'*.
Lawson et al. found low abundances of both Nitrotoga and Nitrospira in a pilot-scale EBPR
treatment plant, but Nitrotoga maintained high potential activities based on high SSU
rRNA:rDNA ratios®. Regarding PAOs, we identified “Candidatus Accumulimonas” and
“Candidatus Accumulibacter” as global core taxa, while Tetrasphaera was the core PAO in

Danish WWTPs'*3!,

We similarly determined core communities for a variety of ecosystems at the global scale based
on the Earth Microbiome Project (EMP) datasets’. Soil, human feces, air, and freshwater
microbiomes had 9, 6, 2, and 1 bacterial OTUs identified as core taxa, respectively
(Supplementary Table 4). No core taxa were found for animal feces and the ocean, possibly due
to highly variable community compositions. Notably, the core community for activated sludge
had no overlap with the other habitats, suggesting that activated sludge selects for a unique core

community.

Latitudinal diversity pattern
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Latitudinal diversity gradients (LDG), whereby species richness tends to decrease as latitude
increases™, are well documented in plant and animal ecology”. Recently, several studies

examined LDG patterns in natural microbial communities, but found no clear trends®’>*. 1

n
contrast, activated sludge operates under relatively stable and similar conditions everywhere.

Thus, one might not expect activated sludge microbial communities to exhibit LDG.

We examined the relationship between OTU richness and latitude. OTU richness peaked at
intermediate latitude, with a mean air temperature ~15°C (Fig. 1d). As taxonomic and
phylogenetic diversity were highly correlated (R* = 0.92), the trend was similar for phylogenetic
diversity (Supplementary Fig. 2a). These results suggest that a LDG does not occur in activated
sludge microbiomes; this parallels the global ocean microbiome’, but contrasts with some
ocean®® and soil communities®. In addition, the relationship between bacterial richness and
temperature (Supplementary Fig. 2b, c) did not fit predictions from the metabolic theory of
ecology®. This theory cannot explain bacterial richness based on air temperature
(Supplementary Fig. 2b, R*< 0.001) and mixed liquid temperature (Supplementary Fig. 2¢, R*=

0.03).

Continental-level differences in bacterial community structure

Variations in community composition (5-diversity) are key for understanding community
assembly mechanisms™’ and ecosystem functioning®®. To understand how the bacterial
community composition of activated sludge varied across different spatial scales, we examined

taxonomic and phylogenetic diversity. First, diversity was highest in Asia and lowest in South
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America (Supplementary Table 5). Second, considerable variations between activated sludge
samples were observed even at the phylum level (Supplementary Fig. 1b). Although the
taxonomic and phylogenetic community structures were not clearly separated at the OTU level in
two-dimensional ordinations (Supplementary Fig. 1c, d), PERMANOVA indicated that
taxonomic and phylogenetic composition were significantly different (P < 0.001) between any
two continents (Supplementary Table 6). Third, climate and activated sludge process type
exerted significant effects (P = 0.001) on microbial community structure, but these were
overwhelmed by continental geographical separation (Supplementary Table 7). For example,
bacterial communities of the same climate type in North America and Asia were distinguished by
their continental origins rather than being clustered together (Supplementary Fig. le, f). While
the activated sludge bacterial communities had higher similarity to those of freshwater and soil
than to other environments (Fig. 3a), they harbored a unique microbiome distinctly different

from all other habitats (Supplementary Table 8).

A Bayesian approach®® was employed to identify potential sources of activated sludge bacterial
communities at the genus level. The most dominant potential source was freshwater, attributing
on average 46% of genera, followed by soil (17% on average) and ocean (12% on average) (Fig.
3b). Apparently, environmental characteristics are more similar between an activated sludge
bioreactor and freshwater than the others. Activated sludge and freshwater have potentially high
immigration events through connected water systems, such as wastewater discharge to rivers

after treatment.
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Scale-dependent distance-decay patterns

17,40 .
740 in which

Another fundamental pattern in ecology is the distance-decay relationship (DDR)
community similarity decreases as geographic distance increases. Consistent with results in
other domains®’, we hypothesized that (i) the slope of the DDR curve would vary over local,
regional, and global scales, and (ii) the spatial turnover rates of activated sludge microbial

communities would be lower than those observed in natural habitats, especially for non-flowing

|
ecosystems, such as soils™ .

Supporting our first hypothesis, significant negative DDRs (P < 0.001) were observed across all
scales based on taxonomic diversity (slope = -0.06 for Sorensen, -0.08 for Bray-Curtis, and -0.08
for Canberra distance) and phylogenetic diversity (slope = -0.04 for unweighted Unifrac, and -
0.02 for weighted Unifrac) (Fig. 4a, Supplementary Table 9). The slopes of DDRs depended
significantly on spatial scale. The DDR slopes across cities within a continent (-0.13 ~ -0.16 for
taxonomic similarity indices; -0.03 ~ -0.09 for phylogenetic similarity indices) were significantly
(P =0.001) steeper (> 2 times) than the overall slopes for all similarity metrics (Supplementary
Table 9). Countering our second hypothesis, the overall spatial turnover rates of the activated
sludge communities were similar to those found in non-flowing natural habitats such as soils®

. 37
and sediments”".

Relationships between the community structure and activated sluge functions

10
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Understanding the relationships between biodiversity and ecosystem function is a critical topic in
ecology®. Despite decades of intensive studies, the biodiversity-function relationship is still
hotly debated, particularly in microbial ecology®. A recent meta-analysis of the microbial
ecology literature found that less than one-half of all mechanistic claims were backed up by any
statistical tests*™. Since activated sludge is an engineered system, we hypothesized that there
would be a strong linkage between the activated sludge bacterial community structure and its

functions.

To assess functions, we calculated the removal rates of organic matter (biochemical oxygen
demand (BOD), chemical oxygen demand (COD)), total phosphorus, total nitrogen, and
ammonium nitrogen. Partial Mantel tests revealed that the distance-corrected changes of
activated sludge-community composition were significantly correlated with all measured
removal rates (P < 0.032), except for the ammonium-nitrogen removal rate (P > 0.18)
(Supplementary Table 10). Of the 28 global core OTUs, 27 were significantly correlated
(adjusted P < 0.05) with at least one of the five functions examined. Most of the correlations
(81%) were positive (Fig. 2¢). Also, about 80% of the non-core OTUs showed significant
correlations (adjusted P < 0.05) with at least one function, and 40% of these correlations were
positive (Supplementary Fig. 3a). All of these results indicated that the structure of the activated
sludge bacterial communities, particularly the dominant populations, is critical to maintaining

activated sludge functions.

The global dataset also allows us to assess the importance of specific functional groups to

activated sludge functions. The nitrifying microbial community, including Nitrospira and

11



277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

Nitrosomonas OTUs, showed a closer correlation with the ammonium- nitrogen removal rate
than did the whole community (Supplementary Table 10; P of Bray-Curtis distance =0.04).
Further analysis revealed significant positive correlations of Nitrospira (Spearman’s p = 0.40,
adjusted P < 0.001) and Nitrosomonas (Spearman’s p = 0.21, adjusted P < 0.001) abundance to
the percentages of ammonium-nitrogen removal (% of influent concentration), but not to the
ammonium-nitrogen removal rate (Supplementary Fig. 3b). Nitrospira was the top genus
correlating with the percentage of ammonium-nitrogen removal, corroborating its role in nitrite
oxidation in activated sludge. Regarding ammonium-oxidizing bacteria (AOB), an activated
sludge bioreactor harboured 15 Nitrosomonas OTUs on average, which made up 0.73% % 0.06%

of the sequence abundance (Supplementary Table 11).

Consistent with our expectation, the activated sludge community composition was significantly
correlated with the TP removal rate for the samples from EBPR plants, but not for non-EBPR
plants (Supplementary Table 10), as P removal processes in non-EBPR plants are predominantly
chemical. The diversity of the three potential PAOs®' were significantly different (P <0.0001,
two tailed paired-t test between any two organisms): 8.2 + 0.2 “Candidatus Accumulimonas”
OTUs, 6.6 0.2 “Candidatus Accumulibacter” OTUs, and 3.2 + 0.1 Tetrasphaera OTUs within
a typical activated sludge bioreactor. While the relative abundance of “Candidatus
Accumulimonas” (0.42% % 0.06%) was not different from that of “Candidatus Accumulibacter”
(0.42% £ 0.04%) (two tailed paired-t test, P = 0.92), both were more abundant than Tetrasphaera
(mean relative abundance 0.17% = 0.02%) (two tailed paired-t test, P < 0.0001) (Supplementary

Table 12).

12
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Stochastic community assembly

Since WWTPs are well-controlled engineered ecosystems, we hypothesized that the activated
sludge community assembly has a deterministic nature, and we calculated the null model-based
stochastic ratios*' with taxonomic and phylogenetic metrics. The average stochastic ratios based
on these four metrics all were higher than 0.75 (Fig. 4b), suggesting that stochastic factors were
more important than deterministic factors in influencing community composition, at least

partially contradicting our hypothesis.

To discern the relative importance of various factors contributing to spatial turnover of the
activated sludge bacterial communities, we performed multiple ‘regression on matrices’ (MRM)
analyses and a subsequent variance partition analysis (VPA) based on various taxonomic and
phylogenetic diversity metrics (Fig. 4c, Supplementary Fig. 4). Over all scales, the MRM model
explained considerable and significant portions of the community variations based on Bray-
Curtis similarity (R*= 0.46, P =0.001) (Fig. 4c), with >50% variations unexplained. Among
these, 25%, 11%, and 10% of the variations were explained by geographical distance,
environmental variables, and their interactions, respectively (Fig. 4c). Similar trends were
observed across different scales, with environmental variables explaining < 30% of community
variations based on different similarity metrics (Supplementary Fig. 4). These results support

those inferred from the null-model-based stochastic ratio analysis.
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Environmental drivers of community composition

Because both stochastic and deterministic factors are important in forming the activated sludge
community assembly, we attempted to discern the roles of individual deterministic factors in
shaping community structure. We correlated the geographic distance-corrected dissimilarities of
community composition with those of environmental variables by the partial Mantel test
(Supplementary Fig. 5a, Supplementary Table 13). Overall, the microbial community
composition had strong correlations with absolute latitude, mean annual temperature (MAT),
solids retention time (SRT, the average time which activated sludge solids are in the system), and

influent COD and BOD concentrations, representing organic matter (1, = 0.23-0.30, P = 0.001).

More in-depth analysis by structural equation modeling (SEM) revealed direct and indirect
effects of the environmental drivers (Fig. 5a). Consistent with the Mantel test, temperature had
the strongest direct effects on PC1 representing the community structure (standardized path
coefficient, f = 0.50, P <0.001). It also had weak negative impacts on species richness (f = -
0.14, P <0.001). This is consistent with previous observations at local**® and regional®’ scales
that highlighted temperature as a key factor influencing activated sludge community structure
and, in particular, abundance and diversity of slow-growing microorganisms such as AOB and

nitrite oxidizing bacteria (NOB).

Various biotic and abiotic factors (e.g., food-to-microorganisms ratio [F/M] (the ratio of organic
matter to microorganisms), dissolved oxygen concentration, and SRT) directly affected BOD-

removal rates (Fig. 5a). Influent BOD likely has an impact on bacterial composition through its

14
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effect on the F/M ratio (5 = 0.31, P <0.001), which is inversely related to the SRT. Influent
BOD is the most influential environmental variable directly related to bacterial richness (f = -
0.28, P <0.001), and the abundance-weighted mean rRNA gene copy number significantly
increased with the influent BOD (R*= 0.19, P < 0.0001; Fig. 5b). All of these results are
consistent with the resource-competition theory™, which predicts that high species diversity
occurs with low to intermediate supply of resources, but fast-growing r-strategists outcompete

efficient-scavenging K-strategists at high resource levels®.

To independently test the strength of correlation for each of the three strongest parameters
(temperature, SRT, and influent BOD) with bacterial community structure, we performed
random-forest analysis, a machine learning-based method. Using species abundance as the input
data, the model predicted temperature, SRT, and influent BOD with an explained variance of
69%, 25%, and 18%, respectively (Fig. 5c, Supplementary Fig. 5b). When controlling for spatial
auto-correlation, models of temperature continued to have higher accuracy (Supplementary Fig.
5b). For example, the America-fitted model of temperature, i.e., a model trained solely by North
and South America samples, was able to capture variations in the temperatures of Asia samples
(cross-validated R*= 0.47) (Fig. 5¢). The random-forest model also revealed the most important
OTUs for predicting temperature (Supplementary Fig. 5c). These results corroborate that
temperature is the major environmental variable shaping the activated sludge bacterial

compositions at the global scale, although it only has a weak effect on species richness (Fig. 5a).

Conclusions and future perspectives

15



367  Through well-coordinated international efforts, we systematically examined global diversity and
368  biogeography of activated sludge bacterial communities within the context of theoretical ecology
369  frameworks. Our findings enhance understanding of microbial ecology in activated sludge,
370  setting the stage for various future analyses of WWTP microbiomes, as well as other microbial
371  communities that span the globe.

372

373  Based on experimental and theoretical analyses, we estimate that activated sludge systems are
374  globally inhabited by ~ 10° different bacterial species. In contrast, only about 10* species have
375  been cultivated and studied in detail”®. If we assume that all cultivated species are present in
376  activated sludge, potentially 99.999% of activated sludge microbial taxa remain uncultured.
377  Although more and more microorganisms have been genomically characterized, exploring

378  physiological attributes, which requires cultivation, represents a formidable task for future

379  microbiologists and process engineers™’. This finding also highlights how little we know of the
380  world’s microbiome, even in one of the most common and well-controlled systems in the built
381  environment. Despite the very large diversity in activated sludge, a functionally important

382  global core community consists of fewer than 30 taxa. This core might serve as the “most

383  wanted” list for future experimental efforts to understand their genetic, biochemical,

384  physiological, and ecological traits.

385

386  Even though activated sludge is a managed ecosystem, its bacterial composition appears to be
387  driven most likely by stochastic processes, such as dispersal and drift, which apparently

388  contradicts conventional wisdom. However, deterministic factors (e.g., temperature, SRT, and

389  organic C inputs) play important roles in regulating the structure of the activated sludge

16
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community. This could be important for developing operating strategies to maintain biodiversity
that promotes stable system performance. Perhaps one could overcome dispersal limitation by
establishing WWTPs, or repopulating failed WWTPs using an inoculum of activated sludge from
functioning WWTPs, which is a common practice in environmental engineering. Alternately,
one could alternate organic C loadings and/or operational conditions to manipulate the activated

sludge community’s structure to select for the microorganisms having the desired functions.

Finally, apart from the practical implications of this study, it appears that the global bacterial
communities in activated sludge follow various macroecological patterns, such as SADs, DDRs,
resource theory, and community assembly mechanisms. Given that activated sludge can be
controlled and monitored, it could be an excellent system for testing how well different
macroecological theories apply to microbial ecology: e.g., the relationships among biodiversity,

food-web interactions, succession, stability, and ecosystem functioning.
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