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Global drivers of herbicide-resistant weed
richness in major cereal crops worldwide
Philip E Hulme*

Abstract

BACKGROUND: The number of herbicide-resistant weeds differs across the globe but the reasons for this variation are poorly
understood. Taking a macroecological approach, the role of six drivers of herbicide resistance in a country was examined for
barley, maize, rice and wheat crops worldwide. Drivers captured agronomic measures (crop harvested area, herbicide and fer-
tilizer input) as well as sources of sampling bias that result in under-reporting of herbicide resistance (human population den-
sity, research intensity and time since the first record of resistance).

RESULTS: Depending on the crop, best subset regressionmodels explained between 60% and 80% of the variation in herbicide-
resistant weeds recorded in countries worldwide. Global prevalence of herbicide-resistant weeds is likely underestimated,
especially in countries with limited capability in herbicide research. Numbers of resistant weeds worldwide will continue to
increase. Agricultural intensification, captured by fertilizer and herbicide input, as well as further expansion of crop harvested
area are primary drivers of future herbicide-resistant weeds.

CONCLUSION: Because the evolution of herbicide resistance lags behind the selection pressures imposed by fertilizer and her-
bicide inputs, several countries (e.g. Brazil, South Africa, Uruguay) appear to exhibit a ‘herbicide resistance debt’ in which cur-
rent agronomic conditions have set the scene for higher numbers of herbicide-resistant weeds than currently observed. Future
agricultural expansion will lead to more herbicide-resistant weeds, especially in developing countries as their economies grow
and where herbicide resistance is currently under-reported. A global strategy for increasing national capability in herbicide
resistance research is needed.
© 2022 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Supporting information may be found in the online version of this article.
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1 INTRODUCTION
Herbicide-resistant weeds pose an increasingly important con-
straint upon sustainable agricultural practices around the
world.1,2 The risk of herbicide-resistant weeds has limited the
practise of using lower herbicide application rates3 and encour-
aged the use of more persistent and less environmentally friendly
herbicides.4 For over half a century research has focused largely
on understanding herbicide resistance at the phenotypic, physio-
logical and genetic scales in order to develop mitigation strate-
gies.5,6 Nevertheless, even for a single crop, considerable
variation exists in the number of herbicide-resistant weeds
recorded in different countries,7 suggesting that a larger scale
perspective might shed new light on a long-standing agronomic
problem. Furthermore, global patterns in herbicide-resistant
weeds are changing and although historically a problem for
developed countries, the increasing intensification of agriculture
in developing countries has resulted in a rapid increase in cases
of herbicide-resistant weeds in these regions since 1990.8

In contrast to attempts to understand the drivers of herbicide
resistance in individual countries,9–12 it remains unclear why some
countries experience greater numbers of herbicide-resistant

weeds than others. Such variation is likely to arise from differences
in crop management, herbicide availability and weed composi-
tion across countries that lead herbicide resistance to evolve at
different rates.13,14 Countries differ in the extent they apply agro-
nomic options that are known to reduce the rate at which weeds
evolve herbicide resistance such as boosting crop competitive-
ness, employing more effective crop rotations, using herbicide
mixtures, undertaking strategic tillage and applying precision
weed management.15,16 Furthermore, weed species do not all
evolve resistance to the same herbicidemodes of action or exhibit
similar mechanisms of resistance to the same herbicide
(e.g. target vs. non-target)17 and thus may not respond to external
drivers in a homogeneous manner. Given these management
interventions and resistance mechanisms influence selection
pressures on herbicide resistance at a field scale, their general
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impact might be difficult to discern when comparing multiple
countries at a national scale across the globe. Nevertheless,
macroecological perspectives have proven powerful in explaining
global variation in processes that are often shaped by specific
local contexts.18 For example, national-scale variables have been
used to explain worldwide patterns in the weed richness of cereal
crops,19 the geographical distribution of crop pests and
pathogens,20,21 the risk of invasive conifers escaping from com-
mercial forestry plantations in the northern and southern
hemispheres,22 yields of cereal crops in 188 nations over
40 years,23 and even the economic gains in crop production from
bee pollination across Europe.24 But what are the national-scale
variables that might be important in shaping the worldwide pat-
terns in the number of herbicide-resistant weeds?
At least six variables assessed at a national scale that capture

agronomic practices and sampling effort are expected to influ-
ence the number of herbicide-resistant weeds recorded in differ-
ent countries (Table 1). Among the agronomic variables, herbicide
input is widely understood to be important. Herbicide usage in
crop production varies markedly across the globe25 and it might
be expected that the magnitude of herbicide input per unit area
of cropland would be an important predictor of the number of
herbicide-resistant weeds in a country. In addition, countries in
which a particular crop has been planted extensively should have
a higher number of herbicide-resistant weeds compared with
countries where the crop is not grown so widely. This is because
as the harvested area of a crop increases, so too does the species
richness, frequency and abundance of weed species.26 Because
the frequency of spontaneous herbicide resistance in weeds is
of the order of 10−8,27 the more abundant and diverse the weed
flora the greater the probability of such a mutation occurring.
Crop management may also act to reduce the selection pressure
on herbicide resistance.15 The application of fertilizer can increase
the competitiveness of the crop and thus reduce weed perfor-
mance that, when integrated with appropriate timing of herbicide
application, could result in a lower likelihood of weeds evolving
herbicide resistance.28

Although agronomic variables may impact herbicide resistance
directly, variation among countries could also reflect sampling
effects. For a particular crop, it might be expected that the longer
the time since herbicide resistance was first recorded in a country,
the greater the likelihood that other weed species have also
become resistant. This is in part because the first record may
reflect a tipping point in crop management associated with
increased selection pressure for herbicide resistance,29 but also
because different weed species evolve resistance at different

rates5 and that the first record acts as an early warning. Higher
records of herbicide-resistant weeds could also reflect greater
research intensity on herbicides and resistant weeds in those
countries investing more heavily in agronomic and agrochemical
research and development. Similarly, botanical recording tends to
be biased in areas of high population density30,31 and this could
translate to increased detectability of herbicide resistance. The
identification of herbicide-resistant weeds requires specialist
expertise and facilities to undertake standard assays32,33 and thus
national capability in this discipline, measured by research inten-
sity on herbicide resistance, may also shape the likelihood of
herbicide-resistant weeds being detected. These three factors
would need to be taken into account to avoid the global patterns
of herbicide-resistant weeds simply reflecting greater sampling
effort and interest in crop weeds in some countries more than in
others.19

Although there are clear expectations as to how these explana-
tory variables might influence the number of herbicide-resistant
weeds recorded in different countries, there has been no attempt
to tease them apart and determine whether there are consistent
national-scale drivers of herbicide resistance. Such information is
crucial to identify those countries that are on a future trajectory
towards increased numbers of herbicide-resistant weeds. The
results might also point to the need for national guidelines for
herbicide resistance management rather than the decision being
left to the individual farmer. Given this background, the overall
objective of this study was to use a macroecological approach
to explain global variation among countries in herbicide resis-
tance, examine how herbicide resistance varies among different
cereal crops worldwide, and to identify the relative importance
of agronomic variables and sampling effort in these patterns.

2 MATERIALS AND METHODS
2.1 Data sources
Data on the total number of herbicide-resistant weed species
recorded in different countries was retrieved from the In-
ternational Herbicide-Resistant Weed Database34 (www.
weedscience.org) on 19 June 2021. Selection of the target
crops was based on each having a minimum of 15 countries
where the crop was currently grown and in which at least one
herbicide-resistant weed had been recorded. As a result, ana-
lyses focused on the four globally important cereal crops: bar-
ley (Hordeum spp. and H. vulgare), maize (Zea mays), rice (Oryza
sativa and O. glaberrima) and wheat (Triticum aestivum,
T. durum and Triticum spp.).

TABLE 1. Description of the six explanatory variables included in the analysis of country-level variation in the number of herbicide-resistant weeds
worldwide. For each variable, the expected association with the number of herbicide-resistant weeds is presented and supported by a brief rationale

Variable Association Rationale
Fertilizer input Negative Greater fertilizer input should boost crop competitiveness and reduce weed performance
Herbicide input Positive The more herbicide used in a country the stronger the selection pressure for resistance
Crop harvested area Positive Greater diversity of weeds and frequency of herbicide exposure for crops grown widely
Time since first resistance Positive The longer the period since herbicide resistance was recorded in a country the greater the

opportunity for further evolution to occur
Research articles Positive The greater the research intensity on herbicides in a country the more likely resistance will

be detected
Population density Positive Higher human population densities are correlated with greater biological sampling and

thus a greater likelihood of detecting herbicide resistance
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Socio-economic and agronomic explanatory variables were
either extracted directly or derived from data archived in the Food
and Agriculture Organisation FAOSTAT database35 (fao.org/
faostat). The FAOSTAT database contains multiple variables
describing different aspects of global agriculture including pro-
duction, agrochemical inputs, trade, agri-environment indicators,
investment and macrostatistics. To avoid overfitting models, an
informed, hypothesis-led approach was adopted for variable
selection. A long-list of socio-economic and agronomic variables
was further trimmed by excluding highly correlated (r > 0.7) vari-
ables (e.g. input of N, P and K fertilizers; agricultural land area, crop
yield, crop imports). This selection process led to a set of four
explanatory variables that exhibited relatively low collinearity
(Table S1): human population density (in people per km2),
nitrogen-based fertilizer input per area of cropland (t km−2), her-
bicide input per area of cropland (t km−2), and the harvested area
(ha) of the specific target cereal crop. Data for each of these vari-
ables were averaged over the period 1990–2018 (coinciding with
the latest data in FAOSTAT).
For each country, the earliest record of herbicide resistance in each

of the four cereal crops was extracted from the International
Herbicide-Resistant Weed Database. This date was used to calculate
the number of years before 2021 that herbicide resistance first
appeared in order to provide ameasure of the time since first record
of herbicide resistance. To capture research effort on herbicides in
each country, the following search term was used: ((herbicide and
weed) NOT ‘herbicide resistan*’) across the titles, abstracts and key-
words of articles archived in the Clarivate Analytics Web of Science
over the same period as the FAOSTAT data (between 1990 and
2018). The Boolean operator excluding articles addressing herbicide
resistance from the search aimed to limit the risk of circularity where
more research is undertaken on herbicide–weed interactions when
there are more frequent occurrences of herbicide resistance in a
country. Although searching for terms in Englishmay limit the range
of publications examined, it does capture the bulk of international
peer-reviewed agronomic literature.19 The search termwas run sep-
arately for each country picking up all publications in which at least
one author was affiliated with an institution in that country. The dis-
tributions of the dependent (except for wheat) and all explanatory
variables were log10-transformed to reduce any heteroscedastic
biases and improve the linearity of the relationships in the regres-
sion models.

2.2 Statistical analysis
An initial analysis of variance (ANOVA) was undertaken across all
four crops to identify any differences in the mean values of the
six explanatory variables (log10-transformed) that might lead to
variation in the trends encountered. Subsequently, separate best
subset regression analyses were undertaken for each target cereal
crop using only the countries where the target crop was grown
and for which there was a least one record of a herbicide-resistant
weed in that crop. An information theoretic approach to model
selection was used to identify the relative importance of the dif-
ferent explanatory variables in the overall variation in the number
of herbicide-resistant weeds found in different countries. Informa-
tion theoretic model selection using Akaike’s information criterion
(AIC) offers significant advantages over standard regression anal-
ysis when applied to problems of complex causality that may
include nonlinear relationships and collinearity among indepen-
dent variables.36 Owing to the relatively small sample sizes in
the herbicide resistance data sets, the second-order AIC (ΔAICc)
was used as a means for model selection to rank all models.37

The AICc is an estimate of the out-of-sample prediction error
and reflects the relative quality of different statistical models for
a given set of data.38

The regression analyses considered all possible models by run-
ning every combination of the explanatory variables (for six
explanatory variables this results in 64 models) and each model
ranked in relation to ΔAICc.39 The best subset models were iden-
tified as those whoseΔAICc was within two units of the minimum
AICc score across all models because these models are generally
viewed as having substantial empirical support.40 Although this
represented a large number of competing models to consider, it
was a small proportion of the potential macroecological variables
that could have been included in the analysis. By focusing on only
six variables for which there was an a priori expectation (Table 1),
the analyses were not a ‘shot-gun’ attempt to find significant vari-
ables, but weremore precisely testing the relative effects of a real-
istic set of candidate predictors.41

The best subset analysis enabled the relative importance of the six
explanatory variables to be gauged. The selection of the most parsi-
monious model among the best subset targeted the model that
included the fewest explanatory variables but that also showed low
collinearity (variance inflation factor <2) and retained similar predic-
tive power as more complex models as determined by the tenfold
cross-validated R2.42–44 This approach was designed to prevent the
frequent overfitting that limits best subset regression analysis and
thus ensure that the selectedmodels contained no irrelevant explan-
atory variables and were able to adequately predict future observa-
tions.45 Examination of the standardized residuals from each model
fit was used to identify countries with a much lower number of
herbicide-resistant weeds than expected, potentially indicating a
higher potential risk of future herbicide resistance. All analyses were
undertaken in Minitab 20.2.46

3 RESULTS
3.1 Broad patterns in explanatory variables
The average number of herbicide-resistant weed species found per
country was low ranging from 3.11 in barley to 6.14 in wheat, but
the almost twofold difference among the four cereal crops was of
only borderline significance (Table 2). The countries with the highest
recorded number of herbicide-resistant weeds differed according to
the cereal crop examined. Thus, the highest number of herbicide-
resistant weeds in barley was recorded in Canada, whereas it was
the USA for maize, Japan for rice and Australia for wheat (Figure 1).
There was limited overlap in countries included in the analyses for
each crop. Of a total 65 countries in the data set, only four (Brazil,
Chile, Spain and USA) were included in the data for all four crops,
whereas more than half of the countries (52%) were associated with
just one crop. Rice was themost distinctive of all four crops with 46%
of countries specific to that crop, notably several in Central America
(Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and
Panama). This heterogeneity in the composition of countries across
all four crops led to significant differences in the mean values of sev-
eral explanatory variables (Table 2). The crop harvested area ofwheat
was significantly higher than that of either barley or rice, whereas the
number of research articles addressing herbicides was significantly
lower for countries in the rice data set than for either barley or wheat.
The appearance of herbicide resistance in weeds in barley was signif-
icantly more recent than in any of the other three crops. This hetero-
geneity in the agronomic variables and sampling effort of each crop
likely promote quite different explanatory models of the number of
herbicide-resistant weed species.
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3.2 Relative importance of explanatory variables for
each crop
For every crop, models retaining only a subset of the explanatory
variables provided a better fit to the data in terms of adjusted and

cross-validated R2 and measures of collinearity than a full model
(Table 2). Across all crops, the most frequently included explana-
tory variable was the time since the first recorded instance of her-
bicide resistance in a country, followed by the number of research

TABLE 2. Means and standard errors for the mean number of herbicide-resistant weeds and each explanatory variable used in the regression ana-
lyses for each cereal crop

Barley Maize Rice Wheat p-value

Number of countries 17 30 30 37
Mean number of weeds 3.12 ± 0.79 5.07 ± 1.16 4.27 ± 0.86 6.14 ± 0.89 0.079
Population density (km−2) 0.75 ± 0.23 1.14 ± 0.20 1.19 ± 0.21 1.19 ± 0.20 0.265
Fertilizer input (t km−2) 94.65 ± 22.96 94.37 ± 11.71 79.69 ± 11.58 86.66 ± 10.67 0.652
Herbicide input (t km−2) 1.26 ± 0.20 1.58 ± 0.24 1.77 ± 0.31 1.15 ± 0.17 0.201
Harvested area (×106 ha) 1.07 ± 0.32b 3.36 ± 1.41a 2.2 ± 1.09b 4.77 ± 1.26a 0.008
Research articles 461.65 ± 230.47a 292.57 ± 133.97b 250.47 ± 134.13b 301.95 ± 108.83a 0.042
Years since first record 17.59 ± 2.63b 27.63 ± 2.63a 22.77 ± 1.51a 23.46 ± 1.57a 0.048

The p-value of a one-way analysis of variance on log-transformed data is also presented and where statistically significant variation was found across
the four crops the p-value is in bold and different superscripts indicate significant differences betweenmeans as assessed by Fisher’s Least Significant
Difference (LSD).

FIGURE 1. Global distribution of herbicide-resistant weed richness in barley, maize, rice and wheat crops worldwide as retrieved from the International
Herbicide-Resistant Weed Database34 (www.weedscience.org) on 19 June 2021.
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articles published that addressed herbicides (Figure 2). Herbicide
input and crop harvested area were the two agronomic variables
most frequently included in models. There was no occasion on
which the same best subset of explanatory variables was repeated
in different crop species, suggesting the suite of variables associ-
ated with the number of herbicide-resistant weeds in a country
are crop dependent. However, for individual crops, different
models showed considerable homogeneity, often only differing
in one explanatory variable.
The models that explained the greatest amount of variation in

the number of herbicide-resistant weed species in a country were
those for barley. Over 75% of the variation in numbers of
herbicide-resistant weeds in a country could be explained by only
four variables. As might be expected, the number of herbicide-
resistant weed species in a country was positively associated with
the level of herbicide input, crop harvested area and the time
since the first record of herbicide resistance (Table 3). However,
contrary to expectations, the number of herbicide-resistant
weeds in country was negatively associated with human popula-
tion density.
In the case of maize, approximately two-thirds of the variation

was explained in the regression models, with the number of
research articles and the time since first herbicide record being
the most important explanatory variables. Indeed, the most parsi-
monious model included only these two variables (Table 3). For
rice, regression models explained just under 60% of the variation
in the numbers of herbicide-resistant weeds in a country and two
variables were common to all models: herbicide input and the
number of research articles. A model that included these two vari-
ables as well as crop harvested area appeared the simplest expla-
nation of variation in herbicide-resistant weeds in rice worldwide.

Finally, for wheat, models explained approximately 60% of the
variation and four explanatory variables were common to the best
subsets: human population density, fertilizer input, herbicide
input and wheat harvested area.

3.3 Testing the expectations
The regression analyses present mixed support for the expecta-
tions set out for each of the explanatory variables (Table 1). Trends
consistent with the expectation of a positive relationship with the
number of herbicide-resistant weeds in a country were always
found for herbicide input, crop harvested area and time since first
record. There was mixed support for fertilizer input and the num-
ber of research articles being associated with a greater number of
herbicide-resistant weeds in a country, although the sign of the
regression coefficients was consistent within a single crop spe-
cies. There was only one occasion on which the number of
research articles was negatively related to the number of weed
species in a country and thus evidence against the expectation
that greater research effort is related to higher detection of
herbicide-resistant weeds was weak, especially when examining
only the most parsimonious models.
Fertilizer input was negatively related to the number of

herbicide-resistant weeds in a country for maize, but positively
related in wheat (Table 3). The inclusion of a positive coefficient
for fertilizer input in both best subset models in wheat argues
against increased fertilization acting to reduce herbicide-resistant
weed species through a greater crop competitive ability. Wheat
was the only crop for which fertilizer and herbicide inputs were
significantly correlated with each other (r = 0.337, p = 0.045;
Table S1) and thus the positive coefficient for fertilizer inputmight
simply reflect that this also coincides with greater herbicide input.
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FIGURE 2. Relative contribution of six explanatory variables to best subset regressionmodels for the number of herbicide-resistant weeds found in coun-
tries growing barley, maize, rice and wheat. Explanatory variables include agronomic factors (crop harvested area, herbicide and fertilizer input) as well as
potential sources of sampling biases (human population density, research intensity as measured as the number of research articles published on herbi-
cides in a country, and the time since the first record of resistance).

Global drivers of herbicide-resistant cereal weeds www.soci.org

Pest Manag Sci 2022 © 2022 The Author.
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

wileyonlinelibrary.com/journal/ps

5

http://wileyonlinelibrary.com/journal/ps


Contrary to expectations, there was a consistent negative rela-
tionship between human population density and the number of
herbicide-resistant weed species in a country. Thus, although
population density is clearly an important explanatory variable
of the number of herbicide-resistant weeds in a country, it does
not appear to be consistent with increased sampling effort.
Human population density in a country was positively correlated
with fertilizer input for all four cereal crops (Table S1) and
significantly so for maize (Pearson r = 0.555 p < 0.001), rice
(r = 0.45 p= 0.0012) and wheat (r = 0.530, p < 0.001). Thus, it is
conceivable that population density might act as a proxy for fertil-
izer input.

3.4 Variation among countries
All best subset models for each crop had reasonable predictive
power as captured by their cross-validated R2 values, and thus
may provide some insights into future herbicide-resistant weed
risks. For each crop, the top three countries for which predictions
overestimated the number of herbicide-resistant weeds, and thus
potentially indicate a higher future risk, were identified using the
residuals from the fit of the most parsimonious model: barley
(Brazil, South Africa and Finland), maize (Poland, South Africa
and Bulgaria), rice (Uruguay, Portugal and Spain) and wheat
(Russia, the Netherlands and Lithuania). Although these countries
represent a wide range of climates and levels of economic devel-
opment, they all have relatively few herbicide-resistant weeds
recorded to date (Figure 1).

4 DISCUSSION
Despite considerable differences in crop production systems
around the world47 a relative limited suite of national-scale vari-
ables was able to explain between 60% and 80% of the variation
in numbers of herbicide-resistant weeds recorded in countries

worldwide. Although the suite of explanatory variables retained
in the regression models differed among the four crops, the over-
all patterns suggest that global variation in the number of
herbicide-resistant weeds is as much a function of sampling effort
as agronomic practice.
It is logical to expect the number of herbicide-resistant weeds in

a country to increase over time.2 However, many countries with
few herbicide-resistant weeds have also only recorded these
weeds relatively recently, suggesting that they may be at the
beginning of a future trajectory of increasing cases of herbicide
resistance. In many cases, evidence of only a few records of herbi-
cide resistance in a country may also reflect limited surveys of
herbicide-resistant weeds that would be associated with a low
intensity of national research on herbicides. It is widely recog-
nized that geographical patterns of plant species richness are
influenced by sampling effort, particularly biases in botanical
recording.19,48,49 Sampling biases are expected to be more severe
for records of herbicide resistance because specific protocols are
necessary to test for the phenomenon that require specialist her-
bicide knowledge and expertise.32,33,50 Taken together, these two
findings highlight global patterns in herbicide-resistant weeds are
most likely underestimated, especially in countries with limited
capability in herbicide research, and that numbers of herbicide-
resistant weeds worldwide will continue to increase particularly
in countries with only a short history of herbicide-resistant weeds.
The expectation that the number of herbicide-resistant weeds

in a country would be positively related to human population
density was not supported. Although sampling of plant species
is often biased towards regions of high population density,49 the
means of detecting herbicide resistance are more complex than
simply collecting a specimen for a herbarium collection. This spe-
cialist knowledge (and associated facilities) may not scale with
population density. Indeed, for none of the four cereal crops
was a significant relationship found between population density

TABLE 3. Summary of the regressionmodels describing the role different explanatory variables in the number of herbicide-resistant weeds found in
four major cereal crops worldwide

Model goodness-of-fit Explanatory variables
Crop Variables R2 R2 (adj) R2 (cross) AICc VIF (max) Population

density
Fertilizer

input
Herbicide input Harvested

area
Time Research

articles
Barley 4 81.5 75.4 66.2 4.29 1.19 −0.339 0.334 0.496 0.436

5 86.1 79.7 73.3 5.50 2.72 −0.310 0.463 0.723 0.560 −0.350
Full 87.5 79.9 64.0 11.23 2.78

Maize 2 69.6 67.2 62.7 12.98 1.13 0.286 0.679
3 71.9 68.4 61.9 13.77 1.17 −0.162 0.341 0.687
3 71.4 67.8 62.3 14.33 1.42 0.146 0.339 0.617
3 71.2 67.6 62.8 14.51 1.14 −0.123 0.307 0.671
Full 73.2 65.5 52.2 23.35 2.83

Rice 3 63.1 58.6 53.0 12.84 1.27 0.344 0.296 0.610
4 65.0 59.1 52.7 14.52 1.42 0.323 0.243 0.148 0.607
3 60.8 56.1 48.8 14.57 1.03 0.356 0.219 0.683
Full 65.0 55.4 41.2 21.88 1.56

Wheat 4 64.9 60.4 48.3 199.03 1.63 −0.488 0.404 0.440 0.678
5 66.3 60.6 49.8 200.75 1.71 −0.501 0.396 0.370 0.616 0.136
Full 66,3 59.3 43.3 204.07 4.23

For each crop, goodness-of-fit statistics are presented for each model included in the best subset as well as the standardized regression coefficients
for each variable included in the model. For comparison, goodness-of-fit statistics are also presented for the full model that included all six explan-
atory variables. Goodness-of-fit statistics are the overall, adjusted and cross-validated R2, the corrected Akaike’s information criterion (AICc) and the
largest variation inflation factor (VIF) recorded by an explanatory variable included in the model.
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and the number of research articles addressing herbicides
(Table S1). By contrast, the significant positive relationship
between population density and the number of herbicide-
resistant weeds in a country may reflect increased agricultural
intensification. There is both theoretical and empirical evidence
that increasing rural population density will leady indirectly to
greater agricultural intensification by raising the demand for
modern inputs such as fertilizers, improving the flow of informa-
tion, reducing transaction costs and encouraging institutions to
develop and improve agricultural production.51,52 The finding
that, at a global scale, there was a positive correlation between
population density and fertilizer input for all four cereal crops is
consistent with its indirect role in agricultural intensification.
The harvested area of the target cereal crop was the agronomic

variable most frequently associated with the number of
herbicide-resistant weeds and points to the importance of chance
in the evolution of herbicide resistance. The more extensive the
harvested area, the greater the range of weed species, and num-
ber of individual plants of widespread weed species, that will be
exposed to herbicide application, therefore increasing the proba-
bility of a spontaneous mutation that results in herbicide resis-
tance. Forecasts suggest that to meet increasing population
demands and per capita income growth, the area of stable crops
worldwide will likely increase by 10% by 2050.53 Consequently,
if current herbicide application strategies remain unchanged then
the number of herbicide-resistant weeds will likely increase with
the expansion of crop harvested area.
Herbicide input was a significant explanatory variable in the

best subset models for all crops except maize. Herbicide applica-
tion plays an obvious role in the evolution of herbicide resistance
in weeds, and it was expected that the number of herbicide-
resistant weeds in a country would be positively correlated with
herbicide input. In many countries, herbicide inputs have been
increasing steadily over time.25,54,55 Worryingly, as the economies
of developing countries grow, so labour costs are expected to rise
and herbicide application will become an increasingly attractive
option for farmers.56 This is particularly the case for rice where
manual weeding is often the most popular, but time-consuming,
method of weed control.57

In contrast to herbicide input, fertilizer input only had a modest
contribution to the best subset regression models. For maize, fer-
tilizer input had a weak negative relationship with the number of
herbicide-resistant weeds in a country. This contrasts with wheat,
where the significant relationship for fertilizer input was positive.
The expectation was that fertilizer input should increase the com-
petitiveness of the crop and result in reduced weed performance
and a lower likelihood of herbicide resistance evolving. The lack of
a consistent response to fertilizer input is in line with mixed evi-
dence for the effect of nitrogen application on the competitive
ability of cereal crops against weeds. The outcome of fertilization
on weed–crop competition is context dependent and shaped by
underlying soil fertility, the timing of crop and weed emergence,
maximum heights of the weed and crop, and the relative respon-
siveness of weeds and crop to nitrogen addition and even the
form of nitrogen (e.g. nitrate or ammonium) that is applied.28

Wheat was the only crop for which a significant positive correla-
tion was found between fertilizer and herbicide input, and the
positive coefficient for fertilizer input could be acting as a proxy
for herbicide input.
Nevertheless, it should be borne inmind that herbicides and fer-

tilizers are not applied to all cropland at a similar rate, nor are all
herbicides used in similar amounts58,59 and thus the total volume

used in a country may over- or underestimate the amount applied
to particular crops. For example, per unit area, an order of magni-
tude greater volume of herbicide is applied to maize compared
with wheat crops in the USA.60 Although all four cereal crops were
a significant component of agricultural land use in the countries
where they are grown, on average they still accounted for only a
moderate percentage of total cropland that would receive herbi-
cide and fertilizer input: barley (12.4%), maize (12.1%), rice (12.6%)
andwheat (18.6%). A further challenge is that there is likely to be a
considerable lag between changes in agronomic conditions, such
as increased herbicide input, and the recording of herbicide-
resistant weeds due both to the time required for natural selec-
tion of weed genotypes to occur and the delay between the
appearance of herbicide resistance and its subsequent detection.

5 CONCLUSIONS
In summary, despite the evolution of herbicide resistance
largely reflecting specific local management contexts,13,14,61 a
global analysis generated robust and sensible insights into
the drivers of herbicide resistance for individual countries. Fur-
thermore, the results are of considerable concern. It is highly
likely that the global picture of herbicide-resistant weeds cur-
rently underestimates the significance of the problem with a
considerable risk of under-sampling occurring in countries
with limited relevant research capability. Many of these coun-
tries have only detected herbicide resistance relatively recently
and the evidence points to a trajectory of increasing numbers
of herbicide-resistant weeds in the future. Because of time lags
between changes in selection pressures on weeds for herbi-
cide resistance and the subsequent detection of herbicide-
resistant weeds, many countries already face a ‘herbicide
resistance debt’ that has set the scene for future herbicide-
resistant weeds. Such trends would be sufficiently worrying
on their own, but the important role that crop harvested area
and measures of agricultural intensification (fertilizer and her-
bicide inputs, human population density) suggests that the
pressure to increase agricultural productivity, particularly in
developing countries, will come at a cost of increased numbers
of herbicide-resistant weeds. A global strategy for increasing
national capability in the detection and management of
herbicide-resistant weeds, particularly in those countries with
limited investment in agricultural extension, should be a
priority.
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