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Abstract

A mathematical model describing continuous microbial culture and harvest in a

chemostat, incorporating a control strategy and defined by impulsive differential

equations, is presented and investigated. Theoretical results indicate that the model

has a microbe-extinction periodic solution, which is globally attractive if the threshold

R1 is less than unity, and the model is permanent if the threshold R2 is greater than

unity. Further, we consider the control strategy under time delay and periodical

impulsive effect. Analysis shows that continuous microbial culture and harvest

process can be implemented by adjusting time delay, impulsive period or input

amount of flocculant. Finally, we give an example with numerical simulations to

illustrate the control strategy.
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1 Introduction andmodel formulation

A chemostat is a classical bioreactor for microbes culture and has been widely applied in

the field ofmicrobiology and bioengineering [, ]. The chemostat model has attracted the

attention of many scholars since it was introduced by Monod in  []. These models

include mathematical models [–] and experimental models [–]. A simple chemo-

stat can be designed by using a pump or an overflow system (see Figure ), by which the

volume of the chemostat can be controlled either [].

It was found that some microbes can produce flocculation under the action of floccu-

lating agents. This phenomenon makes it possible to harvest microbes by flocculating

agents [–]. Recently, based on a classical simple chemostatmodel inwhich amicrobial

species consumes a single growth limiting substrate [, ], Tai et al. [] have proposed a

delayed differential equations (DDEs) model to describe the process of microbial contin-

uous culture and harvest as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dS(t)
dt

=D(S – S(t)) – hx(t)S(t),

dx(t)
dt

= hx(t – τ )S(t – τ ) –Dx(t) – hx(t)F(t),

dF(t)
dt

=D(F – F(t)) – hx(t)F(t),

()
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Figure 1 Two types of chemostat. (a) Type I chemostat. (b) Type II chemostat.

where S(t), x(t) and F(t) represent the concentration of the substrate, microbia and floc-

culating agent at time t, respectively. D represents the velocity of medium, S and F rep-

resent the input concentration of substrate and flocculating agent, respectively. h and h

represent the consumption of medium and the yield of microbia, respectively. h is the

loss rate of flocculant. τ represents the time involved converting nutrient into the micro-

bia [–]. The authors found that the model can produce backward bifurcation and

complex dynamics. By establishing analytic thresholds for the existence of backward bi-

furcation, they analyzed the local stability of the equilibria.

In model (), the flocculating agent is assumed to be added into the chemostat continu-

ously.While in practice, by considering resource savings and the growth cycle of microor-

ganisms, the flocculating agent can be periodically added into the chemostat at some fixed

moment. Thus we perfect the chemostat system by adding input channel of flocculants

and output channel of flocculation by two pumps, respectively (see Figure ). It can be

regulated through inputting flocculant to flocculate microbia according to the concentra-

tion of microbia. This process can be described by impulsive differential equations (IDEs).

Impulsive differential equations, on the one hand, can fully reflect the actual control situ-
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Figure 2 Themodified chemostat.

ation; on the other hand, they can guide the operator to implement the impulsive control

strategy conveniently and accurately [–]. Thus, we propose a new continuous culture

chemostat model with time delay and impulsive harvest as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dS(t)
dt

=D(S – S(t)) – hx(t)S(t),

dx(t)
dt

= e–Dτhx(t – τ )S(t – τ ) –Dx(t) – hx(t)F(t),

dF(t)
dt

= –DF(t) – hx(t)F(t),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

t �= nT ,

S(t+) = S(t),

x(t+) = x(t),

F(t+) = F(t) + γ F,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

t = nT ,

()

where T is the period of the impulsive effect, γ F is the input amount of flocculant at

every impulsive period T . F(nT+) = limt→nT+ F(t), and F(t) is left continuous at t = nT ,

i.e., F(nT) = limt→nT– F(t), S(t), x(t) are continuous for all t ≥ , the details can be seen in

[, ].

Let C+ = C([–τ , ],R
+) be the Banach space, ψ = (ψ(s),ψ(s),ψ(s))

T , ψi(θ ) ≥  (–τ ≤

θ ≤ , i = , , ) the initial conditions are given as

S(θ ) = ψ(θ ), x(θ ) = ψ(θ ), F(θ ) = ψ(θ ),

ψ ∈ C+, ψi() >  (i = , , ).
()

The rest of the paper is organized as follows. In Section , we briefly introduce some

concepts and fundamental results, which are necessary for future discussion. In Section ,

we focus our attention on the global property of system (), including the existence, global

attractivity of themicrobe-extinction periodic solution and the permanence of system ().

In Section , we give the threshold of key parameters of system () and discuss the control

strategy. We finally give a conclusion and numerical simulations in Section , from which

it can be seen that all simulations agree with the theoretical results.
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2 Preliminaries

In this section, we give some useful lemmas.

Let f = (f, f, f)
T be the map defined by the right-hand side of the anterior three equa-

tions of system (). Let R+ = [,∞), R
+ = {x ∈ R : x ≥ }, � = intR

+. LetU : R+ ×R
+ → R+.

If U satisfies the following conditions: () V is continuous in ((n – )T ,nT] × R
+, n ∈ N ,

and for each x ∈ R
+, lim(t,z)→((n–)T+ ,x)U(t, z) = U((n – )T ,x) and lim(t,z)→(nT+ ,x)U(t, z) =

U(nT+,x) exists; () U is locally Lipschitzian in x. Then U is said to belong to class U.

Lemma . ([, ]) Let U : R+ × R
+ → R+, H : R+ × R+ → R and U ∈U. Assume that

⎧

⎨

⎩

D+U(t,w(t))≤ (≥) H(t,U(t,w(t))), t �= nω,

U(t,w(t)+) ≤ (≥) ϒn(U(t,w(t))), t = nω,
()

here H is continuous in (nω, (n + )ω] × R+ and ∀x ∈ R+, n ∈ N , lim(t,y)→((nω)+ ,x)H(t, y) =

H((nω)+,x) exist;ϒn : R+ → R+ is nondecreasing. Let r(t) = r(t, ,u) be the maximal (min-

imal) solution of the scalar impulsive differential equation

⎧

⎨

⎩

u′ =H(t,u), t �= nω,

u(t+) = ϒn(u(t)), t = nω,
()

existing on [,∞). Then U(+,w)≤ (≥) u implies that U(t,w(t))≤ (≥) r(t), t ≥ , where

ω(t) = ω(t, ,w) is any solution of () existing on [,∞).

Lemma. ([]) Let q, q, τ be all positive constants and z(t) >  for t ∈ [–τ , ].Consider

the following delay differential equation:

dz(t)

dt
= qz(t – τ ) – qz(t),

then

(i) if q < q, then limt→∞ z(t) = ;

(ii) if q > q, then limt→∞ z(t) = ∞.

Lemma . ([, ]) Consider the following impulse differential inequalities:

⎧

⎨

⎩

u′(t) ≤ (≥) a(t)u(t) + c(t), t �= tk ,

u(t+k ) ≤ (≥) bku(tk) + dk , t = tk ,k ∈N ,

where a(t), c(t) ∈ C(R+,R), bk ≥ , and dk are constants. Assume

(A) the sequence {tk} satisfies  ≤ t < t < t < · · · , with limt→∞ tk = ∞;

(A) u ∈ PC′(R+,R) and u(t) is left-continuous at tk , k ∈N . Then

u(t) ≤ (≥) u(t)
∏

t<tk<t

dk exp

(∫ t

t

a(s)ds

)

+
∑

t<tk<t

(

∏

tk<tj<t

dj exp

(∫ t

tk

a(s)ds

))

dk

+

∫ t

t

∏

s<tk<t

bk exp

(∫ t

s

a(θ )dθ

)

c(s)ds, t ≥ t.
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Lemma . ([]) Consider the following impulsive differential system:

⎧

⎨

⎩

d�(t)
dt

= r – r�(t), t �= nT ,

�(t+) = �(t) +μ, t = nT ,
()

for each solution �(t) of (), �(t) → �
∗(t) as t → ∞, where �∗(t) = r

r
+ μe–r(t–nT)

–e–rT
for t ∈

(nT , (n + )T].

Lemma . There exist constants M,M,M >  such that S(t) ≤ M, x(t) ≤ M, F(t) ≤

M for each solution of () with all t large enough.

Proof Firstly, from the third and sixth equation of system (), we have

⎧

⎨

⎩

dF(t)
dt

≤ –FS(t), t �= nT ,

F(t+) = F(t) + γ F, t = nT .

By Lemma ., we have F(t)≤ γ F
eDT

eDT–
+ ε for t large enough.

LetV (t) = e–Dτ h
h
S(t–τ )+x(t). It is clear thatV ∈U. Calculating the upper right deriva-

tive of V (t) along a solution of system (), one can get

dV (t)

dt
≤ e–Dτ hDS

h
–DV (t),

then by Lemma ., we have lim supt→∞ V (t) ≤ e–Dτ hS
h

, so V (t) is ultimately bounded.

Thus, S(t) and x(t) are ultimately bounded and lim supt→∞ S(t) ≤ S, lim supt→∞ x(t) ≤

e–Dτ hS
h

. LetM = S+ε,M = e–Dτ hS
h

+ε,M = γ F
eDT

eDT–
+ε, we have S(t)≤ M, x(t)≤ M,

F(t)≤ M for t large enough. The proof is completed. �

3 Global dynamical analysis for system (2)

In this section, we discuss the global dynamics of model (), including the existence and

global attractivity of the microbe-extinction periodic solution and the permanence.

3.1 Existence and global attractivity of the microbe-extinction periodic solution

Microbe-extinction solution describes that microbes are eventually absent from system

(), thus we let x(t) =  in system (), then system () changes to the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dS(t)
dt

=D(S – S(t)),

dF(t)
dt

= –DF(t),

⎫

⎬

⎭

t �= nT ,

S(t+) = S(t),

F(t+) = F(t) + γ F,

⎫

⎬

⎭

t = nT .

()

Note that the variates S(t) and F(t) are independent of each other in system (). Thus,

by Lemma ., we obtain that system () has a unique positive T-periodic solution
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(S∗(t),F∗(t)) and for each solution (S(t),F(t)) of system (), S(t) → S∗(t) and F(t) → F∗(t)

as t → ∞, where

⎧

⎨

⎩

S∗(t) = S,

F∗(t) = γ Fe
–D(t–nT)

–e–DT
.

()

Therefore, we have the existence theorem for system ().

Theorem . System () has a microbe-extinction periodic solution (S, ,F
∗(t)).

Denote

R =
he–DτS

D + h
γ Fe

–(D+hM)T

–e–(D+hM)T

.

We have the following theorem about the attractivity of the microbe-extinction periodic

solution of system ().

Theorem. If R < , then themicrobe-extinction periodic solution (S, ,F
∗(t)) of system

() is globally attractive.

Proof Let (S(t),x(t),F(t)) be any solution of system () satisfying initial condition (). Since

R < , one can choose ε, ε >  such that

he–Dτ (S + ε) <D + h

(

γ Fe
–(D+hM)T

 – e–(D+hM)T
– ε

)

. ()

By the first equation of system (), we have

dS(t)

dt
≤ D

(

S – S(t)
)

.

According to Lemma ., we have

lim sup
t→∞

S(t)≤ S.

Hence, there exists n ∈ N+ such that

S(t)≤ S + ε ()

for all t ≥ nT , where ε is an arbitrarily small positive constant.

By the third and sixth equations of system (), we have

⎧

⎨

⎩

dF(t)
dt

≥ –(D + hM)F(t), t �= nT ,

F(t+) = F(t) + γ F, t = nT ,
()
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then consider the following impulsive differential system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dq(t)
dt

= –(D + hM)q(t), t �= nT ,

q(t+) = q(t) + γ F, t = nT ,

q(+) = F(+).

()

Then, by using Lemma ., we have F(t) ≥ q(t) and q(t) → q∗(t) as t → ∞, q∗(t) is the

periodic solution of (), where q∗(t) = γ Fe
–(D+hM)(t–nT)

–e–(D+hM)T
, nT < t ≤ (n+ )T . By Lemma .,

we have that q∗(t) is globally asymptotically stable. Hence there exists n ∈N+ such that

F(t)≥ q(t) > q∗(t) – ε >
γ Fe

–(D+hM)T

 – e–(D+hM)T
– ε ()

for all t ≥ nT , where ε is an arbitrarily small positive constant.

From the second equation, () and (), there exists a positive integer n > max{n,n},

for t > nT + τ , we have

dx(t)

dt
≤ he–Dτ (S + ε)x(t – τ ) –

(

D + h
γ Fe

–(D+hM)T

 – e–(D+hM)T
– ε

)

x(t).

Consider the following delay differential equation:

dy(t)

dt
= he–Dτ (S + ε)y(t – τ ) –

(

D + h

(

γ Fe
–(D+hM)T

 – e–(D+hM)T
– ε

))

y(t).

Since () holds, by Lemma ., we get limt→∞y(t) = . Notice that for all θ ∈ [–τ , ],

x(θ ) = y(θ ) = ψ(θ ) >  holds. By the comparison theorem in differential equation and the

positivity of solution (with x(t)≥ ), we obtain limt→∞ x(t) = .

Next, wewill prove limt→∞ S(t) = S and limt→∞ F(t) = F∗(t).We assume that  < x(t) < ε

holds for all t ≥  in the following discussion without loss of generality. One the one hand,

by the first equation of system (), one gets

dS(t)

dt
≥ DS – (D + εh)S(t).

Then, we have lim inft→∞ S(t)≥ S
D

D+εh
. Thus, there exists T >  such that for any ε > ,

S(t)≥ S
D

D + εh
– ε ()

for t > T . Let ε → , from () and () we have

S – ε < S(t) < S + ε

for t large enough, then we have limt→∞ S(t) = S.

On the other hand, from the third and sixth equations of system (), we have

⎧

⎨

⎩

dF(t)
dt

≥ –(D + εh)F(t), t �= nT ,

F(t+) = F(t) + γ F, t = nT .
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Then we get the following comparison system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dw(t)
dt

= –(D + εh)w(t), t �= nT ,

w(t
+) = w(t) + γ F, t = nT ,

w(
+) = F(+).

()

By Lemma ., system () has a globally asymptotically stable positive periodic solution

w∗
 (t), wherew

∗
 (t) =

γ Fe
–(D+εh)(t–nT)

–e–(D+εh)T
. Thus, by Lemma., we have F(t)≥ w(t) andw(t) →

w∗
 (t) as t → ∞. Therefore, there exists T ′ >  such that for any ε > ,

F(t)≥ w∗
 (t) – ε ()

for t > T ′. From the third and sixth equations of (), one gets

⎧

⎨

⎩

dF(t)
dt

≤ –DF(t), t �= nT ,

F(t+) = F(t) + γ F, t = nT .

Consider the following comparison system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dw(t)
dt

= –Dw(t), t �= nT ,

w(t
+) = w(t) + γ F, t = nT ,

w(
+) = F(+),

()

then we have F(t) ≤ w(t) and w(t)→ F∗(t). Then, for any ε > , there exists T ′′ >  such

that

F(t)≤ F∗(t) – ε ()

for t > T ′′. Thus, by () and (), for t > max{T ′,T ′′}, we have

w∗
 (t) – ε ≤ F(t)≤ F∗(t) – ε.

Let ε → , we have

F∗(t) – ε < F(t) < F∗(t) + ε

for t large enough, thus we get limt→∞ F(t) = F. This completes the proof. �

3.2 Permanence

In this section,we prove that system () is persistent forR > . Firstly, we give the following

lemma supporting our main conclusion. Denote

R =
he–DτS

D + h
γ F

–e–DT

.
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Lemma . If R > , then there exists a constant m >  such that

lim inf
t→∞

x(t)≥ min

{

m


,me

–(D+h̺)τ

}

=m.

Proof Let X(t) = (S(t),x(t),F(t)) be any positive solution of system () with initial condi-

tion (). We rewrite the second equation of system () as follows:

dx(t)

dt
=

(

e–DτhS(t) –D – hF(t)
)

x(t) – e–Dτh

∫ t

t–τ

x(σ )S(σ )dσ .

Define

G(t) = x(t) + e–Dτh

∫ t

t–τ

x(σ )S(σ )dσ .

Calculating the derivative of G(t) along the solution of () yields

dG(t)

dt
=

(

e–DτhS(t) –D – hF(t)
)

x(t). ()

Letm =
(R–)D
(R+)h

. Since R > , it is clear thatm > . Form, one can choose ε, ε >  small

enough such that

e–Dτh̺

D + h̺

> , ()

where ̺ =
DS

D+hm
–ε, ̺ =

γ F
–e–DT

+ε. Then, for any positive constant t and for all t ≥ t,

we claim that the inequality x(t) <m cannot hold. Otherwise, there must exist a positive

constant t such that x(t) <m for all t ≥ t. The first equation of system () leads to

dS(t)

dt
≥ DS – (D + hm)S(t).

By Lemma ., there exists such T > t + τ for t > T that

S(t) >
DS

D + hm

– ε = ̺. ()

From (), there exists such T > t + τ for t ≥ T that

F(t) < F∗(t) + ε =
γ Fe

–D(t–nT)

 – e–DT
+ ε <

γ F

 – e–DT
+ ε = ̺. ()

Thus by (), () and (), for t > T = max{T,T}, one gets

dG(t)

dt
≥ (D + h̺)

(

e–Dτh̺

D + h̺

– 

)

x(t). ()

Let

xl = min
t∈[T ,T+τ ]

x(t).
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We can prove that x(t) ≥ xl for all t ≥ T. Otherwise, there exists a constant T ≥  such

that x(t) ≥ xl for t ∈ [T,T + τ +T], x(T + τ +T) = xl and ẋ(T + τ +T) ≤ . Then from

the second equation of (), () and (), we have

ẋ(T + τ + T) >
(

e–Dτh̺ –D – h̺

)

xl

= (D + h̺)

(

e–Dτh̺

D + h̺

– 

)

xl

> ,

which is a contradiction. Hence x(t)≥ xl >  for all t ≥ T. Inequality () implies

dG(t)

dt
≥ (D + h̺)

(

e–Dτh̺

D + h̺

– 

)

xl > , ()

which implies G(t) → +∞ as t → +∞. This is a contradiction to G(t) ≤ M( +Mτe–DM)

for t large enough. Therefore, for any positive constant t, the inequality x(t) <m cannot

hold for all t ≥ t.

Step II: From Step I, we only need to consider:

(i) x(t) >m for all t large enough;

(ii) x(t) oscillates aboutm for all large t.

However, case (i) is obviously the result of this theorem, so we only need to consider case

(ii), in which we shall show that x(t) >m for all large t, where

m = min

{

m


,me

–(D+h̺)τ

}

.

First, we notice that there would be two positive arbitrarily big constants t̄, ϕ such that

x(t) <m for t̄ < t < t̄+ϕ and x(t̄) = x(t̄+ϕ) =m. Second, there exists a constant  < T < τ

such that x(t) > m


for all t̄ ≤ t ≤ t̄ + T. Because x(t) is not affected by impulses and,

moreover, x(t) is bound and continuous, then we conclude that T is independent of the

choice of t̄. Next, according to the position of ϕ, T, τ , there will be three cases we should

discuss.

Case ii(a): ϕ ≤ T, obviously our aim is obtained.

Case ii(b): T < ϕ ≤ τ . By (), the second equation of () implies

ẋ(t)≥ –(D + h̺)x(t)

for t̄ < t ≤ t̄ + ϕ < t̄ + τ . Then we have

x(t)≥ x(t̄)e–(D+h̺)τ

for t̄ < t ≤ t̄ + ϕ ≤ t̄ + τ , notice x(t̄) =m, one can get

x(t)≥ me
–(D+h̺)τ

for t̄ < t ≤ t̄ + ϕ ≤ t̄ + τ . Thus we have x(t)≥ m for t̄ < t ≤ t̄ + ϕ.
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Case ii(c): ϕ ≥ τ . We have proved x(t)≥ m for t̄ < t ≤ t̄ + τ . For t̄ + τ ≤ t ≤ t̄ +ϕ, we can

analyze and prove x(t) ≥m as the proof for the above claim. Because of the arbitrariness

of interval [t̄, t̄ + ϕ] and because t̄ is an arbitrarily big constant, we have that x(t) ≥ m

holds for t large enough. Finally, notice that the choice ofm is independent of the positive

solution of (), which satisfies that x(t)≥ m for t large enough. This completes the proof

of Lemma .. �

Theorem . For R > , then system () will be permanent.

Proof Let X(t) = (S(t),x(t),F(t)) be any positive solution of system () with initial condi-

tion (). From the first equation of system (), we get

dS(t)

dt
≥ DS – (D + hM)S(t),

then we have

lim inf
t→∞

S(t)≥
DS

D + hM
.

Thus there exists a constant ε small enough such that

S(t) >
DS

D + hM
– ε =m > 

for t large enough. And from () we have

F(t)≥ z(t) > z∗(t) – ε >
γ Fe

–(D+hM)T

 – e–(D+hM)T
=m >  ()

for t large enough.

Set

D =
{

(S,x,F) ∈ R
+|m ≤ S ≤ M,m ≤ x ≤ M,m ≤ F ≤ M

}

.

Thus D is a bounded compact region and every solution of system () will eventually en-

ter and remain in region D, then system () is permanent. The proof of Theorem . is

completed. �

4 Control strategy of continuousmicrobial culture and harvest

In Section , we obtain the threshold values R and R associatedwithmicrobial extinction

and existence. Next, we discuss the control strategy of continuous microbial culture and

harvest by analyzing the key parameters of the threshold.

Denote

T∗ =


D + hM

ln
he–DτS + hγ F –D

he–DτS –D
,

F∗
 =

he–DτS –D

h
γ e–(D+hM)T

–e–(D+hM)T

,
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Figure 3 Dynamical behavior of solutions of system (26) with R1 = 0.9910 < 1. (a) Time series of S(t), x(t),

F(t). (b) Three-dimensional phase diagrams of S(t), x(t), F(t). (c) Phase diagrams of x(t), F(t). (d) Phase diagrams

of x(t), S(t).

τ ∗ =


D
ln

hS

D + h
γ Fe

–(D+hM)T

–e–(D+hM)T

,

T∗ =


D
ln

he–DτS + hγ F –D

he–DτS –D
,

F∗ =
(he–DτS –D)( – e–DT )

hγ
,

τ∗ =


D
ln

hS

D + h
γ F

–e–DT

.

According to Theorem ., we have that if T < T∗ or F > F∗
 or τ > τ ∗, the microbe-

extinction periodic solution (S, ,F
∗(t)) is globally attractive. That means the microbial

continuous cultivation and harvest have failed. And from Theorem ., we know that if

T > T∗ or F < F∗ or τ < τ∗, then system () is permanent. That means we can achieve

the process of microbial cultivation by increasing the time interval, or reducing the input

amount of flocculant, or shortening the growth delay.

5 Discussion and numerical simulations

In this paper, to achieve the continuous microbial culture and harvest, we improve the

classic chemostat model and propose a new chemostat model with time delay and peri-
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Figure 4 Dynamical behavior of solutions of system (26) with R2 = 1.0647 > 1. (a) Time series of S(t), x(t),

F(t). (b) Three-dimensional phase diagrams of S(t), x(t), F(t). (c) Phase diagrams of x(t), F(t). (d) Phase diagrams

of x(t), S(t).

odical flocculant input. Our main aim is to investigate the control strategy of continuous

microbial culture and harvest. By using the theory of impulsive delayed differential equa-

tions, global properties of the system are discussed. We prove that if R < , then the mi-

crobe will be eventually extinct, and if R > , the microbe species is permanent. Based

on the threshold values associated with microbial extinction and existence, we consider

the control strategy. Results show that we can culture microbia continuously and harvest

microbia many times by adjusting the time interval (T ) or the input amount of flocculant

(γ F), or the time delay (τ ).

Next we will verify the effectiveness of control strategy by an example and some numer-

ical simulations. Let D = ., S = ., h = ., h = ., h = ., h = ., γ = , and let

the initial value be (, , ). We get the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dS(t)
dt

= .(. – S(t)) – .x(t)S(t),

dx(t)
dt

= .e–.τx(t – τ )S(t – τ ) – .x(t) – .x(t)F(t),

dF(t)
dt

= –.F(t) – .x(t)F(t),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

t �= nT ,

S(t+) = S(t),

x(t+) = x(t),

F(t+) = F(t) + γ F,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

t = nT .

()
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Figure 5 Dynamical behavior of solutions of system (26) with R2 = 1.0069 > 1. (a) Time series of S(t), x(t),

F(t). (b) Three-dimensional phase diagrams of S(t), x(t), F(t). (c) Phase diagrams of x(t), F(t). (d) Phase diagrams

of x(t), S(t).

To investigate the effects of key parameters on the system, we assume τ = , T = ,

F = . By simple calculation, we have R = . < . Figure  shows that the microbe-

eradication periodic solution (S, ,F
∗(t)) is globally attractive. Thatmeansmicrobial con-

tinuous cultivation and harvest have failed because the microbe will be eventually extinct.

To achieve microbial continuous cultivation and harvest, we can take three kinds of con-

trol strategies.

(i) We can reduce the input of flocculant F (from  to .). By calculating, we have

R = . > . According to Theorem ., system () is permanent. A lower

amount of flocculant can increase population microbia in the medium so that

microbe can be cultured continuously in the chemostat system. Figure  shows that

system () is permanent.

(ii) We can increase the time travail T (from  to ). Longer time travail can decrease

input mount of flocculant indirectly and increase population microbia in the

medium, which makes microbia cultured and harvested continuously. By

calculating, we have R = . > . According to Theorem ., system () is

permanent (see Figure ). Figure  also shows that system () has an

asymptotically stable periodic solution.

(iii) We can decrease time delay τ (from  to .) by some biotechnology and biological

engineering. Reduction of growth time delay makes the microbial growth cycle

shorter, which is beneficial for microbial continuous cultivation. Figure  shows

that system () is permanent. Moreover, system () has an asymptotically stable
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Figure 6 Dynamical behavior of solutions of system (26) with R2 = 1.1432 > 1. (a) Time series of S(t), x(t),

F(t). (b) Three-dimensional phase diagrams of S(t), x(t), F(t). (c) Phase diagrams of x(t), F(t). (d) Phase diagrams

of x(t), S(t).

Table 1 Values of parameters, threshold and state of the system

τ D S0 h1 h h2 h3 T γ F0 Ri (i = 1,2) Microbe Figure

2 0.3 2.8 0.4 0.3 0.15 0.02 2 1 1 R1 = 0.9910 < 1 Eradication Figure 3

2 0.3 2.8 0.4 0.3 0.15 0.02 2 1 0.4 R2 = 1.0647 > 1 Permanence Figure 4

2 0.3 2.8 0.4 0.3 0.15 0.02 10 1 1 R2 = 1.0069 > 1 Permanence Figure 5

0.5 0.3 2.8 0.4 0.3 0.15 0.02 2 1 1 R2 = 1.1432 > 1 Permanence Figure 6

periodic solution (where R = . > ). Detailed parameter values, thresholds

and states of system (), please see Table .
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