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Abstract This paper investigates the global stabil-

ity analysis of two-strain epidemic model with two

general incidence rates. The problem is modelled by

a system of six nonlinear ordinary differential equa-

tions describing the evolution of susceptible, exposed,

infected and removed individuals. The wellposedness

of the suggested model is established in terms of exis-

tence, positivity and boundedness of solutions. Four

equilibrium points are given, namely the disease-free

equilibrium, the endemic equilibrium with respect to

strain 1, the endemic equilibrium with respect to strain

2, and the last endemic equilibrium with respect to both

strains. By constructing suitable Lyapunov functional,

the global stability of the disease-free equilibrium is

proved depending on the basic reproduction number

R0. Furthermore, using other appropriate Lyapunov

functionals, the global stability results of the endemic

equilibria are established depending on the strain 1

reproduction number R1
0 and the strain 2 reproduc-

tion number R2
0 . Numerical simulations are performed

in order to confirm the different theoretical results. It

was observed that the model with a generalized inci-

dence functions encompasses a large number of models

with classical incidence functions and it gives a signifi-

cant wide view about the equilibria stability. Numerical

comparison between the model results and COVID-19
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clinical data was conducted. Good fit of the model to

the real clinical data was remarked. The impact of the

quarantine strategy on controlling the infection spread

is discussed. The generalization of the problem to a

more complex compartmental model is illustrated at

the end of this paper.
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incidence function · Multi-strain epidemic model ·
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1 Introduction

Nowadays, several infectious diseases are still target-

ing huge populations. They are considered amongst the

principal causes of mortality, especially in many devel-

oping countries. Accordingly, mathematical modelling

in epidemiology occupies more and more an increas-

ingly preponderant place in public health research. This

research discipline contributes indeed to well under-

stand the studied epidemiological phenomenon and

apprehend the different factors that can lead to a severe

epidemic or even to a dangerous pandemic worldwide.

The classical susceptible-infected-recovered (SIR) epi-

demic model was first introduced in [1]. Neverthe-

less, in many cases, the infection incubation period

may take a long time interval. In this period, an incu-

bated individual remains latent but not yet infectious.

Therefore, another class of exposed individuals should

be added to SIR and the new epidemic model will

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-020-05929-4&domain=pdf


490 O. Khyar, K. Allali

have SEIR abbreviation. Furthermore, epidemiological

studies have revealed that the phenomenon of mutation

causes more and more resistant viruses giving appear-

ance of many new harmful epidemics or even new dan-

gerous pandemics. Indeed, H1N1 flu virus is consid-

ered as mutation of the seasonal influenza [2,3]. Also,

the late coronavirus disease COVID-19 caused by the

severe acute respiratory syndrome-related coronavirus

SARS-Cov-2 is classified as a strain of SARS-CoV-

1 [4]. Other processes of mutation were observed in

many infections such as tuberculosis, human immun-

odeficiency virus and dengue fever [5–7]. For this rea-

son, the multi-strain SEIR epidemic models present

an important tool to study several infectious diseases

that include a long incubation period and also vari-

ous infection strains. The relevance of studying multi-

strain models is to find out the different conditions

permitting the coexistence of all acting strains. The

global dynamics of one-strain SEIR model have been

the subject of many investigations by considering either

bilinear or nonlinear incidence rates [8–10]. The global

stability of two-strain SEIR model have been tackled

in [11], the authors include to the studied model two

incidence functions, the first one is bilinear, while the

second function is non-monotonic. Recently, the same

problem was studied in [12] by assuming that the two

incidence functions are non-monotonic. It is worthy to

mention that the incidence rate gives more information

of the disease transmission. Hence, the general inci-

dence function has as goal to represent a large set of

infection incidence rates. Accordingly, the purpose of

this work is to generalize the previous models by taking

into account a multi-strain SEIR model with two gen-

eral incidence rates. Hence, our study will be carried

out on the following two- strain generalized epidemic

model:
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⎪

⎩

dS

dt
= Λ − f (S, I1)I1 − g(S, I2)I2 − δS,

dE1

dt
= f (S, I1)I1 − (γ1 + δ)E1,

dE2

dt
= g(S, I2)I2 − (γ2 + δ)E2,

dI1

dt
= γ1 E1 − (µ1 + δ)I1,

dI2

dt
= γ2 E2 − (µ2 + δ)I2,

dR

dt
= µ1 I1 + µ2 I2 − δR,

(1.1)

with

S(0) ≥ 0, E1(0) ≥ 0, E2(0) ≥ 0,

I1(0) ≥ 0, I2(0) ≥ 0, R(0) ≥ 0.

where (S) is the number of susceptible individuals,

(E1) and (E2) are, respectively, the numbers of each

latent individuals class, (I1) and (I2) are, respectively,

the numbers of each infectious individuals class and

(R) is the number of removed individuals. The param-

eter Λ is the recruitment rate, δ is the death rate of

the population, γ1 and γ2 are, respectively, the latency

rates of strain 1 and strain 2, µ1 and µ2 are, respectively,

the two-strain transfer rates from infected to recovered.

The general incidence functions f (S, I1) and g(S, I2)

stand for the infection transmission rates for strain 1 and

strain 2, respectively. The incidence functions f (S, I1)

and g(S, I2) are assumed to be continuously differen-

tiable in the interior of R
2
+ and satisfy the same prop-

erties as in [13,14]:

f (0, I1) = 0,

g(0, I2) = 0, for all Ii ≥ 0, i = 1, 2, (H1)

∂ f

∂S
(S, I1) > 0,

∂g

∂S
(S, I2) > 0, ∀S > 0, ∀Ii ≥ 0, i = 1, 2, (H2)

∂ f

∂ I1
(S, I1) ≤ 0,

∂g

∂ I2
(S, I2) ≤ 0, ∀S ≥ 0, ∀Ii ≥ 0, i = 1, 2. (H3)

The properties (H1), (H2) and (H3), for the both func-

tions f and g, are easily verified by several classical

biological incidence rates such as the bilinear incidence

functionβS [1,15,16], the saturated incidence function
βS

1 + α1S
or

βS

1 + α2 I
[17,18], Beddington–DeAngelis

incidence function
βS

1 + α1S + α2 I
[19–21], Crowley–

Martin incidence function
βS

1 + α1S + α2 I + α1α2SI
[22–24], the specific nonlinear incidence function

βS

1 + α1S + α2 I + α3SI
[25–29] and non-monotone

incidence function
βS

1 + α I 2
[30–34]. The flowchart

of the two-strain epidemiological SEIR model is illus-

trated in Fig. 1. Our main contribution centres around

the global stability of multi-strain SEIR epidemic

model with general incidence rates. In addition, a

numerical comparison between our two-strain epi-

demic model results and COVID-19 clinical data will
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be conducted. It will be worthy to notice that the

dynamics of SEIR COVID-19 epidemic model with

two bilinear incidence functions was tackled in [35],

and the authors introduce seasonality and stochasticity

in order to describe the infection rate parameters. Tak-

ing into account non-monotone incidence function, the

technique of sliding mode control was used to study

an SEIR epidemic model describing COVID-19 dis-

ease [36]. The COVID-19 SEIR epidemiological model

with Crowley–Martin incidence rate was studied [37],

and the authors study the effect of different parame-

ters on the disease spread. In our numerical compar-

ison with COVID-19 clinical data, we will take into

account the three latter incidence functions along with

Beddington–DeAngelis incidence rate. A brief analy-

sis to a more complex compartmental epidemic model

will be established in Appendix of this paper.

The rest of this paper is outlined as follows. In the

next section, we will establish the wellposedness of

the suggested model by proving the existence, positiv-

ity and boundedness of solutions. In Sect. 3, we present

an analysis of the model, we calculate the basic repro-

duction number of our epidemic model and we prove

the global stability of the equilibria. Numerical simu-

lations are given in Sect. 4 by using different specific

incidence functions, and the comparison between the

numerical results and COVID-19 clinical data is con-

ducted in the same section. The generalization of the

problem to a more complex compartmental model as

well as concluding remarks is given at the end of this

paper.

2 The problem wellposedness and steady states

2.1 Positivity and boundedness of solutions

For the problems dealing with population dynamics,

all the variables must be positive and bounded. We will

assume first that all the model parameters are positive.

Proposition 1 For all non-negative initial data, the

solutions of the problem (1.1) exist, remain bounded

and non-negative.

Moreover, we have N (t) ≤ Λ
δ

+ N (0).

Proof By the fundamental theory of differential equa-

tions functional framework (see for instance [38] and

the references therein), we confirm that there exists a

unique local solution to the problem (1.1).

In order to prove the positivity result, we will show

that any solution starting from non-negative orthant

R
6
+ = {(S, E1, E2, I1, I2, R) ∈ R

6 : S ≥ 0, E1 ≥

0, E2 ≥ 0, I1 ≥ 0, I2 ≥ 0 , R ≥ 0 } remains there

forever.

First, let

T = sup{τ ≥ 0 | ∀t ∈ [0, τ ] such that S(t) ≥ 0,

E1(t) ≥ 0, E2(t) ≥ 0, I1(t) ≥ 0,

I2(t) ≥ 0 , R(t) ≥ 0} (2.1)

Let us now prove that T = +∞. Suppose that T is

finite; by continuity of solutions, we have

S(T ) = 0 or E1(T ) = 0 or E2(T ) = 0 or

I1(T ) = 0 or I2(T ) = 0 or R(T ) = 0.

If S(T ) = 0 before the other variables E1, E2, I1, I2,

R, become zero. Therefore,

dS(T )

dt
= lim

t→T −

S(T ) − S(t)

T − t
= lim

t→T −

−S(t)

T − t
≤ 0.

(2.2)

From the first equation of system (1.1), we have

Ṡ(T ) = Λ − f (S(T ), I1(T )) I1(T )

− g(S(T ), I2(T )) I2(T ) − δS(T ), (2.3)

then,

Ṡ(T )=Λ − f (0, I1(T )) I1(T ) − g(0, I2(T )) I2(T ),

(2.4)

However, from (H1) we have

Ṡ(T ) = Λ > 0 (2.5)

which presents a contradiction.

If E1(T ) = 0 before S, E2, I1, I2 and R. Then,

dE1(T )

dt
= lim

t→T −

E1(T ) − E1(t)

T − t
= lim

t→T −

−E1(t)

T − t
≤ 0.

(2.6)

Again, from the second equation of the system (1.1)

with the fact E1(T ) = 0, we will have

dE1(T )

dt
= f (S, I1)I1. (2.7)

However, from (H1) and (H2), f (S, I1)I1 is positive,

then we will have

dE1(T )

dt
> 0. (2.8)
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Fig. 1 Flowchart of

two-strain SEIR model

Λ
S(t)

δS

f(S, I1)I1

E1(t)

δE1

γ1E1

I1(t)

δI1

E2(t)

δE2

g(S, I2)I2

γ2E2

I2(t)

δI2

µ1I1

µ2I2

R(t)
δR

Also, if I1 = 0 before S, E1, E2, I2, R become zero

then

dI1(T )

dt
= lim

t→T −

I1(T ) − I1(t)

T − t
= lim

t→T −

−I1(t)

T − t
≤ 0.

(2.9)

But from the fourth equation of the system (1.1) with

I1(T ) = 0, we will have

dI1(T )

dt
= γ1 E1. (2.10)

Since γ1 > 0, we have

dI1(T )

dt
= γ1 E1 > 0. (2.11)

This leads to contradiction.

Similar proofs for E2(t), I2(t) and R(t).

We conclude that T could not be finite, which

implies that S(t) ≥ 0, E1(t) ≥ 0, E2(t) ≥

0, I1(t) ≥ 0, I2(t) ≥ 0 , R(t) ≥ 0 for all positive

times. This proves the positivity of solutions.

About boundedness, let the total population

N (t) = S(t)+E1(t)+E2(t)+I1(t)+I2(t) + R(t).

(2.12)

From the system (1.1), we have

dN (t)

dt
= Λ − δN (t), (2.13)

and therefore,

N (t) =
Λ

δ
+ K e−δt , (2.14)

at t = 0, we have

N (0) =
Λ

δ
+ K , (2.15)

then

N (t) =
Λ

δ
+ (N (0) −

Λ

δ
)e−δt , (2.16)

consequently

N (t) ≤
Λ

δ
+ N (0)e−δt , (2.17)

since 0 < e−δt ≤ 1, for all t ≥ 0, we conclude that

N (t) ≤
Λ

δ
+ N (0) . (2.18)

This implies that N (t) is bounded, and so are S(t),

E1(t), E2(t), I1(t), I2(t) and R(t). Thus, the local

solution can be prolonged to any positive time, which

means that the unique solution exists globally. ⊓⊔

2.2 The steady states

In this subsection, we show that there exist a disease-

free equilibrium and three endemic equilibria. First,

since the first five equations of the system (1.1) are

independent of R and knowing that the number of the

total population verifies the Eq. (2.14), so we can omit

the sixth equation of the system (1.1). Therefore, the

problem can be reduced to:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dS

dt
= Λ − f (S, I1)I1 − g(S, I2)I2 − δS,

dE1

dt
= f (S, I1)I1 − (γ1 + δ)E1,

dE2

dt
= g(S, I2)I2 − (γ2 + δ)E2,

dI1

dt
= γ1 E1 − (µ1 + δ)I1,

dI2

dt
= γ2 E2 − (µ2 + δ)I2,

(2.19)
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with

R = N − S − E1 − E2 − I1 − I2. (2.20)

As usual, the basic reproduction number can be defined

as the average number of new cases of an infection

caused by one infected individual when all the pop-

ulation individuals are susceptibles. We will use the

next generation matrix FV −1 to calculate the basic

reproduction number R0. The formula that gives us the

basic reproduction number is: R0 = ρ(FV −1), where

ρ stands for the spectral radius, F is the non-negative

matrix of new infection cases and V is the matrix of

the transition of infections associated with the model

(2.19). We have

F =

⎛

⎜

⎜

⎝

0 0 f (Λ
δ
, 0) 0

0 0 0 g(Λ
δ
, 0)

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎠

,

V =

⎛

⎜

⎜

⎝

γ1 + δ 0 0 0

0 γ2 + δ 0 0

−γ1 0 µ1 + δ 0

0 −γ2 0 µ2 + δ

⎞

⎟

⎟

⎠

.

So,

FV −1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f (Λ
δ
, 0)γ1

(γ1 + δ)(µ1 + δ)
0

f (Λ
δ
, 0)

(µ1 + δ)
0

0
g(Λ

δ
, 0)γ2

(γ2 + δ)(µ2 + δ)
0

g(Λ
δ
, 0)

(µ1 + δ)
0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The basic reproduction number is the spectral radius of

the matrix FV −1. This fact implies that

R0 = max{R1
0, R2

0}, (2.21)

with

R1
0 =

f (Λ
δ
, 0)γ1

(γ1 + δ)(µ1 + δ)
(2.22)

and

R2
0 =

g(Λ
δ
, 0)γ2

(γ2 + δ)(µ2 + δ)
. (2.23)

We denote

a = γ1 + δ, b = γ2 + δ, c = µ1 + δ, e = µ2 + δ,

then

R1
0 =

f (Λ
δ
, 0)γ1

ac
(2.24)

and

R2
0 =

g(Λ
δ
, 0)γ2

be
. (2.25)

We call R1
0 the strain 1 reproduction number and R2

0

the strain 2 reproduction number.

Theorem 1 The problem (2.19) have the disease-free

equilibrium E f and three endemic equilibria Es1 , Es2

and Est . Moreover, we have

– The strain 1 endemic equilibrium Es1 exists when

R1
0 > 1.

– The strain 2 endemic equilibrium Es2 exists when

R2
0 > 1.

– The third endemic equilibrium Est exists when R1
0 >

1 and R1
0 > 1.

Proof In order to find the steady states of the system

(2.19), we solve the following equations

Λ − f (S, I1)I1 − g(S, I2)I2 − δS = 0, (2.26)

f (S, I1)I1 − (γ1 + δ)E1 = 0, (2.27)

g(S, I2)I2 − (γ2 + δ)E2 = 0, (2.28)

γ1 E1 − (µ1 + δ)I1 = 0, (2.29)

γ2 E2 − (µ2 + δ)I2 = 0. (2.30)

From where, we obtain

– When I1 = 0 and I2 = 0, we find the disease-free

equilibrium

E f =

(

Λ

δ
, 0, 0, 0, 0

)

.

– When I1 
= 0 and I2 = 0, we find the strain 1

endemic equilibrium defined as follows

Es1 =

(

S∗
1 ,

1

a
(Λ − δS∗

1 ), 0,
γ1

ac
(Λ − δS∗

1 ), 0

)

,

where S∗
1 ∈

[

0,
Λ

δ

]

.

Define now a function Ψ on [0,+∞[ as follows

Ψ (S) = f (S,
γ1

ac
(Λ − δS)) −

ac

γ1
. (2.31)
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We have

∂Ψ (S)

∂S
=

∂ f (S, I1)

∂S
+

∂ f (S, I1)

∂ I1

(

−δγ1

ac

)

,

(2.32)

using the conditions (H2) and (H3), we deduce that

∂Ψ (S)

∂S
≥ 0. (2.33)

However, Ψ (0) = f (0, I ∗
1,s1

) −
ac

γ1
= −

ac

γ1
< 0.

Therefore, for R1
0 > 1, we he have

Ψ

(

Λ

δ

)

= f

(

Λ

δ
, 0

)

−
ac

γ1
=

ac

γ1
(R1

0 − 1) > 0.

(2.34)

Hence, there exists a unique strain 1 endemic equi-

librium

Es1 =
(

S∗
1 , E∗

1,s1
, E∗

2,s1
, I ∗

1,s1
, I ∗

2,s1

)

, (2.35)

with S∗
1 ∈

]

0,
Λ

δ

[

, E∗
1,s1

> 0, I ∗
1,s1

> 0 and E∗
2,s1

=

I ∗
2,s1

= 0.

– When I2 
= 0 and I1 = 0, we find the strain 2

endemic equilibrium defined as follows

Es2 =

(

S∗
2 , 0,

1

b
(Λ − δS∗

2 ), 0,
γ2

be
(Λ − δS∗

2 )

)

,

where S∗
2 ∈

[

0,
Λ

δ

]

.

Define also a function Φ on [0,+∞[ as follows

Φ(S) = g(S,
γ2

be
(Λ − δS)) −

be

γ2
. (2.36)

We have

∂Φ(S)

∂S
=

∂g(S, I2)

∂S
+

∂g(S, I2)

∂ I2

(

−δγ2

be

)

,

(2.37)

using the conditions (H2) and (H3), we conclude

that

∂Φ(S)

∂S
≥ 0. (2.38)

However, Φ(0) = g(0, I ∗
2,s2

) −
be

γ2
= −

be

γ2
< 0.

So, for R2
0 > 1, we have

Φ

(

Λ

δ

)

= g

(

Λ

δ
, 0

)

−
be

γ2
=

be

γ2
(R2

0 − 1) > 0.

(2.39)

Hence, there exists a unique strain 2 endemic equi-

librium

Es2 =
(

S∗
2 , E∗

1,s2
, E∗

2,s2
, I ∗

1,s2
, I ∗

2,s2

)

, (2.40)

with S∗
2 ∈

]

0,
Λ

δ

[

, E∗
2,s2

> 0, I ∗
2,s2

> 0 and

E∗
1,s2

= I ∗
1,s2

= 0.

– When I1 
= 0 and I2 
= 0, we find the third

endemic equilibrium defined as follows

Et =
(

S∗
t , E∗

1,t , E∗
2,t , I ∗

1,t , I ∗
2,t

)

, (2.41)

where

E∗
1,t =

c

γ1
I ∗
1,t , E∗

2,t =
e

γ2
I ∗
2,t , (2.42)

S∗
t =

1

δ

[

Λ −
f (Λ

δ
, 0)

R1
0

I ∗
1,t −

g(Λ
δ
, 0)

R2
0

I ∗
2,t ,

]

(2.43)

with Λ ≥
f (Λ

δ
, 0)

R1
0

I ∗
1,t +

g(Λ
δ
, 0)

R2
0

I ∗
2,t , R1

0 > 1 and

R2
0 > 1. ⊓⊔

3 Global stability of equilibria

3.1 Global stability of disease-free equilibrium

Theorem 2 If R0 ≤ 1, then the disease-free equilib-

rium E f is globally asymptotically stable.

Proof First, we consider the following Lyapunov func-

tion in R
5
+:

L f (S, E1, E2, I1, I2) = S − S∗
0 −

∫ S

S∗
0

f (S∗
0 , 0)

f (X, 0)
dX

+E1 + E2 +
a

γ1
I1 +

b

γ2
I2.

(3.1)

The time derivative is given by

L̇ f (S, E1, E2, I1, I2) = Ṡ −
f (S∗

0 , 0)

f (S, 0)
Ṡ + Ė1 + Ė2

+
a

γ1
İ1 +

b

γ2
İ2,

= δS∗
0

(

1 −
S

S∗
0

)

(

1 −
f (S∗

0 , 0)

f (S, 0)

)

+
ac

γ1
I1

(

f (S, I1)

f (S, 0)
R1

0 − 1

)

(3.2)
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+
be

γ2
I2

(

f (S∗
0 , 0)

f (S, 0)

g(S, I2)

g(S∗
0 , 0)

R2
0 − 1

)

(3.3)

≤ δS∗
0

(

1 −
S

S∗
0

)

(

1 −
f (S∗

0 , 0)

f (S, 0)

)

+
ac

γ1
I1

(

R1
0 − 1

)

+
be

γ2
I2

(

f (S∗
0 , 0)

f (S, 0)

g(S, I2)

g(S∗
0 , 0)

R2
0 − 1

)

(3.4)

We will discuss two cases:

– If S ≤ S∗
0 , using (H2), we will have

g(S, I2)

g(S∗
0 , 0)

≤ 1,

then,

L̇ f (S, E1, E2, I1, I2) ≤ δS∗
0

(

1 −
S

S∗
0

)

(

1 −
f (S∗

0 , 0)

f (S, 0)

)

+
ac

γ1
I1

(

R1
0 − 1

)

+
be

γ2
I2

(

f (S∗
0 , 0)

f (S, 0)
R2

0 − 1

)

. (3.5)

Since R2
0 ≤

f (S, 0)

f (S∗
0 , 0)

≤ 1, we obtain

f (S∗
0 , 0)

f (S, 0)
R2

0 − 1 ≤ 0. (3.6)

Otherwise, 1 −
f (S∗

0 , 0)

f (S, 0)
≤ 0, therefore

δS∗
0

(

1 −
S

S∗
0

) (

1 −
f (S∗

0 , 0)

f (S, 0)

)

≤ 0. (3.7)

– If S∗
0 < S, using (H2), we will have

g(S, I2)

g(S∗
0 , 0)

> 1

and
f (S∗

0 , 0)

f (S, 0)
< 1 then,

L̇ f (S, E1, E2, I1, I2) ≤ δS∗
0

(

1 −
S

S∗
0

)

(

1 −
f (S∗

0 , 0)

f (S, 0)

)

+
ac

γ1
I1

(

R1
0 − 1

)

+
be

γ2
I2

(

g(S, I2)

g(S∗
0 , 0)

R2
0 − 1

)

. (3.8)

Since R2
0 <

g(S∗
0 , 0)

g(S, I2)
< 1, we obtain

g(S, I2)

g(S∗
0 , 0)

R2
0 − 1 < 0. (3.9)

From
f (S∗

0 , 0)

f (S, 0)
< 1, we have

δS∗
0

(

1 −
S

S∗
0

)(

1 −
f (S∗

0 , 0)

f (S, 0)

)

≤ 0. (3.10)

By the above discussion, we deduce that, if R2
0 ≤ 1 and

R1
0 ≤ 1 (which means that R0 ≤ 1), then

L̇ f (S, E1, E2, I1, I2) ≤ 0. (3.11)

Thus, the disease-free equilibrium point E f is globally

asymptotically stable when R0 ≤ 1. ⊓⊔

3.2 Global stability of strain 1 endemic equilibrium

For the global stability of Es1 , we assume that the func-

tion f satisfies the following condition:
(

1 −
f (S, I1)

f (S, I ∗
1,s1

)

) (

f (S, I ∗
1,s1

)

f (S, I1)
−

I1

I ∗
1,s1

)

≤ 0,

∀ S, I1 > 0.

(3.12)

Theorem 3 The strain 1 endemic equilibrium Es1 is

globally asymptotically stable when R2
0 ≤ 1 < R1

0 .

Proof First, we consider the Lyapunov function L1

defined by:

L1(S, E1, E2, I1, I2) = S − S∗
1 −

∫ S

S∗
1

f (S∗
1 , I ∗

1,s1
)

f (X, I ∗
1,s1

)
dX + E∗

1

(

E1

E∗
1,s1

− ln

(

E1

E∗
1,s1

)

− 1

)

+ E2 +
a

γ1
I ∗
1,s1

(

I1

I ∗
1,s1

− ln

(

I1

I ∗
1,s1

)

− 1

)

+
b

γ2
I2. (3.13)
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The time derivative is given by

L̇1(S, E1, E2, I1, I2) = (Λ − f (S, I1)I1 − g(S, I2)I2 − δS)
(

1 −
f (S∗

1 , I ∗
1,s1

)

f (S, I ∗
1,s1

)

)

+ ( f (S, I1)I1 − aE1)

(

1 −
E∗

1,s1

E1

)

+ (g(S, I2)I2 − bE2)

+
a

γ1
(γ1 E1 − cI1)

(

1 −
I ∗
1,s1

I1

)

+
b

γ2
(γ2 E2 − eI2) . (3.14)

We have
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Λ = δS∗
1 + f (S∗

1 , I ∗
1,s1

)I ∗
1,s1

,

f (S∗
1 , I ∗

1,s1
)I ∗

1,s1
=

ac

γ1
I ∗
1,s1

= aE∗
1,s1

,

E∗
1,s1

I ∗
1,s1

=
c

γ1
.

(3.15)

Therefore,

L̇1(S, E1, E2, I1, I2) = δS∗
1

(

1 −
f (S∗

1 , I ∗
1,s1

)

f (S, I ∗
1,s1

)

)

− δS

(

1 −
f (S∗

1 , I ∗
1,s1

)

f (S, I ∗
1,s1

)

)

+ f (S∗
1 , I ∗

1,s1
)I ∗

1,s1

− f (S∗
1 , I ∗

1,s1
)I ∗

1,s1

f (S∗
1 , I ∗

1,s1
)

f (S, I ∗
1,s1

)

+
f (S∗

1 , I ∗
1,s1

)

f (S, I ∗
1,s1

)
f (S, I1)I1

− f (S, I1)
I1 E∗

1,s1

E1
+ aE∗

1,s1

−
ac

γ1
I1 −

aI ∗
1,s1

I1
E1 +

ac

γ1
I ∗
1,s1

+
f (S∗

1 , I ∗
1,s1

)

f (S, I ∗
1,s1

)
g(S, I2)I2 −

be

γ2
I2.

(3.16)

Then,

L̇1(S, E1, E2, I1, I2) = aE∗
1,s1

(

4 −
aE∗

1,s1

f (S, I ∗
1,s1

)I ∗
1,s1

−
f (S, I1)I1

aE1
−

I ∗
1,s1

E1

I1 E∗
1,s1

−
f (S, I ∗

1,s1
)

f (S, I1)

)

+ aE∗
1,s1

(

f (S, I ∗
1,s1

)

f (S, I1)
+

f (S, I1)

f (S, I ∗
1,s1

)

I1

I ∗
1,s1

−
I1

I ∗
1,s1

− 1

)

+
f (S∗

1 , I ∗
1,s1

)

f (S, I ∗
1,s1

)
g(S, I2)I2 −

be

γ2
I2 (3.17)

L̇1(S, E1, E2, I1, I2) = aE∗
1,s1

(

4 −
aE∗

1,s1

f (S, I ∗
1,s1

)I ∗
1,s1

−
f (S, I1)I1

aE1
−

I ∗
1,s1

E1

I1 E∗
1,s1

−
f (S, I ∗

1,s1
)

f (S, I1)

)

+ aE∗
1,s1

(

f (S, I ∗
1,s1

)

f (S, I1)
+

f (S, I1)

f (S, I ∗
1,s1

)

I1

I ∗
1,s1

−
I1

I ∗
1,s1

− 1

)

+
be

γ2
I2

(

f (S∗
1 , I ∗

1,s1
)

f (S, I ∗
1,s1

)

g(S, I2)

g(S∗
0 , 0)

R2
0 − 1

)

. (3.18)
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From (H2) and (H3), we have
g(S, I2)

g(S∗
0 , 0)

≤ 1, then,

L̇1(S, E1, E2, I1, I2) ≤ aE∗
1,s1

(

4 −
aE∗

1,s1

f (S, I ∗
1,s1

)I ∗
1,s1

−
f (S, I1)I1

aE1
−

I ∗
1,s1

E1

I1 E∗
1,s1

−
f (S, I ∗

1,s1
)

f (S, I1)

)

+ aE∗
1,s1

(

f (S, I ∗
1,s1

)

f (S, I1)
+

f (S, I1)

f (S, I ∗
1,s1

)

I1

I ∗
1,s1

−
I1

I ∗
1,s1

− 1

)

+
be

γ2
I2

(

f (S∗
1 , I ∗

1,s1
)

f (S, I ∗
1,s1

)
R2

0 − 1

)

, (3.19)

From (3.12), we have

(

f (S, I ∗
1,s1

)

f (S, I1)
+

f (S, I1)

f (S, I ∗
1,s1

)

I1

I ∗
1,s1

−
I1

I ∗
1,s1

− 1

)

=

(

1 −
f (S, I1)

f (S, I ∗
1,s1

)

)(

f (S, I ∗
1,s1

)

f (S, I1)
−

I1

I ∗
1,s1

)

≤ 0,

(3.20)

by the relation between arithmetic and geometric

means, we have
(

4 −
aE∗

1,s1

f (S, I ∗
1,s1

)I ∗
1,s1

−
f (S, I1)I1

aE1
−

I ∗
1,s1

E1

I1 E∗
1,s1

−
f (S, I ∗

1,s1
)

f (S, I1)

)

≤ 0,

(3.21)

We discuss two cases:

– If S∗
1 ≤ S, from (H2), we will have

f (S∗
1 , I ∗

1,s1
)

f (S, I ∗
1,s1

)
≤

1, since

(

f (S∗
1 , I ∗

1,s1
)

f (S, I ∗
1,s1

)
R2

0 − 1

)

≤ 0, we obtain, for

R2
0 ≤ 1, the following L̇1 ≤ 0.

– If S ≤ S∗
1 , from (H2), we will have

f (S∗
1 , I ∗

1,s1
)

f (S, I ∗
1,s1

)
≥

1, since R2
0 ≤

f (S, I ∗
1,s1

)

f (S∗
1 , I ∗

1,s1
)

≤ 1, we obtain

f (S∗
1 , I ∗

1,s1
)

f (S, I ∗
1,s1

)
R2

0 − 1 ≤ 0,

which implies, L̇1 ≤ 0.

By the above discussion, we deduce that if R2
0 ≤ 1,

we will have L̇1 ≤ 0.

We conclude that the steady state Es1 is globally asymp-

totically stable when R2
0 ≤ 1 and 1 < R1

0 . ⊓⊔

3.3 Global stability of strain 2 endemic equilibrium

For the global stability of Es2 , we assume that the func-

tion g satisfies the following condition:

(

1 −
g(S, I2)

g(S, I ∗
2,s2

)

)(

g(S, I ∗
2,s2

)

g(S, I2)
−

I2

I ∗
2,s2

)

≤ 0, ∀ S, I2 > 0.

(3.22)

Theorem 4 The strain 2 endemic equilibrium point Es2

is globally asymptotically stable when R1
0 ≤ 1 < R2

0 .

Proof First, we consider the Lyapunov function L2

defined by:

L2(S, E1, E2, I1, I2) =S − S∗
2 −

∫ S

S∗
2

g(S∗
2 , I ∗

2,s2
)

g(X, I ∗
2,s2

)
dX

+ E∗
2,s2

(

E2

E∗
2,s2

− ln

(

E2

E∗
2,s2

)

− 1

)

+ E1 +
a

γ1
I1

+
b

γ2
I ∗
2,s2

(

I2

I ∗
2,s2

− ln

(

I2

I ∗
2,s2

)

− 1

)

.

(3.23)

The time derivative is given by

L̇2(S, E1, E2, I1, I2) = (Λ − f (S, I1)I1 − g(S, I2)I2 − δS)
(

1 −
g(S∗

2 , I ∗
2,s2

)

g(S, I ∗
2,s2

)

)

+ (g(S, I2)I2 − bE2)

(

1 −
E∗

2,s2

E2

)

+ ( f (S, I1)I1 − aE1)

+
b

γ2
(γ2 E2 − eI2)

(

1 −
I ∗
2,s2

I2

)

+
a

γ1
(γ1 E1 − cI1) . (3.24)

We have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Λ = δS∗
2 + g(S∗

2 , I ∗
2,s2

)I ∗
2,s2

,

g(S∗
2 , I ∗

2,s2
)I ∗

2,s2
=

be

γ2
I ∗
2,s2

= bE∗
2,s2

,

E∗
2,s2

I ∗
2,s2

=
e

γ2
.

(3.25)
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Therefore,

L̇2(S, E1, E2, I1, I2) = δS∗
2

(

1 −
g(S∗

2 , I ∗
2,s2

)

g(S, I ∗
2,s2

)

)

− δS

(

1 −
g(S∗

2 , I ∗
2,s2

)

g(S, I ∗
2,s2

)

)

+ g(S∗
2 , I ∗

2,s2
)I ∗

2,s2

− g(S∗
2 , I ∗

2,s2
)I ∗

2,s2

g(S∗
2 , I ∗

2,s2
)

g(S, I ∗
2,s2

)

+
g(S∗

2 , I ∗
2,s2

)

g(S, I ∗
2,s2

)
g(S, I2)I2

− g(S, I2)
I2 E∗

2,s2

E2
+ bE∗

2,s2
−

be

γ2
I2

−
bI ∗

2,s2

I2
E2 +

be

γ2
I ∗
2,s2

+
g(S∗

2 , I ∗
2,s2

)

g(S, I ∗
2,s2

)
f (S, I1)I1 −

ac

γ1
I1,

(3.26)

then

L̇2(S, E1, E2, I1, I2) = bE∗
2,s2

(

4 −
bE∗

2,s2

g(S, I ∗
2,s2

)I ∗
2,s2

−
g(S, I2)I2

bE2
−

I ∗
2,s2

E2

I2 E∗
2,s2

−
g(S, I ∗

2,s2
)

g(S, I2)

)

+ bE∗
2,s2

(

g(S, I ∗
2,s2

)

g(S, I2)
+

g(S, I2)

g(S, I ∗
2,s2

)

I2

I ∗
2,s2

−
I2

I ∗
2,s2

− 1

)

+
g(S∗

2 , I ∗
2,s2

)

g(S, I ∗
12,s2

)
f (S, I1)I1 −

ac

γ1
I1

(3.27)

L̇2(S, E1, E2, I1, I2) = bE∗
2,s2

(

4 −
bE∗

2,s2

g(S, I ∗
2,s2

)I ∗
2,s2

−
g(S, I2)I2

bE2
−

I ∗
2,s2

E2

I2 E∗
2,s2

−
g(S, I ∗

2,s2
)

g(S, I2)

)

+ bE∗
2,s2

(

g(S, I ∗
2,s2

)

g(S, I2)
+

g(S, I2)

g(S, I ∗
2,s2

)

I2

I ∗
2,s2

−
I2

I ∗
2,s2

− 1

)

+
ac

γ1
I1

(

g(S∗
2 , I ∗

2,s2
)

g(S, I ∗
2,s2

)

f (S, I1)

f (S∗
0 , 0)

R1
0 − 1

)

. (3.28)

From (H2) and (H3), we have
f (S, I1)

f (S∗
0 , 0)

≤ 1, then,

L̇2(S, E1, E2, I1, I2) ≤ bE∗
2,s2

(

4 −
bE∗

2,s2

g(S, I ∗
2,s2

)I ∗
2,s2

−
g(S, I2)I2

bE2
−

I ∗
2,s2

E2

I2 E∗
2,s2

−
g(S, I ∗

2,s2
)

g(S, I2)

)

+ bE∗
2,s2

(

g(S, I ∗
2,s2

)

g(S, I2)
+

g(S, I2)

g(S, I ∗
2,s2

)

I2

I ∗
2,s2

−
I2

I ∗
2,s2

− 1

)

+
ac

γ1
I1

(

g(S∗
2 , I ∗

2,s2
)

g(S, I ∗
2,s2

)
R1

0 − 1

)

,

(3.29)

From (3.22), we have

(

g(S, I ∗
2,s2

)

g(S, I2)
+

g(S, I2)

g(S, I ∗
2,s2

)

I2

I ∗
2,s2

−
I2

I ∗
2,s2

− 1

)

=

(

1 −
g(S, I2)

g(S, I ∗
2,s2

)

) (

g(S, I ∗
2,s2

)

g(S, I2)
−

I2

I ∗
2,s2

)

≤ 0.

(3.30)

By the relation between arithmetic and geometric

means, we have
(

4 −
bE∗

2,s2

g(S, I ∗
2,s2

)I ∗
2,s2

−
g(S, I2)I2

bE2

−
I ∗
2,s2

E2

I2 E∗
2,s2

−
g(S, I ∗

2,s2
)

g(S, I2)

)

≤ 0

(3.31)

We discuss two cases:

• If S∗
2 ≤ S, then from (H2), we will have

g(S∗
2 , I ∗

2,s2
)

g(S, I ∗
2,s2

)
≤ 1, since

(

g(S∗
2 , I ∗

2,s2
)

g(S, I ∗
2,s2

)
R1

0 − 1

)

≤

0, from R1
0 ≤ 1, we will have L̇2 ≤ 0.
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• If S ≤ S∗
2 , then from (H2) we will obtain

g(S∗
2 , I ∗

2,s2
)

g(S, I ∗
2,s2

)
≥ 1, from R1

0 ≤
g(S, I ∗

2,s2
)

g(S∗
2 , I ∗

2,s2
)

≤ 1,

we will get
g(S∗

2 , I ∗
2,s2

)

g(S, I ∗
2,s2

)
R1

0 − 1 ≤ 0,

which implies, L̇2 ≤ 0.

By the above discussion, we deduce that if R1
0 ≤ 1,

then L̇2 ≤ 0.

We conclude that the steady state Es2 is globally

asymptotically stable when R1
0 ≤ 1 and 1 < R2

0 . ⊓⊔

3.4 Global stability of the third endemic equilibrium

For the global stability of Et , we assume that the func-

tions f and g satisfy the following condition:
(

1 −
g(S, I2)

g(S∗
t , I ∗

2,t )

f (S∗
t , I ∗

1,t )

f (S, I ∗
1,t )

)(

g(S∗
t , I ∗

2,t )

g(S, I2)

f (S, I ∗
1,t )

f (S∗
t , I ∗

1,t )
−

I2

I ∗
2,s2

)

≤ 0, ∀ S, I1, I2 > 0. (3.32)

Theorem 5 The endemic equilibrium Est is globally

asymptotically stable when R1
0 > 1 and R2

0 > 1.

Proof We consider the Lyapunov function L3 defined

by:

L3(S, E1, E2, I1, I2) = S − S∗
t −

∫ S

S∗
t

f (S∗
t , I ∗

1,t )

f (X, I ∗
1,t )

dX

+ E∗
1,t

(

E1

E∗
1,t

− ln

(

E1

E∗
1,t

)

− 1

)

+ E∗
2,t

(

E2

E∗
2,t

− ln

(

E2

E∗
2,t

)

− 1

)

+
a

γ1
I ∗
1,t

(

I1

I ∗
1,t

− ln

(

I1

I ∗
1,t

)

− 1

)

+
b

γ2
I ∗
2,t

(

I2

I ∗
2,t

− ln

(

I2

I ∗
2,t

)

− 1

)

,

(3.33)

then

L̇3(S, E1, E2, I1, I2) =

(

1 −
f (S∗

t , I ∗
1,t )

f (S, I ∗
1,t )

)

Ṡ

+

(

1 −
E∗

1,t

E1

)

Ė1 +

(

1 −
E∗

2,t

E2

)

Ė2

+
a

γ1

(

1 −
I ∗
1,t

I1

)

İ1 +
b

γ2

(

1 −
I ∗
2,t

I2

)

İ2.

(3.34)

It is easy to verify that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Λ = δS∗
t + f (S∗

t , I∗
1,t )I∗

1,t + g(S∗
t , I∗

2,t )I∗
2,t ,

f (S∗
t , I∗

1,t )I∗
1,t = aE∗

1,t , g(S∗
t , I∗

2,t )I∗
2,t = bE∗

2,t ,

E∗
1,t

I∗
1,t

=
c

γ1
,

E∗
2,t

I∗
2,t

=
e

γ2
.

(3.35)

As a result,

L̇3(S, E1, E2, I1, I2) = δS∗
t

(

1 −
S

S∗
t

)

(

1 −
f (S∗

t , I ∗
1,t )

f (S, I ∗
1,t )

)

+ aE∗
1,t

(

4 −
aE∗

1,t

f (S, I ∗
1,t )I ∗

1,t

−
f (S, I1)I1

aE1
−

I ∗
1,t E1

I1 E∗
1,t

−
f (S, I ∗

1,t )

f (S, I1)

)

+ bE∗
2,t

(

4 −
f (S∗

t , I ∗
1,t )

f (S, I ∗
1,t )

−
g(S, I2)I2

bE2
−

I ∗
2,t E2

I2 E∗
2,t

−
bE∗

2,t f (S, I ∗
1,t )

g(S, I2) f (S∗
t , I ∗

1,t )I ∗
2,t

)

+ aE∗
1,t

(

f (S, I ∗
1,t )

f (S, I1)
+

f (S, I1)

f (S, I ∗
1,t )

I1

I ∗
1,t

−
I1

I ∗
1,t

− 1

)

+ bE∗
2,s2

(

g(S∗
t , I ∗

2,t )

g(S, I2)

f (S, I ∗
1,t )

f (S∗
t , I ∗

1,t )
+

g(S, I2)

g(S∗
t , I ∗

2,t )

f (S∗
t , I ∗

1,t )

f (S, I ∗
1,t )

I2

I ∗
2,t

−
I2

I ∗
2,t

− 1

)

. (3.36)
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Using the following trivial inequalities

1 −
f (S∗

t , I ∗
1,t )

f (S, I ∗
1,t )

≥ 0 for S ≥ S∗
t (3.37)

1 −
f (S∗

t , I ∗
1,t )

f (S, I ∗
1,t )

< 0 for S < S∗
t , (3.38)

then
(

1 −
S

S∗
t

)

(

1 −
f (S∗

t , I ∗
1,t )

f (S, I ∗
1,t )

)

≤ 0, (3.39)

by the relation between arithmetic and geometric

means, we have

(

4 −
aE∗

1,t

f (S, I ∗
1,t )I ∗

1,t

−
f (S, I1)I1

aE1
−

I ∗
1,t E1

I1 E∗
1,t

−
f (S, I ∗

1,t )

f (S, I1)

)

≤ 0 (3.40)

(

4 −
f (S∗

t , I ∗
1,t )

f (S, I ∗
1,t )

−
g(S, I2)I2

bE2
−

I ∗
2,t E2

I2 E∗
2,t

−
bE∗

2,t f (S, I ∗
1,t )

g(S, I2) f (S∗
t , I ∗

1,t )I ∗
2,t

)

≤ 0, (3.41)

from (3.12) we have

(

f (S, I ∗
1,t )

f (S, I1)
+

f (S, I1)

f (S, I ∗
1,t )

I1

I ∗
1,t

−
I1

I ∗
1,t

− 1

)

=

(

1 −
f (S, I1)

f (S, I ∗
1,t )

)(

f (S, I ∗
1,t )

f (S, I1)
−

I1

I ∗
1,t

)

≤ 0,

(3.42)

also from (3.32) we have
(

g(S∗
t ,I ∗

2,t )

g(S,I2)

f (S,I ∗
1,t )

f (S∗
t ,I ∗

1,t )
+

g(S,I2)

g(S∗
t ,I ∗

2,t )

f (S∗
t ,I ∗

1,t )

f (S,I ∗
1,t )

I2

I ∗
2,t

− 1 − I2

I ∗
2,t

)

= (1 − Γ )

(

1
Γ

− I2

I ∗
2,t

)

≤ 0, (3.43)

with Γ =
g(S, I2)

g(S∗
t , I ∗

2,t )

f (S∗
t , I ∗

1,t )

f (S, I ∗
1,t )

We conclude that the steady state Et is globally

asymptotically stable when 1 < R1
0 and 1 < R2

0 . ⊓⊔

4 Numerical simulations

In this section, we will perform some numerical sim-

ulations in order to examine numerically the SEIR

infection dynamics under various incidence functions

and also validating our theoretical results. Indeed,

we will restrict ourselves to four cases, the first one

is to consider the model (1.1) along with the sim-

plest two bilinear incidence functions f (S, I1) =

αS and g(S, I2) = βS, the second case deals

with two Beddington–DeAngelis incidence functions,

f (S, I1) =
αS

1 + ω1S + ω2 I1
and g(S, I2) =

βS

1 + ω3S + ω4 I2
, while the third case is devoted to

check the impact of choosing both incidence functions

under Crowley–Martin incidence form, f (S, I1) =
αS

1 + χ1S + χ2 I1 + χ1χ2SI1
and g(S, I2) =

βS

1 + χ3S + χ4 I2 + χ3χ4SI2
. The last case consists of

incorporating into the model two non-monotonic inci-

dence functions f (S, I1) =
αS

1 + α1 I 2
1

and g(S, I2) =

βS

1 + α2 I 2
2

.

4.1 The stability of the disease-free equilibrium

The disease-free equilibrium is characterized by the

extinction of the infection, and the disease cannot

invade the population. In this subsection, attention will

be focused to the numerical stability of such disease-

free equilibrium. Indeed, Theorem 2 points out that

we can expect the stability of disease-free equilibrium

when the basic reproduction number is less than unity.

This permits us to look for the right model parameters

in order to check numerically the stability of the first

steady sate.

Figure 2 shows the behaviour of the infection for

the following parameter values: Λ = 1, α = 0.17,

β = 0.15, γ1 = 0.3, γ2 = 0.4, µ1 = 0.65, µ2 =

0.75, δ = 0.2, ω1 = 0.4, ω2 = 0.6, ω3 = 4.5,

ω4 = 5.8, χ1 = 2.5, χ2 = 3, χ3 = 6.5, χ4 = 5,

α1 = 2.5 and α2 = 3. We clearly see that the

solutions of the system, under the various suggested

incidence functions (bilinear, Beddington–DeAngelis,

Crowley–Martin and non-monotonic functions), con-

verge towards the same disease-free equilibrium point

E f = (5, 0, 0, 0, 0, 0). In this situation, the nature of
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Fig. 2 Time evolution of susceptible (top left), the strain 1 latent

individuals (top middle), the strain 2 latent individuals (top right),

the recovered (bottom left), the strain 1 infectious individuals

(bottom middle) and the strain 2 infectious individuals (bottom

right) illustrating the stability of the disease-free equilibrium

E f . The bilinear incidence functions (dotted red), Beddington–

DeAngelis incidence functions (yellow), Crowley–Martin inci-

dence functions (green) and the non-monotone incidence func-

tions (blue). (Color figure online)

the incidence function has no effect on the steady-state

value. Consequently, it was remarked that the disease-

free equilibrium first nonzero component depends only

on the birth and death rates of the susceptible indi-

viduals and does not depend, in any way, on the inci-

dence functions parameters. Here, the disease dies out,

the susceptible reaches their maximum value, and the

other variables vanish. With the chosen parameters, we

can easily calculate the two- strain basic reproduction

numbers; in our case, we will have R1
0 = 0.6 and

R2
0 = 0.5263 for the bilinear incidence functions case;

we will have also R1
0 = 0.1 and R2

0 = 0.6579 for the

Beddington–DeAngelis incidences case; R1
0 = 0.1154

and R2
0 = 0.1645 are calculated for Crowley–Martin

incidence functions case, and finally, we have R1
0 = 0.6

and R2
0 = 0.5263 for the non-monotonic incidence

functions case. In all these cases, we have the basic

reproduction number R0 is less than unity which is con-

sistent with the theoretical result concerning the stabil-

ity of the disease-free equilibrium E f .

4.2 The stability of the endemic equilibria

The dynamics behaviour concerning the stability of the

strain 1 endemic equilibrium Es1 is shown in Fig. 3.

Indeed, we have chosen the following parameter val-

ues: Λ = 1, α = 0.5, β = 0.12, γ1 = 0.4,

γ2 = 0.3, µ1 = 0.4, µ2 = 0.75, δ = 0.2, ω1 = 0.4,

ω2 = 0.85, ω3 = 1.5, ω4 = 0.05, χ1 = 4, χ2 = 3.5,

χ3 = 0.3, χ4 = 0.05, α1 = 2 and α2 = 1.5.

For the bilinear incidence functions case, the solu-

tion converges towards the strain 1 endemic equilib-

rium (1.8, 1.0667, 0, 0.7111, 0, 1.4222) and with the

chosen parameters we have R1
0 = 2.7778 and R2

0 =

0.3789. For the model with Beddington–DeAngelis, we

observe the convergence towards (3.1788, 0.6071, 0,

0.4047, 0, 0.8094) and we have R1
0 = 11.1111 and

R2
0 = 0.3609; for the third case, Crowley–Martin

incidence type, we observe the convergence towards

the equilibrium (2.3664, 0.8779, 0, 0.5852, 0, 1.1705)

and we have R1
0 = 11.1111 and R2

0 = 0.1024. For the

last non-monotonic incidence functions case, we see
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Fig. 3 Time evolution of susceptible (top left), the strain 1 latent

individuals (top middle), the strain 2 latent individuals (top right),

the recovered (bottom left), the strain 1 infectious individuals

(bottom middle) and the strain 2 infectious individuals (bottom

right) illustrating the stability of the strain 1 endemic equilibrium

Es1 . The bilinear incidence functions (dotted red), Beddington–

DeAngelis incidence functions (yellow), Crowley–Martin inci-

dence functions (green) and the non-monotone incidence func-

tions (blue). (Color figure online)

in the figure the convergence towards the steady state

(2.7223, 0.7592, 0, 0.5062, 0, 1.0123) and we have

R1
0 = 2.7778 and R2

0 = 0.3789. We remark that, for the

all four cases, the strain 1 basic reproduction number

R1
0 is greater than unity while the other strain 2 basic

reproduction number R2
0 is less than one which con-

firms our theoretical findings concerning the stability

of the strain 1 endemic equilibrium Es1 . This endemic

equilibrium is characterized by the vanishing the strain

2 latent and infectious individuals.

The strain 2 endemic equilibrium Es2 stability is

illustrated in Fig. 4. In this figure, the following param-

eters are chosen: Λ = 1, α = 0.2, β = 0.4, γ1 = 0.4,

γ2 = 0.3, µ1 = 1, µ2 = 0.5, δ = 0.2, ω1 = 0.4, ω2 =

0.85, ω3 = 1.5, ω4 = 0.05, χ1 = 4, χ2 = 3.5, χ3 =

0.3, χ4 = 0.05, α1 = 2 and α2 = 1.5. We observe the

convergence of the solution towards the steady state

(2.9167, 0, 0.8333, 0, 0.3571, 0.8928) for the bilinear

incidence functions case and with the adopted param-

eters we have R1
0 = 0.5556 and R2

0 = 1.7143. For

the model with Beddington–DeAngelis, we observe the

convergence towards (4.1559, 0, 0.3376, 0, 0.1447,

0.3617) and we have R1
0 = 0.5291 and R2

0 =

6.8571; for the third case, Crowley–Martin incidence

type, we observe the convergence towards the equi-

librium (3.6876, 0, 0.5250, 0, 0.2250, 0.5624) and we

have R1
0 = 0.1502 and R2

0 = 6.8571. For the last

non-monotonic incidence functions case, we see in

the figure the convergence towards the steady state

(3.2918, 0, 0.6833, 0, 0.2928, 0.7321) and we have

R1
0 = 0.5556 and R2

0 = 1.7143. We remark that, for

all the four cases, the strain 1 basic reproduction num-

ber R1
0 is less than unity while the other strain 2 basic

reproduction number R2
0 is greater than one which is in

good agreement with our theoretical findings concern-

ing the stability of the strain 2 endemic equilibrium Es2 .

From the components of this endemic equilibrium, we

remark the clearance of the strain 1 latent and infectious

individuals.

The last endemic equilibrium Et stability behaviour

is depicted in Fig. 5 for Λ = 1, α = 0.6, β = 0.6,

γ1 = 0.5, γ2 = 0.5, µ1 = 0.15, µ2 = 0.15, δ = 0.2,
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Fig. 4 Time evolution of susceptible (top left), the strain 1 latent

individuals (top middle), the strain 2 latent individuals (top right),

the recovered (bottom left), the strain 1 infectious individuals

(bottom middle) and the strain 2 infectious individuals (bottom

right) illustrating the stability of the strain 2 endemic equilibrium

Es2 . The bilinear incidence functions (dotted red), Beddington–

DeAngelis incidence functions (yellow), Crowley–Martin inci-

dence functions (green) and the non-monotone incidence func-

tions (blue). (Color figure online)

ω1 = 1.2, ω2 = 0.06, ω3 = 1.2, ω4 = 0.06,

χ1 = 0.4, χ2 = 0.05, χ3 = 0.4, χ4 = 0.05,

α1 = 0.14 and α2 = 0.145. As the previous figures, the

dynamics for the different suggested incidence func-

tions are illustrated. For the first one, the bilinear inci-

dence function, we observe the convergence towards

(0.8167, 0.5196, 0.6757, 0.7422, 0.9652, 1.2806) and

with the adopted parameters we have R1
0 = 6.1224

and R2
0 = 6.1224. For Beddington–DeAngelis case,

we observe the convergence towards (1.5783, 0.4888,

0.4888, 0.6983, 0.6983, 1.0474) and we have R1
0 =

23.5479 and R2
0 = 23.5479, for the third case,

Crowley–Martin incidence type, we observe the con-

vergence towards the equilibrium (1.1353, 0.5519,

0.5523, 0.7884, 0.7890, 1.1831) and we have R1
0 =

24.4898 and R2
0 = 24.4898. About the last non-

monotonic incidence functions case, we see the conver-

gence towards the steady state (0.8982, 0.5904, 0.5815,

0.8433, 0.8309, 1.2557) and we have R1
0 = 6.1224

and R2
0 = 6.1224. We remark that both the two-strain

basic reproduction numbers R1
0 and R2

0 are greater than

unity which confirms our theoretical findings concern-

ing the stability of the last endemic equilibrium Et . This

last endemic equilibrium is characterized by the persis-

tence of all strains latent and infectious individuals. The

numerical simulations confirm that the model with gen-

eral incidence functions encompasses a large number of

classical well-known incidence functions. Therefore,

the generalized mathematical model can give a wide

view about the stability of the different problem equi-

libria.

4.3 Comparison with COVID-19 clinical data

As we have mentioned in the introduction, the recent

pandemic COVID-19 is a multi-strain infection. There-

fore, the main interest of this subsection is to compare

the numerical simulations resulting from our multi-

strain epidemic model with COVID-19 clinical data.

We have chosen to make our comparison the Moroc-
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Fig. 5 Time evolution of susceptible (top left), the strain 1 latent

individuals (top middle), the strain 2 latent individuals (top right),

the recovered (bottom left), the strain 1 infectious individuals

(bottom middle) and the strain 2 infectious individuals (bot-

tom right) illustrating the stability of the endemic equilibrium

Et . The bilinear incidence functions (dotted red), Beddington–

DeAngelis incidence functions (yellow), Crowley–Martin inci-

dence functions (green) and the non-monotone incidence func-

tions (blue). (Color figure online)

can clinical data during the year 2020 in the period

between March 31 and June 20 [39,40].

Figure 6 shows the time evolution of infected cases

for the following parameter values: Λ = 1.5, α = 1.67,

β = 0.88, δ = 0.2, γ1 = 1.05, γ2 = 6.8, µ1 = 0.005,

µ2 = 0.087, ω1 = 0.3, ω2 = 0.5, ω3 = 0.1, ω4 = 0.3,

χ1 = 0.01, χ2 = 0.01, χ3 = 2.5, χ4 = 2.8, α1 =

0.0005 and α2 = 0.007. We observe that a significant

relationship exists between the curve representing the

COVID-19 clinical data and the numerical simulations

resulting from our mathematical model for the differ-

ent incidence functions. Indeed, a good fit between the

infected cases given by the mathematical model and the

clinical data is observed. Each numerical result with the

incidence function (bilinear, Beddington–DeAngelis,

Crowley–Martin or non-monotonic function) fits well

the clinical data, especially for a certain period of obser-

vation. Hence, the multi-strain mathematical model

with generalized incidence functions is more appro-

priate to represent the studied disease.
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Fig. 6 Time evolution of infected cases with the bilinear inci-

dence functions (dotted red), Beddington–DeAngelis incidence

functions (yellow), Crowley–Martin incidence functions (green)

and the non-monotone incidence functions (blue). The clinical

infected cases are illustrated by magenta circles. (Color figure

online)

Figure 7 (left-hand side) shows the time evolution

of infected cases for the following parameter values:
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Fig. 7 Time evolution of infected cases with the bilinear inci-

dence functions (dotted red), Beddington–DeAngelis incidence

functions (yellow), Crowley–Martin incidence functions (green)

and the non-monotone incidence functions (blue). The clinical

infected cases are illustrated by magenta circles. (Color figure

online)

Λ = 2, α = 0.01, β = 0.01, γ1 = 0.3, γ2 = 0.4,

µ1 = 0.07, µ2 = 0.5, δ = 0.2, ω1 = 0.5, ω2 = 0.6,

ω3 = 0.1, ω4 = 0.3, χ1 = 1.5, χ2 = 2, χ3 = 0.7,

χ4 = 3.7, α1 = 2 and α2 = 1.5. We see that the solu-

tion of our model, under the various suggested inci-

dence functions, converges towards the same disease-

free equilibrium point E f . In this situation, the dis-

ease dies out, the susceptible reaches their maximum

value and the other variables vanish. Within the chosen

parameters, we can easily calculate the basic reproduc-

tion number; in our case we will have R0 = 0.23 for

the bilinear incidence functions case; we will have also

R0 = 0.28 for the Beddington–DeAngelis incidences

case; R0 = 0.2 are calculated for Crowley–Martin inci-

dence functions case, and finally, we have R0 = 0.23

for the non-monotonic incidence functions case.

The COVID-19 disease persistence case is illus-

trated in Fig. 7 (right-hand side). In this figure, the

following parameters are chosen: Λ = 1.2, α = 0.1,

β = 0.52, γ1 = 0.4, γ2 = 0.1, µ1 = 0.23, µ2 = 0.2,

δ = 0.03, ω1 = 0.5, ω2 = 0.6, ω3 = 0.1, ω4 = 0.3,

χ1 = 1.5, χ2 = 4.5, χ3 = 0.7, χ4 = 0.12, α1 = 2

and α2 = 1.5. We remark the convergence of the solu-

tion towards the endemic equilibrium for all the taken

incidence functions. Indeed, for the case with bilinear

incidence functions, we have the basic reproduction

number is greater than unity R0 = 14.31. For other

cases, the basic reproduction number is also greater

than one; indeed for Beddington–DeAngelis case, we

have R0 = 36.6956; for the third case, Crowley–

Martin incidence type, we have R0 = 14.3113. For

the last non-monotonic incidence functions case, we

have R0 = 14.3113 which means that the disease per-

sists. We can conclude that the numerical simulations

fit well COVID-19 clinical data. Our numerical simu-

lations reveal two scenarios of evolution for this pan-

demic, and within the first scenario the disease will die

out. The other scenario happens when the basic repro-

duction number is greater than unity; in this case the

disease will persist. In this situation, it will be important

to eventually undertake some strategies like quarantine,

isolation, wearing of masks, disinfection and if it will

be possible vaccination.

4.4 The effect of quarantine strategy

In this subsection, we will study the effect of quarantine

strategy in controlling the infection spread. To illustrate

this effect and for simplicity, we will restrict ourselves

to the case of the bilinear incidence function. More

precisely, we will take the following incidence forms:

f (S, I1)=α(1 − u1)S and g(S, I2) = β(1 − u2)S,

(4.1)

where u1 stands for the efficiency of the quarantine

strategy concerning the first strain infection rate, while
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Fig. 8 Effect of quarantine strategy on the SEIR model dynamics

u2 represents the efficacy of the quarantine measures

concerning the second-strain infection rate. Our numer-

ical simulations will be performed in order to check the

impact of the quarantine strategy for the case of the last

endemic equilibrium.

Figure 8 shows the time evolution of the susceptible,

the two- strain latent individuals, two-strain infected

individuals and the recovered for the following param-

eter values: Λ = 1, α = 0.6, β = 0.6, γ1 = 0.5,

γ2 = 0.5, µ1 = 0.15, µ2 = 0.15, δ = 0.2 and for dif-

ferent values of the strategy controls u1 and u2. When

no strategy is applied, we find the same result as in

Fig. 5. By increasing the efficiency of the quarantine

measures, we observe an interesting result. Indeed, the

number of the susceptible individuals increases when

u1 and u2 increase. For higher values of these two

control parameters, the number of two-strain latent

and infected individuals is reduced considerably, which

means that the quarantine strategy can reduce the infec-

tion in efficient manner.

5 Conclusion

In this paper, we have studied the global stability of two-

strain epidemic model with two general incidence func-

tions. The model included six compartments, namely

the susceptible, two categories of the exposed, two cat-

egories of the infected and the removed individuals,

this kind of model takes the abbreviation SEIR. We

have established the existence, positivity and bound-

edness of solutions results which guarantee the well-

posedness of our SEIR model. The disease-free equi-

librium, the endemic equilibrium with respect to strain

1, the endemic equilibrium with respect to strain 2 and

the endemic equilibrium with respect to both strains

are given. By using an appropriate Lyapunov func-

tionals, the global stability of the equilibria is estab-

lished depending on the basic reproduction number R0,

the strain 1 reproduction number R1
0 and the strain 2

reproduction number R2
0 . Numerical simulations are

performed in order to confirm our different theoretical
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results. It was observed that the model with a gener-

alized incidence function encompasses a large number

of classical incidence functions and it can give more

clear view about the equilibria stability. In addition,

a numerical comparison between our model results

and COVID-19 clinical data is conducted. We have

observed a good fit between our numerical simulations

and the clinical data which indicates that our multi-

strain mathematical model can fit and predict the evo-

lution of the infection. We have observed that strict

quarantine measures can reduce significantly the infec-

tion spread. It is worthy to notice that a generalization

form of this problem to a more complex compartmental

model is proposed in Appendix of this paper. For this

complex model, we have given its basic reproduction

number and each strain reproduction number. Further-

more, the forms of the Lyapunov functionals for this

complex compartmental model are also formulated.
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Appendix

Multi-strain compartmental epidemiological model

The generalization of the problem to a more complex

compartmental model with general incidence rates is

formulated as follows

(P)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dS

dt
= Λ −

i=n
∑

i=1

fi (S, Ii )Ii − δS,

dEi

dt
= fi (S, Ii )Ii − (γi + δ)Ei , i = 1, 2, . . . , n

dIi

dt
= γi Ei − (µi + δ)Ii , i = 1, 2, . . . , n

dR

dt
=

i=n
∑

i=1

µi Ii − δR,

(A.1)

with

S(0) ≥ 0, Ei (0) ≥ 0, Ii (0) ≥ 0, R(0) ≥ 0,

∀i ∈ {1, 2, . . . , n}.

This model contains 2n+2 variables (n ∈ N
∗) that are:

the susceptible individuals S, removed individuals R,

n categories of latent individuals E1, E2 . . . , En and

n categories of infectious individuals I1, I2, . . . , In .

The parameter
1

δ
represents the average life expectancy

of the population,
1

µi

represents the average infection

period of strain i ,
1

γi

represents the average latency

period of strain i . Finally, fi (S, Ii ) represents the gen-

eral incidence rate for the strain i and verifies the fol-

lows conditions:

fi (0, Ii ) = 0, ∀Ii ≥ 0, i = 1, 2, . . . , n

∂ fi (S, Ii )

∂S
> 0, ∀S > 0, ∀Ii ≥ 0, i = 1, 2, . . . , n

∂ fi (S, Ii )

∂ Ii

≤ 0, ∀S ≥ 0, ∀Ii ≥ 0, i = 1, 2, . . . , n.

Main steps of the global analysis

The model is well defined, all solutions with non-

negative initial conditions exist, remain non-negative

and bounded. Let N (t) be the total population, we have

N (t) = S(t) +

i=n
∑

i=1

Ei (t) +

i=n
∑

i=1

Ii (t) + R(t). (A.2)

By adding all equations of the problem (P), we will

have

dN (t)

dt
= Λ − δN (t), (A.3)

then,

N (t) =
Λ

δ
+ (N (0) −

Λ

δ
)e−δt , (A.4)

and consequently,

lim
t→+∞

N (t) =
Λ

δ
. (A.5)

This means that the biological feasible region is given

by

H = {(S, E1, E2, . . . , En , I1, I2, . . . , In , R) ∈ R
2n+2
+ such that

S +

i=n
∑

i=1

Ei +

i=n
∑

i=1

Ii + R ≤
Λ

δ
} (A.6)

is positively invariant.
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The basic reproduction number is given by

R0 = max
i∈{1,2,...,n}

{

fi (
Λ
δ
, 0)γi

(γi + δ)(µi + δ)

}

. (A.7)

and the strain i reproduction number is given by

Ri
0 =

fi (
Λ
δ
, 0)γi

(γi + δ)(µi + δ)
, i = 1, 2, . . . , n. (A.8)

By simple reasoning, we can easily prove that this

problem has 2n steady states.

It is clear that the disease-free equilibrium point

E f (
Λ
δ
, 0, . . . , 0) is globally asymptotically stable if

R0 ≤ 1.

In order to study the global stability for each equi-

librium point Esi
(∀ i ∈ {1, 2, . . . , n}), it appears that

the Lyapunov functional can take the following form

Li (S, E1, E2, . . . , En, I1, I2, . . . , In)

= S − S∗
si

−

∫ S

S∗
si

f (S∗
si
, I ∗

i,si
)

f (X, I ∗
i,si

)
dX

+

i=n
∑

i=1

E∗
i,si

(

Ei

E∗
i,si

− ln

(

Ei

E∗
i,si

)

− 1

)

+

i=n
∑

i=1

γi + δ

γi

I ∗
i,si

(

Ii

I ∗
i,si

− ln

(

Ii

I ∗
i,si

)

− 1

)

.

(A.9)

The functions fi are assumed to verify the following

condition:

(1 − Γ )

(

1

Γ
−

Ii

I∗
i,si

)

≤ 0, ∀ S, Ii > 0 i = 1, 2, . . . , n,

with Γ =

i=n
∏

i=1

fi (S, I ∗
i,si

)

fi (S∗
si
, I ∗

i,si
)

f j (S∗
si
, I ∗

j,s j
)

f j (S, I ∗
j,s j

)
such that I ∗

i,si


= 0, I ∗
j,s j


= 0, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}

andi 
= j .
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