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We consider a family of periodic SEIRS epidemic models with a fairly general incidence rate of the form ��(�), and it is shown
that the basic reproduction number determines the global dynamics of the models and it is a threshold parameter for persistence
of disease. Numerical simulations are performed using a nonlinear incidence rate to estimate the basic reproduction number and
illustrate our analytical 	ndings.

1. Introduction

Epidemiological models in mathematics have been recog-
nized as valuable tools in analyzing the dynamics of an
infectious disease nowadays. �ey are used to describe the
spread of disease and also to make control measures known
to avoid its persistence, for example, via vaccination terms or
treatment terms. �ese models consider the total population
divided into compartments, given by the biological assump-
tions on the model and represented by functions depending
on time �. �e most common categories used are susceptible
(�), infected (�), recovered (�), exposed (�), quarantined (�),
and vaccinated (	), and the dynamics of model is given by
transmission rates from a compartment to another. We have
then indicated that the models could be of type ���, ����,����, �����, ���	�, ����	, and so forth.

To ensure that the model can give a justi	ed qualitative
description of the disease, the choice of the incidence rate
plays an important role. An incidence rate is de	ned as the
number of new health related events or cases of a disease
in a population exposed to the risk in a given time period.
Some examples are the bilinear incidence rate, the saturated
incidence rate, or a general incidence rate. �e bilinear
incidence rate has been repeatedly used by several authors.
It is given by 
��, where 
 is the transmission rate and
the product �� represents the contact between infected and
susceptible individuals (based on the law of mass action).

It was introduced by Kermack and McKendrick [1] in 1927,
and even when it is mathematically simple to use, it faces
multiple problems and challenges when it is used to describe
disease propagation among gregarious animals or persons
[2], because it goes to in	nity when � becomes larger. In order
to improve the modelling process to study the dynamics of
infection among a large population, Capasso and Serio [3]
in 1978 introduced a saturated incidence rate by studying
the Cholera epidemic spread in Bari, given by 
��/(1 + ��),
where
 is the transmission rate and � the saturation constant.
Unlike the bilinear incidence, saturated incidence does not
grow up without a limit, but it goes to a saturation limit
as � goes to in	nity. Multiple types of saturated incidence
have been used in the literature; see, for example, [2] for a
list of them. To avoid the use of a single incidence function,
the use of a general incidence rate that includes a family of
particular functions with similar properties has become a
topic of interest by several authors (see, e.g., [4–8]).

�e basic reproduction (represented byR0) is de	ned as
“the average number of secondary cases produced by a single
infected case when it is introduced in a susceptible popu-
lation” and it has an important role in the study of disease
transmission. In biological terms, usually when this number
is less than one, the disease is eradicated from population,
but when it is greater than one, the infection persists. Mathe-
matically, it is of interest to compute a threshold parameter
with the properties of the basic reproduction number. A
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method to compute this number for certain compartmental
disease models is via the next-generation matrix method
developed in [9]; however, it is not useful when the model
presents time periodic seasonal terms. Authors like [10, 11]
have de	ned its basic reproduction number for periodic
models as an average, to give some results about extinction or
persistence of infection. However Bacaër and Guernaouni in
[12] introduced the de	nition of basic reproduction number
for periodic environments, and, later, Wang and Zhao [13]
made a formal de	nition of it, via the monodromy matrix.

In the present work, we focus on a family of SEIRS epi-
demic models with a time periodic seasonal term, improving
themodel ofMoneim andGreenhalgh in [14], by introducing
an incidence rate with a general function taken from [4] and
the references therein.

We propose the following SEIRS model:���� = � (1 − �) − 
 (�) �� (�) − ( + � (�)) � + ������ = 
 (�) �� (�) − ( + �) ����� = �� − ( + �) ����� = �� + � (�) � + �� − ( + �) �,
(1)

where � = � + � + � + � is the total population size,
with �, �, �, � denoting the fractions of population that are
susceptible, exposed, infected, and recovered, respectively.
(�) is the transmission rate and it is a continuous, positive�-periodic function. � (0 ≤ � ≤ 1) is the vaccination rate
of all newborn children. �(�) is the vaccination rate of all
susceptibles in the population and it is a continuous, positive
periodic function with period ��, where � is an integer.  is
the commonper capita birth and death rate.�, �, and � are the
per capita rates of leaving the latent stage, infected stage, and
recovered stage, respectively. It is assumed that all parameters
are positive constants.

Bai and Zhou in [5] answered some open problems stated
in [14], they also showed that their condition is a threshold
between persistence and extinction of the disease via the
framework established in [13]. �ey assumed that the inci-
dence was bilinear. In our study, the nonlinear assumptions
on function � are listed below (see [4]).

(A1) � : R+ → R+ is continuously dierentiable.

(A2) �(0) = 0, ��(0) > 0 and �(�) > 0 for all � > 0.
(A3) �(�) − ���(�) ≥ 0.
Under these assumptions, function �(�) includes various

types of incidence rate; in particular, when �(�) = �, we are
on the bilinear case considered in [14].

In addition,we assume the following extra conditions (see
[15]).

(A4) ���(0) ≤ 0.
(A5) �ere exists �∗ > 0 such that when 0 < � < �∗, �(�) ≥�(0) + ���(0) + (1/2)�2���(0).

�is set of assumptions on the function � allows for
more general incidence functions than the bilinear one, like
saturated incidence functions and functions of the form
��/(1 + ���); in particular, in the case when � > 1, they
represent psychological or media eects depending on the
infected population. In this last case the incidence function
is nonmonotone on �. (A3) regulates the value of �(�)
comparing it with the value at � of a line containing the origin
of slope ��(�) (note that this line varies as � increases), (A4)
requires a concave �(�) at the origin, and (A5) imposes the
geometrical condition that in a small neighborhood of the
origin �(�) must lie between the tangent line of � at � and
a concave parabola tangent to � at �.

We consider a family of ����� epidemic models with
periodic coe�cients and general incidence rate in epidemi-
ology. �en we show that the global dynamics of solutions is
determined by the basic reproduction number R0, general-
izing the results in [5]. �e layout of this paper is as follows:
In Section 2, we prove the existence of a disease-free periodic
solution and we introduce the basic reproduction number via
the theory developed in [12, 13]. In Section 3, we adapt the
arguments given in [5] to prove that the disease-free periodic
solution of system (1) is globally asymptotically stable ifR0 <1 and it is persistent when R0 > 1. Finally, in Section 4,
we give some numerical simulations of our results, making a
comparison between our basic reproduction numberR0 and
the average reproduction numberR�

0 used by several authors
(see, e.g., [10, 11]).

2. The Basic Reproduction Number

First of all, we prove nonnegativity of the solutions under
nonnegative initial conditions.

�eorem 1. Let �0, �0, �0, �0 ≥ 0.�e solution (�(�), �(�), �(�),�(�)) of (1) with(� (0) , � (0) , � (0) , � (0)) = (�0, �0, �0, �0) (2)

is nonnegative in the sense that �(�), �(�), �(�), �(�) ≥ 0,∀� > 0,
and satis	es �(�) + �(�) + �(�) + �(�) = �, with� constant.

Proof. Let �(�) = �(�) + �(�) + �(�) + �(�); then, adding all
equations of system (1), we can see that ��/�� = 0, so the
value of � is constant. Now, set �(�) = (�(�), �(�), �(�), �(�))
as the solution of system (1) under initial conditions �0 =(�(0), �(0), �(0), �(0)) = (�0, �0, �0, �0) ≥ 0. By the continuity
of solutions, for all of �(�), �(�), �(�) and �(�) that have a
positive initial value at � = 0, we have the existence of an
interval (0, �0) such that �(�), �(�), �(�), �(�) ≥ 0 for 0 < � < �0.
We will prove that �0 = ∞.

If �(�1) = 0 for a �1 ≥ 0 and other components of �(�)
remain nonnegative at � = �1, then���� (�1) = � (1 − �) + �� (�1) ≥ 0, (3)

implying that whenever the solution �(�) touches the �-axis,
the derivative of � is nondecreasing and the function �(�) does
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not cross to negative values. Similarly, when �(�1) = 0 for a�1 ≥ 0 and other components remain nonnegative, we have���� (�1) = 
 (�1) � (�1) � (� (�1)) ≥ 0. (4)

When �(�1) = 0 for a �1 ≥ 0 and other components remain
nonnegative, ���� (�1) = �� (�1) ≥ 0. (5)

Finally, when�(�1) = 0 for a �1 ≥ 0 and other components
remain nonnegative,���� (�1) = �� + � (�1) � (�1) + �� (�1) ≥ 0. (6)

�erefore, whenever �(�) touches any of the axes � = 0,� = 0, � = 0, or � = 0, it never crosses them.

In order to make the analysis of the model in a simpler
way from now on, we make a reduction of dimension in
system (1) making � = �−�−�−�, obtaining the following:���� = � (1 − �) − 
 (�) �� (�) − ( + � (�)) �+ � (� − � − � − �) ,���� = 
 (�) �� (�) − ( + �) �,���� = �� − ( + �) �.

(7)

�e dynamics of system (1) is equivalent to that of (7);
moreover, due to positivity of solutions, we have �+�+� ≤ �,
so we study the dynamics of system (7) in the region = {(�, �, �) ∈ R3

+ : � + � + � ≤ �} . (8)

A disease-free periodic solution can be found for (7). To
	nd it, set � = � = 0; then, from the 	rst equation of (7) we
can obtain the following initial value problem:���� = � (1 − �) − ( + � (�)) � + � (� − �) ,� (0) = �0 ∈ R+. (9)

From [5, 14], the equation above admits a unique positive��-periodic solution given by

�̂ (�) = %−∫�0 (�+�(	)+
)�	 (�̂ (0)
+ � ( (1 − �) + �)∫�

0
%∫�0 (�+�()+
)��*) , (10)

where

�̂ (0) = � ( (1 − �) + �) ∫��0 %∫�0 (�+�()+
)��*%∫��0 (�+�(	)+
)�	 − 1 . (11)

�erefore, (�̂(�), 0, 0) is a disease-free periodic solution of
(7); moreover, from [5] we have that �̂(�) ≤ �; therefore,(�̂(�), 0, 0) lives in .

Using the notation of [9], we sort the compartments
so that the 	rst two compartments correspond to infected
individuals. Let � = (�, �, �) and de	ne

(i) F�: the rate of new infection in compartment 4,
(ii) V+

� : the rate of individuals into compartment 4 by
other means,

(iii) V−
� : the rate of individuals transfer out of compart-

ment 4.
System can be written as

�� (�) = ( 
 (�) �� (�) − ( + �) ��� − ( + �) �� (1 − �) − 
 (�) �� (�) − ( + � (�)) � + � (� − � − � − �)) = F −V, (12)

whereV =V
− −V+,

F = (
 (�) �� (�)00 ) ,
V

+ = ( 0��� (1 − �) + ��) ,

V
− = ( ( + �) �( + �) �
 (�) �� (�) + � (� + � + �) + ( + � (�)) �) .

(13)

Linearizing system (12) around the disease-free solution,

we obtain the matrix of partial derivatives 9(0, 0, �̂) =;F(0, 0, �̂) − ;V(0, 0, �̂), where
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;F (0, 0, �̂) = (0 
 (�) �̂�� (0) 00 0 00 0 0);V (0, 0, �̂)
= ( + � 0 0−�  + � 0� 
 (�) �̂�� (0) + � � +  + � (�)) .

(14)

Using Lemma 1 of [9], we part;F and;V and set

C (�) = (0 
 (�) �̂�� (0)0 0 ) ,
	 (�) = ( + � 0−�  + �) .

(15)

For a compartmental epidemiological model based on an
autonomous system, the basic reproduction number is deter-
mined by the spectral radius of the next-generation matrixC	−1 (which is independent of time) [9]. �e de	nition of
basic reproduction number for nonautonomous systems has
been studied for multiple authors; see, for example, [12, 13].
Particularly, Wang and Zhao in [13] extended the work of [9]
to include epidemiological models in periodic environments.
�ey introduced the next infection operatorL : H�� → H��
given by(LI) (�) = ∫∞

0
J (�, � − K) C (� − K) I (� − K) �K,∀� ∈ R, I ∈ H��, (16)

where H�� is the ordered Banach space of all �� periodic
functions from R to R

2, which is equipped with the maxi-
mumnorm. I(*) ∈ H�� is the initial distribution of infectious
individuals in this periodic environment, and J(�, *), � ≥ * is
the evolution operator of the linear periodic system:�L�� = −	 (�) L, (17)

meaning that, for each * ∈ R, the 2 × 2matrix J satis	es�J (�, *)�� = −	 (�) J (�, *) , ∀� ≥ *, J (*, *) = �2×2. (18)

LI is the distribution of accumulative new infections
at time � produced by all those infected individuals I(*)
introduced before �, with kernelM(�, K) = J(�, � − K)C(� − K).
�e coe�cientM�,�(�, K) in row 4 and column N represents the
expected number of individuals in compartment �� that one
individual in compartment �� generates at the beginning of an
epidemic per unit time at time � if it has been in compartment�� for K units of time, with �1 = �, �2 = � [16].

Let �0 > 0, �0 is an eigenvalue of L if there is a
nonnegative eigenfunction V(�) ∈ H�� such that

LV = �0V. (19)

�erefore, the basic reproduction number is de	ned as

R0 fl O (L) , (20)

the spectral radius ofL. �e basic reproduction number can
be evaluated by several numerical methods and approxima-
tions [15–17]; in Section 4 we discuss this topic.

3. The Threshold Dynamics of �0
3.1. Disease Extinction

�eorem 2. Let R0 be de	ned as (20); then the disease-free

periodic solution (�̂(�), 0, 0) is asymptotically stable if R0 < 1
and unstable ifR0 > 1.
Proof. We use �eorem 2.2 of [13] and check conditions
(A1)–(A7). Conditions (A1)–(A5) are clearly satis	ed from
the de	nitions ofF andV given in Section 2. We prove only
conditions (A6) and (A7). De	neP(�) fl − ( + � (�) + �) , (21)

and let Φ�(�) be the monodromy matrix of system�R�� = P (�) R. (22)

(A6) O(Φ�(��)) < 1. Let Ψ� be a fundamental matrix for
system �R/�� = P(�)R, withP de	ned as before and�� periodic; themonodromymatrixΦ�(��) is given
byΦ�(��) = Ψ−1

� (0)Ψ�(��).�e general solution of
(22) is

R (�) = M exp(−∫�
0
( + � (*) + �) �*) , (23)

so Ψ� = exp(− ∫�0 ( + �(*) + �)�*) and Ψ−1
� =

exp(∫�0 ( + �(*) + �)�*). Note that Ψ−1
� (0) = 1, soΦ�(��) = Ψ�(��) and

Φ� (��) = exp(−∫��
0
( + � (*) + �) �*) . (24)

Due to the fact that Φ�(��) is a constant, its eigen-
value is itself and O(Φ�(��)) < 1 for , �, �(*) > 0.

(A7) O(Φ−�(��)) < 1. Solving the system �R/�� = −	(�)R,
we arrive at the general solution

R (�) = T1(� − ��1 ) %−(�+�)� + T2 (01) %−(�+�)�, (25)

so

Ψ−� (�) = (� − �� %−(�+�)� 0%−(�+�)� %−(�+�)�) . (26)
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ComputingΦ−�(��) = Ψ−1
−�(0)Ψ−�(��), we have

Φ−� (��) = (%−(�+�)�� 00 %−(�+�)��) . (27)

Clearly, O(Φ−�(��)) = max{%−(�+�)��, %−(�+�)��} < 1
for , �, � > 0.

Note 1. Due to the fact thatΨ� is a fundamental solution of a
periodic system, we can always choose it such that Ψ(0) = �,
so the monodromy matrix satis	es Φ�(��) = Ψ�(��). �is
property is used in further analysis.

In order to prove the global stability of the disease-free
periodic solution, we enunciate some useful de	nitions and
some lemmas.

Let W(�) be continuous, cooperative, irreducible, and X-
periodic � × � matrix function, and Ψ�(�) the fundamental
matrix of system ��(�) = W(�)�(�). Denote by O(Ψ�(X)) the
spectral radius of Ψ�(X).
Lemma 3. Let � = (1/X) ln O(Ψ�(X)). �en there exists a
positive, X-periodic function V(�) such that %��V(�) is a solution
of ��(�) = W(�)�(�) (see proof in Lemma 2.1 of [18]).

Lemma 4. Function �(�) of model (1) satis	es �(�) ≤ ��(0)�,∀� ≥ 0.
Proof. Using assumptions on function �, we have��� (� (�)� ) = ��� (�) − � (�)�2 ≤ 0, (28)

so function �(�)/� decreases ∀� > 0 and then �(�)/� ≤
lim�→0+(�(�)/�) = ��(0).
Lemma 5. Let (�(�), �(�), �(�)) be a solution of system (7) with

initial conditions (�0, �0, �0) ≥ 0, and (�̂(�), 0, 0) the disease-
free periodic solution of (7); then

lim sup
�→∞

(� (�) − �̂ (�)) ≤ 0. (29)

Proof. Proof is similar to Lemma 4.1 of [14]. �(�) satis	es the
	rst equation of system (7); then���� = � (1 − �) − 
 (�) �� (�) − ( + � (�)) �+ � (� − � − � − �)≤ � ( (1 − �) + �) − ( + � (�) + �) �. (30)

Let (�) = �(�) − �̂(�); then� �� = ( + � (�) + �) (�̂ − �) − 
 (�) �� (�) − � (� + �)≤ − ( + � (�) + �) . (31)

Using Gronwall’s inequality (�) ≤  (0)%−∫�0 (�+�(	)+
)�	,� (�) − �̂ (�) ≤ (� (0) − �̂ (0)) %−∫�0 (�+�(	)+
)�	= (� (0) − �̂ (0)) %−(�+
)�%−∫�0 �(	)�	. (32)

Taking limits in both sides, we obtain that lim sup�→∞�(�) −�̂(�) ≤ 0.
Now, we are able to enunciate our theorem for global

stability of disease-free periodic solution.

�eorem 6. �e disease-free periodic solution (�̂(�), 0, 0) of
system (7) is globally asymptotically stable ifR0 < 1.
Proof. From�eorem 2we have that (�̂(�), 0, 0) is unstable for
R0 > 1 and asymptotically stable forR0 < 1, so it is su�cient
to prove that any solution (�(�), �(�), �(�)) with nonnegative

initial conditions (�0, �0, �0) approaches (�̂, 0, 0) as � tends to
in	nity.

Let � > 0; from Lemma 5 we have

lim sup
�→∞

(� (�) − �̂ (�)) = lim
�→∞

sup
�≥�
(� (Z) − �̂ (Z)) = �

≤ 0, (33)

so there exists a� > 0 such that for all �1 > �−� < sup
�≥�1
(� (�) − �̂ (�)) − � < �, (34)

which implies that sup�≥�1(�(�)− �̂(�)) < �+� ≤ �.�en, from

the de	nition of supremum, we have that for all � > �1� (�) − �̂ (�) ≤ sup
�≥�1
(� (�) − �̂ (�)) < �. (35)

�en, we have proved that for all � > 0we can 	nd a �1 > 0
such that �(�) < � + �̂(�) for all � > �1.

Now, using Lemma 4, for � > 0 we can 	nd a �1 > 0 such
that for � > �1���� = 
 (�) �� (�) − ( + �) �≤ 
 (�) � (�) �� (0) � − ( + �) � (�) (36)

< 
 (�) �� (0) (�̂ (�) + �) � (�) − ( + �) � (�) . (37)

We consider the following perturbed subsystem:���� = 
 (�) �� (0) (�̂ + �) � − ( + �) �,���� = �� − ( + �) �, (38)

which can be rewritten as(���� , ����)� = (C (�) − 	 (�)) (�, �)�+ �[ (�) (�, �)� , (39)
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with C(�), 	(�) de	ned in (15) and

[(�) = (0 
 (�) �� (0)0 0 ) . (40)

Matrix (C − 	 + �[)(�) is ��-periodic, cooperative,
irreducible, and continuous. Using Lemma 3, if � =(1/��) ln O(Ψ�−�+��(��)), then there exists a positive and��-periodic function V(�) = (V1(�), V2(�))� such that %��V(�)
is solution of system (38). Note that for all � > 0, function�%�(�−��)V(� − ��) is also a solution of system (38) with initial
condition �V(0) at � = ��.

Choose a � > �1 and \1 > 0 such that (�(�), �(�))� ≤\1V(0); then from (37) we have that

(���� , ���� )� ≤ (C − 	) (�, �)� + �[ (�, �)� , (41)

and using a comparison principle (see, e.g., [19] �eorem

B.1), we have (�(�), �(�))� ≤ \1%�(�−�)V(� − �) for all � > �.
From �eorem 2.2 of [13], R0 < 1 i O(Φ�−�(��)) <1. By the continuity of the spectrum for matrices (see [20],

Section II.5.8), we can choose � > 0 small enough so thatO(Φ�−�+��(��)) < 1 and then � < 0 (see Note 1). �us, using
positivity of solutions and comparison,0 ≤ lim

�→∞
� (�) ≤ lim

�→∞
\1%�(�−�)V1 (� − �) = 0. (42)

And similarly for �, we obtain that

lim
�→∞

� (�) = 0
lim
�→∞

� (�) = 0. (43)

We need only to prove that �(�) approaches �̂. At disease-
free periodic solution �̂(�) = � − �̂(�), where �̂ satis	es��̂�� = �� + � (�) �̂ − ( + �) �̂. (44)

�us, �(�) = � − �(�) − �(�) − �(�) satis	es� (� − �̂)�� = � (�) (� − �̂) + �� − ( + �) (� − �̂) . (45)

Let �1 > 0 be arbitrary and �max = max�∈[0,��]�(]). Due
to (43) we can 	nd a �2 > 0 such that �(�) < �1 for � > �2;
moreover, we can 	nd a �3 > 0 such that �(�) ≤ �̂(�) + �1 for� > �3. �en, let �4 = max{�2, �3}; we have for � > �4� (� − �̂)�� ≤ (�max + �) �1 − ( + �) (� − �̂) . (46)

Multiplying in both sides by %(�+
)� and integrating from �4 to�, we obtain(� − �̂) ≤ (� − �̂) (�4) %−(�+
)(�−�4)
+ �1 (�max + �) + � (1 − %−(�+
)(�−�4)) . (47)

So, lim sup�→∞(� − �̂)(�) ≤ �1(�max + �)/( + �), where�1(�max + �)/( + �) is arbitrarily small. �en lim sup�→∞(� −�̂)(�) ≤ 0, and using similar arguments for � and �2 > 0, we
can 	nd a �5 > 0 with �(�) ≤ �̂(�) + �2/2 for � > �5. Also, from
(43), we can 	nd �6 > 0 with �(�) + �(�) < �2/2 for � > �6, so,
for � > max{�5, �6}, we have� (�) = � − � (�) − � (�) − � (�) ≥ � − �̂ (�) − �2= �̂ (�) − �2. (48)

Or, equivalently, �(�) − �̂(�) ≥ −�2, with �2 being

arbitrarily small, and this implies that lim inf �→∞(� − �̂)(�) ≥0. We conclude by comparison and using Lemma 5 that

lim�→∞�(�) = �̂(�), completing the proof.

�eorem 6 shows that disease will completely disappear
as long as R0 < 1. �us, reducing and keeping R0 below
the unity would be su�cient to eradicate infection, even in a
periodic environment and a general incidence rate.

3.2. Disease Persistence. Uniform persistence is an important
concept in population dynamics, since it characterizes the
long-term survival of some or all interacting species in an
ecosystem [21].

In this section we consider the dynamics of the periodic
model when R0 > 1. We will show that actually R0 is
a threshold parameter for the extinction and the uniform
persistence of the disease. Our results are inspired by [5, 15,
18, 22].

Let ^ :  →  be the Poincaré map associated with
system (7); that is,^ (�0) = I (��, �0) , ∀�0 ∈  , (49)

where  is de	ned in (8) and I(�, �0) is the unique solution
of system (7) with I(0, �0) = �0. We de	ne the following sets: 0 fl {(�, �, �) ∈  : � > 0, � > 0} , _ 0 fl  \  0. (50)

Note that _ 0 is not the boundary of  0, but it is a
standard notation of persistence theory.

Lemma 7. Set 0 is positively invariant under system (7).

Proof. Let �0 = (�0, �0, �0) ∈  0, that is, �0 > 0, �0 > 0, and
let I (�, �0) = (� (�) , � (�) , � (�)) (51)

be the solution of (7) withI(0, �0) = �0. Due to nonnegativity
of solutions and assumptions on function 
(�) and �(�), we
have���� = 
 (�) �� (�) − ( + �) � ≥ − ( + �) �, ∀� > 0. (52)
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Using a comparison theorem (see, e.g., [19] Appendix B.1), we
have for all � > 0� (�) ≥ M%−(�+�)� > 0, with M = � (0) > 0. (53)

Similarly, ���� = �� − ( + �) � ≥ − ( + �) �, (54)

so, � (�) ≥ � (0) %−(�+�)� > 0, ∀� > 0. (55)

�erefore, I(�, �0) remains on 0 for all � > 0.
To use persistence theory developed in [21], we show thatP! = {(�, 0, 0) : � ≥ 0} , (56)

whereP! fl {(�0, �0, �0) ∈ _ 0 : ^" (�0, �0, �0) ∈ _ 0, ∀b≥ 0} . (57)

Let �0 = (�0, 0, 0) ∈  and (�(�), �(�), �(�)) be the
solution that passes through that initial condition. We have
that I(�, �0) = (�1(�), 0, 0), with �1(�) being a solution of
(9) and �1(0) = �0 being a solution that satis	es the initial
condition. By uniqueness of solutions we have �(�) = 0 =�(�) ∀� ≥ 0, so �0 lives onP!.

Now, if �0 ∈ P!, we want �0 = (�0, 0, 0). We prove
an equivalent sentence: if �0 ∈ _ 0 \ {(�, 0, 0) : � ≥ 0},
then it does not belong toP!. Consider an initial point �0 =(�0, �0, �0) ∈ _ 0 \ {(�, 0, 0) : � ≥ 0}; then �0 > 0, �0 = 0, or�0 = 0, �0 > 0. Suppose that � > 0 and �0 = 0; then I(�, �0)
holds ���� (0) = �� (0) > 0. (58)

By continuity of �(�) and sign of derivative of �, we have
that, for small 0 < � ≪ 1, �(�) > 0, �(�) > 0, so, for0 < � ≪ 1, I(�, �0) ∈  0. Using invariance of  0 (Lemma 7)
we have I(�, �0) ∈  0 for all � > 1. Finally, for a b > 0 such
that b�� > 1, we have ^"(�0) = I(b��, �0) ∈  0 and
this implies (56). By the existence of a disease-free periodic
solution (proved in Section 2), it is clear that there is one 	xed

point of ^ inP! given byP0 = (�̂(0), 0, 0) ([23]).
Now, we are in a position to introduce the following result

of uniform persistence of the disease.

�eorem 8. Let R0 > 1; then there exists an � > 0
such that any solution (�(�), �(�)�(�)) of (7) with initial values(�(0), �(0), �(0)) ∈  0 satis	es

lim inf
�→∞

� (�) ≥ �,
lim inf
�→∞

� (�) ≥ �. (59)

Proof. We 	rst prove that ^ is uniformly persistent (see
De	nition 1.3.2 from [21]) with respect to ( 0, _ 0), because
this implies that the solution of (7) is uniformly persistent
with respect to ( 0, _ 0) (see [21], �eorem 3.1.1). Clearly, 0 is relatively open in , so _ 0 is relatively closed.

De	nef	
fl {�0 ∈  0 : lim"→∞

hhhh^" (�0) − P0
hhhh = 0} ; (60)

we show thatf	(P0) ∩  0 = 0.
By �eorem 2.2 of [13], R0 > 1 if and only if�(Ψ�−�(��)) > 1. Choose an m > 0 small enough with the

property �̂(�) − m > 0, ∀� > 0 (see Appendix A). For \ > 0, let
us consider the following perturbed equation:���� = � ( (1 − �) + �) − 2�\− (
 (�) �� (0) \ +  + � (�) + �) �. (61)

System above admits a unique positive ��-periodic solution
of the form

�̂ (�, \) = %−∫�0 (#(	)$�(0)%+�+�(	)+
)�	 (�̂ (0, \)
+ (� (1 − �) + �� − 2�\)
⋅ ∫�

0
%∫�0 (#()$�(0)%+�+�()+
)��*)

(62)

whit �̂(�, 0) = �̂(�), which is globally attractive for all solutions
of (61) (see Appendix B for proof), and with�̂ (0, \)
= (� (1 − �) + �� − 2�\) ∫��0 %∫�0 (#()$�(0)%+�+�()+
)��*%∫��0 (#(	)$�(0)%+�+�(	)+
)�	 − 1 . (63)

Since �̂(0, \) is continuous in \, for all � > 0 there is a � >0 such that for |\| < �wehave |�̂(0, \)−�̂(0, 0)| < �.Moreover,
by continuity of solutions with respect to initial values we can

	nd for all m > 0 an � > 0 such that if |�̂(0, \) − �̂(0, 0)| < �,
then ooooo�̂ (�, \) − �̂ (�, 0)ooooo < m. (64)

�erefore, for m established before, we can 	nd \ small

enough such that �̂(�, \) > �̂(�) − m, ∀� > 0.
Again, by continuity of solutions with respect to initial

values, for this small \ > 0, there exists a � > 0 such that
for all (�0, �0, �0) ∈  0 with ‖(�0, �0, �0) − P0‖ ≤ � we have‖I(�, (�0, �0, �0)) − I(�,P0)‖ < \, ∀� ∈ [0, ��].

We now claim that

lim sup
"→∞

hhhh^" (�0, �0, �0) − P0
hhhh ≥ �,∀ (�0, �0, �0) ∈  0. (65)
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By contradiction, suppose that

lim sup
"→∞

hhhh^" (�0, �0, �0) − P0
hhhh < �,

for some (�0, �0, �0) ∈  0. (66)

Without loss of generality, we can assume that‖^"(S0, �0, �0) − P0‖ < � for all b ≥ 0 (see Appendix C).
From the discussion above, ‖I(�, ^"(�0, �0, �0))−I(�,P0)‖ <\, ∀b ≥ 0 and � ∈ [0, ��].

For any � ≥ 0, let � = b�� + �1, where �1 ∈ [0, ��) andb = [�/��] is the greatest integer less than or equal to �/��.
�en, we getI (�, (�0, �0, �0)) − I (�,P0)= I (�1, ^" (�0, �0, �0)) − I (�,P0) < \. (67)

If we set I(�, (�0, �0, �0)) = (�(�), �(�), �(�)), then we have�(�) ≤ \, �(�) ≤ \, ∀� ≥ 0, and from the 	rst equation of (7)
and Lemma 4 we arrive at���� ≥ � ( (1 − �) + �) − 2�\− (
 (�) �� (0) \ +  + � (�) + �) �, (68)

which is exactly the equation in (61). Since the unique
periodic solution of (61) is globally attractive, we have for�(�, \) solution of (61) that lim�→∞�(�, \) = �̂(�, \). So for m
given before, there exists � > 0 such that for all � ≥ �ooooo� (�, \) − �̂ (�, \)ooooo < m, (69)

or equivalently �(�, \) > �̂(�, \) − m. Moreover, from previous

analysis, �̂(�, \) − m > �̂(�) − m; therefore, using comparison
principle on (68) we arrive at� (�) ≥ �̂ (�) − m (70)

for � > �.
We have �(�), �(�) ≤ \, and \ is 	xed small, so we can

take \ < �∗ and use assumption (A5) in Introduction (see
Appendix D) to obtain

(�������� ) ≥ (C − 	 − m[ − \M) (�, �)� , (71)

where C,	 are de	ned in (15),[ is de	ned in (40), and

M = (0 −12
 (�) ��� (0) [�̂ − m]0 0 ) . (72)

By�eorem 2.2 of [13], we haveR0 > 1 iO(Φ�−�(��)) >1. By continuity of spectrum (see [20] Section II), we can 	nd\, � such that O (Φ�−�−&�−%') > 1. (73)

Consider the auxiliary system

(��2����2�� ) = (C − 	 − m[ − \M) (�2, �2)� ; (74)

then, using Lemma 3 there exists a solution of (71) with the
form %�2�V2(�), with �2 = (1/��) ln(O(Φ�−�−&�−%'(��))) >0. Choose a �2 > � and a small number \2 > 0 such that(�2(�2), �2(�2))� ≥ \2V2(0). Using comparison principle we

get (�(�), �(�)) ≥ \2V2(�−�2)%�2(�−�2), which implies�(�) → ∞
and �(�) → ∞. �is leads to a contradiction.

�e claim above shows that ^ is weakly uniformly
persistent with respect to ( 0, _ 0). Note that ^ has a global

attractor �̂(0) (see Lemma 5). It follows thatP0 is an isolated
invariant set in  , f	(P0) ∩  0 = 0. Every orbit in P!
converges toP0 andP0 is acyclic. By the acyclicity theorem
on uniform persistence for maps ([21] �eorem 1.3.1 and
Remark 1.3.1), it follows that ^ is uniformly persistent with
respect to ( 0, _ 0); that is, there exists � > 0 such that any
solution of (7) satis	es lim�→∞�(�) ≥ �, lim�→∞�(�) ≥ �.
4. Numerical Simulations

In this section we provide some numerical simulations to
illustrate the results obtained in our theorems and compare
them with previous results.

To improve previous models used in references, we use a
particular function

� (�) = �1 + K� , K ≥ 0, (75)

which includes the case �(�) = � used in [5]. One can check
that function (75) satis	es conditions (A1)–(A5). Using this
function, system (7) is rewritten as���� = � (1 − �) − 
 (�) ��1 + K� − ( + � (�)) �+ � (� − � − � − �) ,���� = 
 (�) ��1 + K� − ( + �) �,���� = �� − ( + �) �.

(76)

Set an initial population� = 2,200,000 and take time � in
years. Suppose  = 0.02 per year, corresponding to an average
human life time of 50 years. Following [5] take the parameters
as follows: � = 38.5 per year, � = 100 per year, � = 0.85, � =0, and K = 1. Choose the periodic transmission as 
(�) = 
0+0.0002 cos(2w�), with 
0 being the transmission parameter,
and the periodic vaccination rate �(�) = 0.1 + 0.004 cos(2w�).
Both functions have period �� = 1.

�ere exists multiple methods for computing the basic
reproduction number, via numerical approximations, or
	nding a positive solution of the equation O(f(��, 0, x)) = 1
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Figure 1: � component of infection-free periodic solution. Time � is given in years. (a) �̂(�), because it is a periodic function of period 1, is

plotted only in [0, 1]. (b) Taylor expansion of �̂ around � = 0 of order �10.
(see �eorem 2.1 of [13]). In order to compare our work
with previous works, we approximate the basic reproduction

number with its average valueR�
0 , used by several authors as

the reproduction number (for example [10, 11]), so de	ne��0 = O ([C]	−1) , (77)

where 	 is given by (15) and

[C] = (0 [
] [�̂] �� (0)0 0 ) , (78)

with [
], [�̂] being the average of functions 
, �̂ de	ned as[
] = (1/��) ∫��0 
(�)��, �̂ = (1/��) ∫��0 �̂(�)��. Computing

each average, we obtain��0 = 549.6702634
0, (79)

so ��0 > 1 for 
0 ∈ (0.001819272510,∞).
Following �eorem 2.1 of [13], to compute R0, letf(�, *, x), � ≥ *, be the evolution operator of the system���� = (−	 (�) + C (�)x )� (80)

that is, for each x ∈ (0,∞), �f(�, *, x)/�� = (−	(�) +C(�)/x)f(�, *, x), ∀� ≥ *, and f(*, *, x) = �2×2. With this
operator,R0 > 0 is the unique solution ofO(f(��, 0, x)) = 1.
Example 1. To illustrate our results, 	x 
0 = 0.0018.
Computing ��0 , we have ��0 = 0.9894064741, which is a 	rst
approximation of �0. To solve system (80) numerically, we

substitute the terms of expression of �̂(�) in (10):

�̂ (�)
= %−0.1200000000�−0.0006366197724 sin(6.283185307�) (54999.33689
+ 6600.0 ∫�

0.0
%0.1200000000	+0.0006366197724 sin(6.283185307	)�*)

(81)

�e previous integral cannot be computed analytically, so

we approach �̂(�) using Taylor expansion around 0 (remem-
ber that we want so solve O(f(��, 0, x)) = 1, where �� = 1),
so even when we cannot 	nd an explicit expression for �̂(�),
the Taylor expansion is a good way to estimate it in (0, 1). It
could be of interest to also use an approach of �̂(�) around� = 1 and compare the results with those obtained in the
present work (see Section 5 for a discussion about this topic).

Setting an initial value x0 = 0.98 and letting x� = x0 +4(0.0001), we solve system (80) numerically for each x� (using
initial conditions �(0) = (1, 0) and �(0) = (0, 1), to satisfyf(0, 0) = �2×2), and compute O1 = O(f(��, 0, x�)) until O1 ∼1. With previous process we arrive at O1 = 1.00120166209265
for x = 0.9872 and O1 = 0.997826338969630 for x =0.9873; therefore R0 ∈ (0.9872, 0.9873). Using a 	ner step
size 0.0000001 to have more accuracy, we arrive at R0 ∼0.9872355 < 1.

Set initial values as �(0) = 1,500,000, �(0) = 400,000,�(0) = 40,000, and �(0) = � − (�(0) + �(0) + �(0)).
�ere exist multiple numerical methods to compute and

plot the solutions of nonautonomous dierential equations;
see, for example, the Adomian method, the homotopy anal-
ysis method, or the modi	ed homotopy methods (see, e.g.,
[24, 25]). For this workwe useMatlab algorithms (ODE45) to
graph the solution of system (76)with these initial conditions.
Figures 2 and 3 shows the results. We can see that �(�), �(�)
goes to zero, while �(�), �(�) tend to stabilize; also �(�) is
tending to �̂(�) with values between 54,000 and 56,000 (see
Figure 1); this shows the results obtained in�eorem 6.
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Figure 2: Solution of exposed and infected populations of SEIRS system whenR0 < 1. We can see that both approach zero when time goes
to in	nity. Time � is given in years.
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Figure 3: Solution of susceptible and recovered populations of SEIRS system whenR0 < 1. We can see that � approaches �̂(�) (see Figure 1),
and � approaches �̂(�) = � − �̂(�). Time � is given in years.

Example 2. Now, choose 
0 = 0.005. As we can see in Figures
4 and 5, the solutions of system (1) remain persistent when� tends to in	nity; this fact suggests that R0 > 1 from
�eorem 8. In fact, if we compute the basic reproduction
number and its average (using the process described in

example 1), R�
0 = 3.298021580 and R0 ∈ (2.7456, 2.7457);

therefore it is bigger than one. In fact, this shows the results
of persistence obtained in�eorem 8.

5. Conclusion

In this paper we presented a model with seasonal �uctuation
with a general incidence function ��(�) that includes the
bilinear case 
�� (studied by [5]) and a family of saturated
incidence rate of the form 
��/(1 + ���). We proved the

existence of a disease-free periodic solution (�̂(�), 0, 0) and
de	ned the basic reproductionnumberR0, proving that it is a
threshold parameter for disease, in the sense that whenR0 <1, the disease-free periodic solution is globally asymptotically
stable, and when R0 > 1, the disease is persistent. A next
step of this work is to consider a family of incidence rates
more generally, changing ��(�) by�(�, �) and trying to obtain
results of persistence and stability similar to the ones obtained
in this work. Another interesting topic is to ask what the
behavior of system at R0 = 1 is, in order to complete the
analysis that we have made.

Several authors (e.g., [10, 11]) de	ne R0 as an average,

which we denoted as R
�
0 to distinguish between it and

the basic reproduction number de	ned by [13], via the
monodromy matrix (which is a real threshold parameter



International Journal of Dierential Equations 11

Exposed population

0

20

40

60

80

100

120

140

160

180

E
(t
)

10 20 30 40 50 60 700

t

Infected population

0

10

20

30

40

50

60

70

I(
t)

10 20 30 40 50 60 700

t

Figure 4: Solution of exposed and infected individuals of SEIRS system when R0 > 1. Both � and � remain persistent when time goes to
in	nity. Time � is given in years.
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Figure 5: Solution of susceptible and recovered populations of SEIRS system whenR0 > 1. Time � is given in years.

for extinction and persistence of disease). We compute R�
0 ,

approximate R0 (with the help of Taylor theorem), and

compare these values, obtaining thatR�
0 is not equal to R0;

moreover R�
0 > R0 in both examples (similar comparisons

can be observed also in the works made by [13, 17]). �is fact

suggests that the use ofR�
0 for persistence overestimates the

threshold. To emphasize this conclusion, it would be helpful

to 	nd an example where R0 < 1 but R�
0 > 1 and then

compute the solutions to observe the behavior (we a�rm that
the disease will go extinct due to�eorem 6).

To obtain the estimation of R0 we used a code in
Maple, which is based on numerical computing of O1 =O(f(��, 0, x�)) until O1 ∼ 1, where x� = x0 + Δ *4, Δ * is

the step size, and the initial estimation x0 is taken as ��0 − �.
For this approximation we have used a Taylor expansion

of the periodic solution �̂(�); another interesting possibility
could be varying the approximation used forR0, for example,

changing the Taylor approach of �̂(�) around � = 1 instead of� = 0. �e graphs of the solutions were obtained with ODE
45 from Matlab, but other methods can be used to improve
them, for example, Adomianmethods or homotopymethods
[24, 25]. �e Maple code used to estimateR0 is available for
anyone who wants to use it.

Appendix

A. Assumption on m Used in Theorem 8

Note that �̂(�) has a positive minimum value min(�̂(�)) (it is
periodic, positive, and continuous, so it is bounded for � ∈[0, ��] and then for all � > 0) and we can choose a m > 0
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with the property min(�̂(�)) > m, su�ciently small such that�̂(�) − m > 0.
B. Periodic Solution of (61)

For each \, (61) used in the proof of �eorem 8 is���� = � ( (1 − �) + �) − 2�\− (
 (�) �� (0) \ +  + � (�) + �) �̂. (B.1)

Solving the equation above, we arrive at the general
solution

� (�) = %−∫��0 �(	)�	 [� (�0)
+ (� ( (1 − �) + �) − 2�\)∫�

�0
%∫��0 (�(-)�-)�*] , (B.2)

where �(*) = 
(*)��(0)\ +  + �(*) + �. We shall examine the

behavior of an arbitrary solution �. For each � = 0, 1, . . ., we
can use an initial time �0 = �0 + ��� with initial point �(�0)
and see that

� (�0 + (� + 1) ��) = %−∫(�0+���)+���0+���
�(	)�	 [� (�0 + ���)+ (� ( (1 − �) + �) − 2�\)

⋅ ∫(�0+/��)+��
(�0+/��)

%∫��0+���(�(-)�-)�	] .
(B.3)

Since �(*) is a periodic function,
∫(�0+/��)+��
�0+/��

� (*) �* = ∫�0+��
�0

� (*) �* = ∫��
0
� (*) �*,

∫	
�0+/��

� (�) �� = ∫	−/��
�0

� (�) ��, (B.4)

where * − ��� ≥ �0. �en

� (�0 + (� + 1) ��) = %−∫(�0+��)�0
�(	)�	 [� (�0 + ���)+ (� ( (1 − �) + �) − 2�\)

⋅ ∫(�0+/��)+��
(�0+/��)

%∫�−���0 (�(-)�-)�*] .
(B.5)

And using the change of variable ] = * − ��, we have
� (�0 + (� + 1) ��) = %−∫(�0+��)�0

�(	)�	 [� (�0 + ���)
+ (� ( (1 − �) + �) − 2�\)∫�0+��

�0
%∫	�0 (�(-)�-)�]] . (B.6)

Equation (B.6) gives a recursive relationship between the

solution at �0 + ��� and a�er �� times. If we set �/ = �(�0 +���), then for each solution � this relationship is described
by �/+1 = C (�/) , (B.7)

with C being on the right side of (B.6). If we take �� and ��,
two dierent values of �/, thenoooooC (��) − C (��)ooooo = %−∫�0+���0 �(	)�	 ooooo�� − ��ooooo ≤ ooooo�� − ��ooooo≤ %−(�+
)�� ooooo�� − ��ooooo . (B.8)

�en, C(�) is a contracting map, and by Banach 	xed
point theorem C has a unique 	xed point �� such that ��+1 =C(��) = �� or, equivalently, �(�0 + 4��) = �(�0 + (4 + 1)��).
�is 	xed point can be found for any � that is a solution of
a dierential equation with arbitrary initial condition �(�0) at
any time �0. �e 	xed point has the form� (�∗0 )
= (� ( (1 − �) + �) − 2�\) ∫�∗0+���∗0

(%∫	�0∗ �(	)�	)�]%∫��0 �(	)�	 − 1 . (B.9)
�us, de	ne the function�̂ (�)
= (� ( (1 − �) + �) − 2�\) ∫�+��� (%∫	� �(	)�	) �]%∫��0 �(	)�	 − 1 . (B.10)

�̂ is a periodic function with period �� and is contin-
uously dierentiable with respect to �. One can check (by

computing the derivative) that �̂(�) is a solution of dierential
equation, so by existence and uniqueness of solutions it can
be rewritten as�̂ (�) = %−∫�0 �(	)�	 [�̂ (0)

+ (� ( (1 − �) + �) − 2�\)∫�
0
%∫�0 (�(-)�-)�*] , (B.11)

with initial condition

�̂ (0) = (� ( (1 − �) + �) − 2�\) ∫��0 %∫�0 (�(-)�-)�*%∫��0 �(	)�	 − 1 . (B.12)

If we suppose the existence of another periodic solution�̂2(�), thenusing (B.6)we arrive at �̂2(0) = �̂(0), by uniqueness
of solutions �̂ = �̂2, and the periodic solution is unique.

Computing the dierence �(�) − �̂(�), we have� (�) − �̂ (�) = %−∫�0 �(	)�	 [� (0) − �̂ (0)] , (B.13)

so, lim(�(�) − �̂(�)) = 0. �erefore, every solution �(�)
converges to �̂(�).
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C. Assumption on ^" Used in Theorem 8

Let �(b) fl ‖^"(�0, �0, �0) − P�‖. If
lim sup
"→∞

� (b) < �,
for some (�0, �0, �0) ∈  0, 4 = 1, 2, (C.1)

then we have � = lim"→∞(sup/≥"�(�)) < �. For all � > 0
there exists a P� > 0 such that if b ≥ P�, then −� <
sup/≥"�(�) − � < �. In particular, for � = (� − �)/2 > 0
we have

sup
/≥"
� (�) − � < � − � (C.2)

or, equivalently, sup/≥"�(�) < � forb ≥ P
−�. Moreover, for
all � ≥ b with b ≥ P
−�, we have �(�) < sup/≥"�(�) < �.
�erefore, ‖^/(�0, �0, �0) − P�‖ < �, ∀� ≥ P
� .

We can take (�10, �10, �10 ) = ^��−�(�0, �0, �0) as initial
condition and, therefore,hhhhh^/ (�10, �10, �10) −P�

hhhhh < �, ∀� ≥ 0, (C.3)

making our assumption valid.
So, we can assume without loss of generality that‖^"(�0, �0, �0) − P�‖ < � for allb ≥ 0.

D. Expression (71)

From system (7) ��/�� = 
(�)��(�) − ( + �)�, with �(�) >�̂(�) − m for � > �, so���� ≥ 
 (�) (�̂ (�) − m) � (�) − ( + �) �, for � > �. (D.1)

Using assumption (A5) for �(�) and positivity of �̂(�) − m, we
have also � (�) (�̂ (�) − m)

≥ (�̂ (�) − m) [��� (0) + 12�2��� (0)] . (D.2)

�erefore,���� ≥ 
 (�) (�̂ (�) − m) [��� (0) + 12�2��� (0)]− ( + �) �,= 
 (�) (�̂ (�) − m) ��� (0)
+ 12
 (�) (�̂ (�) − m) ��� (0) �2 − ( + �) �.

(D.3)

0 < � < \ and ���(0) ≤ 0, so �2 < \� and ���(0)�2 ≥ ���(0)\�;
applying this we arrive at���� ≥ 
 (�) (�̂ (�) − m) ��� (0)+ 12
 (�) (�̂ (�) − m) ��� (0) \�,���� = �� − ( + �) �.

(D.4)

�is expression can be written as (71).
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