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Abstract

An age-structured in-host viral infection model with humoral immunity, consisting of

partial differential and ordinary differential equations, is investigated. By calculation

we get the basic reproduction number ℜ0 and the immune-activated reproduction

number ℜ1. By analyzing the characteristic equations, the local stability of an

infection-free steady state, an immune-inactivated infected steady state and an

immune-activated infected steady state of the model is established. By using suitable

Lyapunov functionals and LaSalle’s invariance principle, it is proved that if ℜ0 < 1, the

infection-free steady state is globally asymptotically stable; if ℜ1 < 1 < ℜ0, the

immune-inactivated infected steady state is globally asymptotically stable; and

if ℜ1 > 1, the immune-activated infected steady state is globally asymptotically stable.

Numerical simulations are carried out to illustrate the theoretical results.
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1 Introduction

The adaptive immune system, also known as the acquired immune system, is mainly com-

posed of two parts, cellular immunity and humoral immunity. Humoral immunity is me-

diated by macromolecules such as antibodies, complement proteins, and certain antimi-

crobial peptides. These macromolecules are produced by a special kind of leukocyte, the

B lymphocyte. The principal function of B cells is to make these macromolecules against

soluble antigens. So humoral immunity can be more effective than cellular immunity in

some infections, such as malaria []. To investigate the role of humoral immunity in infec-

tion, many authors have presented and developed mathematical models [–]. Murase et

al. introduced a basic in-host viral model with humoral immunity response in []:

dx(t)

dt
= s – dx(t) – βx(t)v(t),

dy(t)

dt
= βx(t)v(t) – δy(t),
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dv(t)

dt
= ky(t) – uv(t) – pv(t)z(t), (.)

dz(t)

dt
= cv(t)z(t) – bz(t).

In system (.), x(t), y(t), v(t), and z(t) are the densities of uninfected cells, infected cells,

viruses, and B cells at time t, respectively. s and d are the birth rate and death rate of

uninfected cells. β is the infection rate. k is the average virion production rate of infected

cells. δ is the death rate of infected cells, u is the death rate of the virus. c, b, and p are the

birth rate, death rate, and neutralized rate of B cells, respectively.

In [] Nelson et al. suggested that the death rate of infected cells should vary over their

life span and the virion production rate is initially low and increases with the age of infec-

tion. Further, they introduced an age-structuredHIV infectionmodel taking the following

form:

ẋ(t) = s – dx(t) – βx(t)v(t),

∂y(a, t)

∂a
+

∂y(a, t)

∂t
= –δ(a)y(a, t),

v̇(t) =

∫ ∞



k(a)y(a, t)da – uv(t).

(.)

In system (.), x(t) and v(t) denote the densities of uninfected target T cells and infectious

free virions at time t, respectively. y(a, t) denotes the density of infected T cells of infection

age a at time t. The definitions of the various parameters in system (.) are listed inTable .

In their model, the production rate of viral particles and the death rate of productively

infected cells are allowed to vary and depend on two general functions of age. These as-

sumptions are reasonable and the supporting evidence can be found in the recent research

of Reilly et al. and Gilchrist et al. in [, ]. Nelson et al. analyzed the local stability of

the equilibria of the age-structured HIV infection model when they introduced it. Later

Huang et al. established the global asymptotic stability of the equilibria by using suitable

Lyapunov functionals and Lasalle’s invariance principle in []. Recently, in [] Wang et

al. analyzed an age-structured HIV infection model with saturation infection rate, their

result is an extension to the work of Nelson et al. and Huang et al.

Motivated by the basic in-host viral model with humoral immunity response introduced

in [] and work of Nelson et al. in [], in this paper, we study an age-structured in-host

Table 1 Biological definitions of parameters

Parameter Biological definition

a Age of infection

s Recruitment rate of healthy T cells

d Per capita death rate of uninfected cells

β Rate at which an uninfected cell becomes

infected by an infectious virus

k(a) Virion production rate of an infected cell with age a

δ(a) Age-dependent per capita death rate of infected cells

u Clearance rate of virions
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viral infection model with humoral immunity, the model takes the following form:

ẋ(t) = s – dx(t) – βx(t)v(t),

∂y(a, t)

∂t
+

∂y(a, t)

∂a
= –δ(a)y(a, t),

v̇(t) =

∫ ∞



k(a)y(a, t)da – uv(t) – pv(t)z(t),

ż(t) = cv(t)z(t) – bz(t),

(.)

with boundary condition

y(, t) = βx(t)v(t) (.)

and initial condition

x() = xs, y(a, ) = ys(a), v() = vs, z() = zs. (.)

In system (.), y(a, t) is the density of infected cells of infection age a at time t, k(a) is

the virion production rate of infected cells with infection age a, δ(a) is the age-dependent

per capita death rate of infected cells. The definitions of x(t), v(t), z(t), and the other pa-

rameters are the same as in system (.). To make the model biologically meaningful, we

assume:

(H) a ≥ , s > , d > , β > , u > , p > , c > , b > .

(H) δ(a) is bounded and δ(a) > δmin for some positive constant δmin for all a≥ .

(H) k(a) is bounded and there exists a maximum age a+ for the virion production such

that k(a) >  for  < a < a+, k(a) =  for a≥ a+.

(H) xs > , ys(a)≥ , vs > , zs ≥ .

According to (H)-(H), it is easy to see that system (.) with boundary condition (.)

and initial condition (.) has a unique nonnegative solution.

2 Local stability

Denote

N =

∫ ∞



k(a)σ (a)da, (.)

where

σ (a) = e–
∫ a
 δ(ε)dε .

N stands for the total number of viral particles produced by an infected cell in its lifespan.

According to (H), N also takes the form

N=

∫ a+



k(a)σ (a)da.

By calculationwe know that the infection-free steady state of system (.) is E(s/d, , , ).

If the basic reproduction number ℜ = βsN/du > , there exists an immune-inactivated
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infected steady state E∗
 (x

∗
 , y

∗
 (a), v

∗
 , ), in which

x∗
 =

u

βN
, y∗

 (a) =
(βsN – du)σ (a)

βN
, v∗

 =
βsN – du

βu
.

If the immune-activated reproduction number ℜ = βcsN/(cdu+ βbu) > , there exists an

immune-activated infected steady state E∗
(x

∗
, y

∗
(a), v

∗
, z

∗
), in which

x∗
 =

cs

cd + βb
, y∗

(a) =
βbsσ (a)

cd + βb
, v∗

 =
b

c
, z∗

 =
βcsN – cdu – βbu

p(cd + βb)
.

Theorem . The infection-free steady state E is locally asymptotically stable if ℜ < .

Proof Linearizing system (.) about E and defining the perturbation variables

x(t) = x(t) –
s

d
, y(a, t) = y(a, t), v(t) = v(t), z(t) = z(t),

we obtain

ẋ(t) = –dx(t) –
βs

d
v(t),

∂y(a, t)

∂a
+

∂y(a, t)

∂t
= –δ(a)y(a, t),

v̇(t) =

∫ ∞



k(a)y(a, t)da – uv(t),

ż(t) = –bz(t),

(.)

and

y(, t) =
βs

d
v(t). (.)

Look for non-trivial solutions of (.) and (.) of the form

x(t) = ce
λt , y(a, t) = y (a)e

λt , v(t) = ce
λt , z(t) = ce

λt . (.)

Substituting (.) into (.) and (.), it follows that

(λ + d)c = –
βs

d
c,

dy (a)

da
= –

(

δ(a) + λ
)

y (a),

(λ + u)c =

∫ ∞



k(a)y (a)da,

cλ = –bc,

y () =
βs

d
c.

(.)

Integrating the second equation of (.) from  to a yields

y (a) = y ()e
–

∫ a
 (λ+δ(ε))dε . (.)
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We derive from the fifth equation of (.) and (.) that

y (a) =
βs

d
ce

–
∫ a
 (λ+δ(ε))dε . (.)

Then substituting (.) and the fourth equation of (.) into the third equation of (.), we

obtain the characteristic equation

(λ + b)

(

N
∫ ∞


k(a)e–

∫ a
 (λ+δ(ε))dε da

·
λ + u

u
–ℜ

)

= . (.)

Clearly, λ = –b is a negative real root of equation (.). We claim that if ℜ < , all roots

of equation (.) have negative real parts. Otherwise, equation (.) has at least one root

satisfying Reλ ≥ , in this case

ℜ =

∣

∣

∣

∣

N
∫ ∞


k(a)e–

∫ a
 (λ+δ(ε))dε da

·
λ + u

u

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞


k(a)e–

∫ a
 δ(ε)dε da

∫ ∞


e–aλk(a)e–

∫ a
 δ(ε)dε da

∣

∣

∣

∣

·

∣

∣

∣

∣

λ + u

u

∣

∣

∣

∣

≥ .

It contradicts with ℜ < . Therefore, all roots of equation (.) have negative real parts.

Accordingly, E is locally asymptotically stable if ℜ < . �

Theorem . The immune-inactivated infected steady state E∗
 is locally asymptotically

stable if ℜ <  < ℜ.

Proof Linearizing system (.) about E∗
 and defining the perturbation variables

x(t) = x(t) – x∗
 , y(a, t) = y(a, t) – y∗

 (a), v(t) = v(t) – v∗
 , z(t) = z(t),

we obtain

ẋ(t) =
(

–d – βv∗


)

x(t) – βx∗
v(t),

∂y(a, t)

∂a
+

∂y(a, t)

∂t
= –δ(a)y(a, t),

v̇(t) =

∫ ∞



k(a)y(a, t)da – uv(t) – pv∗
z(t),

ż(t) =
(

cv∗
 – b

)

z(t),

(.)

and

y(, t) = βx∗
v(t) + βv∗

x(t). (.)

We look for non-trivial solutions of (.) and (.) of the form

x(t) = ce
λt , y(a, t) = y(a)e

λt , v(t) = ce
λt , z(t) = ce

λt . (.)
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By using a similar method to the proof of Theorem ., we obtain the characteristic equa-

tion

(

λ + u

u
–

λ + d

λ + d + βv∗


·

∫ ∞


k(a)e–

∫ a
 (δ(ε)+λ)dε da

∫ ∞


k(a)e–

∫ a
 δ(ε)dε da

)

(

λ – cv∗
 + b

)

= . (.)

Obviously, λ = cv∗
 – b = (ℜ – )(cd + βb)/β is a root of equation (.), and it is negative

when ℜ < . We claim that if ℜ <  < ℜ, all roots of equation (.) have negative real

parts. Otherwise, equation (.) has at least one root satisfying Reλ ≥ , in this case

λ + u

u
=

λ + d

λ + d + βv∗


·

∫ ∞


k(a)e–

∫ a
 (δ(ε)+λ)dε da

∫ ∞


k(a)e–

∫ a
 δ(ε)dε da

.

However,

∣

∣

∣

∣

λ + u

u

∣

∣

∣

∣

≥ ,

∣

∣

∣

∣

λ + d

λ + d + βv∗


·

∫ ∞


k(a)e–

∫ a
 (δ(ε)+λ)dε da

∫ ∞


k(a)e–

∫ a
 δ(ε)dε da

∣

∣

∣

∣

=

∣

∣

∣

∣

λ + d

λ + d + βv∗


∣

∣

∣

∣

·

∣

∣

∣

∣

∫ ∞


k(a)e–

∫ a
 (δ(ε)+λ)dε da

∫ ∞


k(a)e–

∫ a
 δ(ε)dε da

∣

∣

∣

∣

< .

A contradiction occurs. Thus, all roots of equation (.) have negative real parts, E∗
 is

locally asymptotically stable if ℜ <  < ℜ. �

Theorem. The immune-activated infected steady state E∗
 is locally asymptotically sta-

ble if ℜ > .

Proof Linearizing system (.) about E∗
 and defining the perturbation variables

x(t) = x(t) – x∗
, y(a, t) = y(a, t) – y∗

(a),

v(t) = v(t) – v∗
, z(t) = z(t) – z∗

,

we obtain

ẋ(t) =
(

–d – βv∗


)

x(t) – βx∗
v(t),

∂y(a, t)

∂a
+

∂y(a, t)

∂t
= –δ(a)y(a, t),

v̇(t) =

∫ ∞



k(a)y(a, t)da –
(

u + pz∗


)

v(t) – pv∗
z(t),

ż(t) = cz∗
v(t),

(.)

and

y(, t) = βx∗
v(t) + βv∗

x(t). (.)
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We look for non-trivial solutions of (.) and (.) of the form

x(t) = ce
λt , y(a, t) = y(a)e

λt , v(t) = ce
λt , z(t) = ce

λt . (.)

Substituting (.) into (.) and (.), it follows that

cλ =
(

–d – βv∗


)

c – βx∗
c,

dy(a)

da
= –

(

δ(a) + λ
)

y(a),

cλ =

∫ ∞



k(a)y(a)da –
(

u + pz∗


)

c – pv∗
c,

cλ = cz∗
c,

y() = βx∗
c + βv∗

c.

(.)

We derive from the second and the fifth equations of (.) that

y(a) =
(

βx∗
c + βv∗

c
)

e–
∫ a
 (δ(ε)+λ)dε . (.)

Substituting the first and the fourth equations of (.) into the third equation of (.),

we get the characteristic equation

λ
(

λ + u + pz∗


)(

λ + d + βv∗


)

+ cpv∗
z

∗


(

λ + d + βv∗


)

= λ(λ + d)βx∗


∫ ∞



k(a)e–
∫ a
 (δ(ε)+λ)dε da. (.)

Noting that λ =  and λ = –d – βv∗
 are not roots of equation (.), (.) can also be

written as

λ + u + pz∗
 +

cpv∗
z

∗


λ
=

(λ + d)βx∗


λ + d + βv∗


∫ ∞



k(a)e–
∫ a
 (δ(ε)+λ)dε da. (.)

Substituting x∗
 = cs/(cd + βb), v∗

 = b/c, z∗
 = (βcsN – cdu – βbu)/p(cd + βb) into (.), we

have

βcsN

cd + βb
+

λ + pbz∗


λ
=

λ + d

λ + d + βv∗


βcs

cd + βb

∫ ∞



k(a)e–
∫ a
 (δ(ε)+λ)dε da. (.)

We claim that if ℜ > , all roots of equation (.) have negative real parts. Otherwise,

equation (.) has at least one root satisfying λ = α + γ i (α >  or α = , γ �= ), in this

case

∣

∣

∣

∣

λ + d

λ + d + βv∗


βcs

cd + βb

∫ ∞



k(a)e–
∫ a
 (δ(ε)+λ)dε da

∣

∣

∣

∣

=
βcs

cd + βb

∣

∣

∣

∣

λ + d

λ + d + βv∗


∣

∣

∣

∣

∣

∣

∣

∣

∫ ∞



k(a)e–
∫ a
 (δ(ε)+λ)dε da

∣

∣

∣

∣

<
βcsN

cd + βb
,



Li and Xu Advances in Difference Equations  ( 2016)  2016:6 Page 8 of 16

while

∣

∣

∣

∣

βcsN

cd + βb
+

λ + pbz∗

λ

∣

∣

∣

∣

=

∣

∣

∣

∣

βcsN

cd + βb
+

α – γ  + αγ i + pbz∗

α + γ i

∣

∣

∣

∣

=

∣

∣

∣

∣

βcsN

cd + βb
+

α(α + γ  + pbz∗) + (αγ + γ  – pbz∗γ )i

α + γ 

∣

∣

∣

∣

≥
βcsN

cd + βb
.

The contradiction is obvious. Thus, all roots of equation (.) have negative real parts,

E∗
 is locally asymptotically stable if ℜ > . �

3 Global stability

In this section, we study the global asymptotic stability of each steady state of system (.).

The strategy of proofs is to use Lyapunov functionals.

Theorem . The infection-free steady state E is globally asymptotically stable if ℜ < .

Proof Denote

f (a) :=

∫ ∞

a

k(θ )e–
∫ θ
a δ(ε)dε dθ

(

=

∫ a+

a

k(θ )e–
∫ θ
a δ(ε)dε dθ

)

. (.)

Note that f (a) >  for all  < a < a+. It is easy to show from (.) that f () = N , f (a+) = .

Further, the derivative of f (a) satisfies

f ′(a) = δ(a)f (a) – k(a). (.)

Let (x(t), y(a, t), v(t), z(t)) be any solution of system (.) with boundary condition (.) and

initial condition (.). Define

V(t) =

(

x(t) – x – x ln
x(t)

x

)

+


N

∫ a+



f (a)y(a, t)da +


N
v(t) +

p

cN
z(t).

It is easy to see that V(t) is nonnegative and E is a global minimum of V(t). Calculating

the derivative of V(t) along the solutions of system (.), we have

dV(t)

dt
=

(

 –
x

x

)

dx(t)

dt
+



N

∫ a+



f (a)
∂y(a, t)

∂t
da +



N

dv(t)

dt
+

p

cN

dz(t)

dt
. (.)

Substituting s = dx and (.) into (.), we get

dV(t)

dt
=

(

 –
x

x(t)

)

(

dx – dx(t) – βx(t)v(t)
)

–


N

∫ a+



f (a)

(

∂y(a, t)

∂a
+ δ(a)y(a, t)

)

da

+


N

(∫ a+



k(a)y(a, t)da – uv(t) – pv(t)z(t)

)
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+
p

cN

(

cv(t)z(t) – bz(t)
)

= –
d

x(t)

(

x(t) – x
)

+ βxv(t) – βx(t)v(t)

–


N

∫ a+



f (a)

(

∂y(a, t)

∂a
+ δ(a)y(a, t)

)

da

+


N

∫ a+



k(a)y(a, t)da –
u

N
v(t) –

bp

cN
z(t). (.)

Using integration by parts and f () =N , f (a+) = , y(, t) = βx(t)v(t), we have

∫ a+



f (a)
∂y(a, t)

∂a
da = f

(

a+
)

y
(

a+, t
)

– f ()y(, t) –

∫ a+



f ′(a)y(a, t)da

= –βNx(t)v(t) –

∫ a+



f ′(a)y(a, t)da. (.)

Substituting (.) into (.) yields

dV(t)

dt
= –

d

x(t)

(

x(t) – x
)

+ βxv(t) –


N

∫ a+



f (a)δ(a)y(a, t)da

+


N

∫ a+



(

δ(a)f (a) – k(a)
)

y(a, t)da +


N

∫ a+



k(a)y(a, t)da

–
u

N
v(t) –

bp

cN
z(t)

= –
d

x(t)

(

x(t) – x
)

+
u

N
(ℜ – )v(t) –

bp

cN
z(t).

Therefore, ℜ <  ensures that V ′
(t) ≤  holds true. By Theorem .. in [], solutions

limit toM, the largest invariant subset of {V ′
(t) = }. Clearly, V ′

(t) =  if and only if x(t) =

x, v(t) = , z(t) = . Noting thatM is invariant, for each element inM, we have v(t) = ,

z(t) = , v′(t) = . We therefore derive from the third equation of system (.) that y(a, t) =

. Hence, V ′
(t) =  if and only if (x(t), y(a, t), v(t), z(t)) = (x, , , ). Accordingly the global

asymptotic stability of E follows from LaSalle’s invariance principle. This completes the

proof. �

Theorem . The immune-inactivated infected steady state E∗
 is globally asymptotically

stable if ℜ <  < ℜ.

Proof Let (x(t), y(a, t), v(t), z(t)) be any solution of system (.) with boundary condition

(.) and initial condition (.). Define

V(t) =

(

x(t) – x∗
 – x∗

 ln
x(t)

x∗


)

+


N

∫ a+



f (a)y∗
 (a)

(

y(a, t)

y∗
 (a)

–  – ln
y(a, t)

y∗
 (a)

)

da

+


N

(

v(t) – v∗
 – v∗

 ln
v(t)

v

)

+
p

cN
z(t),
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where f (a) is defined in (.). It is easy to see that V(t) is nonnegative and E∗
 is a global

minimum. Calculating the derivative of V(t) along the solutions of system (.), we have

dV(t)

dt
=

(

 –
x∗


x(t)

)

(

s – dx(t) – βx(t)v(t)
)

+


N

∫ a+



f (a)

(

 –
y∗
 (a)

y(a, t)

)

∂y(a, t)

∂t
da

+


N

(

 –
v∗


v(t)

)(∫ ∞



k(a)y(a, t)da – uv(t) – pv(t)z(t)

)

+
p

cN

(

cv(t)z(t) – bz(t)
)

.

By using s = dx∗ + βx∗v∗, we have

dV(t)

dt
=

(

 –
x∗


x(t)

)

(

dx∗
 – dx(t) + βx∗

v
∗
 – βx(t)v(t)

)

–


N

∫ a+



f (a)

(

 –
y∗
 (a)

y(a, t)

)(

∂y(a, t)

∂a
+ δ(a)y(a, t)

)

da

+


N

(

 –
v∗


v(t)

)(∫ a+



k(a)y(a, t)da – uv(t) – pv(t)z(t)

)

+
p

cN

(

cv(t)z(t) – bz(t)
)

= –
d

x(t)

(

x∗
 – x(t)

)
+

(

 –
x∗


x(t)

)

(

βx∗
v

∗
 – βx(t)v(t)

)

–


N

∫ a+



f (a)

(

 –
y∗
 (a)

y(a, t)

)(

∂y(a, t)

∂a
+ δ(a)y(a, t)

)

da

+


N

(∫ a+



k(a)y(a, t)da – uv(t)

)

–


N

v∗


v(t)

(∫ a+



k(a)y(a, t)da – uv(t) – pv(t)z(t)

)

–
bp

cN
z(t). (.)

Note that

d

da

(

y(a, t)

y∗
 (a)

–  – ln
y(a, t)

y∗
 (a)

)

=

(

 –
y∗
 (a)

y(a, t)

)(

ya(a, t)

y∗
 (a)

–
y(a, t)y∗

a(a)

[y∗
 (a)]



)

, (.)

here ya(a, t) = ∂y(a, t)/∂a and y∗
a(a) = dy∗

 (a)/da. Since

y∗
a(a) = –δ(a)y∗(a), (.)

substituting (.) into (.) yields

(

 –
y∗
 (a)

y(a, t)

)

∂y(a, t)

∂a
= y∗

 (a)
d

da

(

y(a, t)

y∗
 (a)

–  – ln
y(a, t)

y∗
 (a)

)

+ δ(a)y∗
 (a) – δ(a)y(a, t). (.)
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Using integration by parts, it follows from (.) that

∫ a+



f (a)

(

 –
y∗
 (a)

y(a, t)

)

∂y(a, t)

∂a
da

= f
(

a+
)

y∗


(

a+
)

(

y(a+, t)

y∗
 (a

+)
–  – ln

y(a+, t)

y∗
 (a

+)

)

– f ()y∗
 ()

(

y(, t)

y∗
 ()

–  – ln
y(, t)

y∗
 ()

)

–

∫ a+



(

y(a, t)

y∗
 (a)

–  – ln
y(a, t)

y∗
 (a)

)

(

f ′(a)y∗
 (a) + f (a)y∗

a(a)
)

da

+

∫ a+



f (a)
(

δ(a)y∗
 (a) – δ(a)y(a, t)

)

da. (.)

Noting that

f () =N , f
(

a+
)

= ,

y∗
 () = βx∗

v
∗
 ,

y(, t) = βxv,

y∗
a(a) = –δ(a)y∗

 (a),

f ′(a) = δ(a)f (a) – k(a),

we have

f ()y∗
 ()

(

y(, t)

y∗
 ()

–  – ln
y(, t)

y∗
 ()

)

=Nβx∗
v

∗


(

xv

x∗
v

∗


–  – ln
xv

x∗
v

∗


)

,

f
(

a+
)

y∗
(

a+
)

(

y(a+, t)

y∗
 (a

+)
–  – ln

y(a+, t)

y∗
 (a

+)

)

= ,

f ′(a)y∗
 (a) + f (a)y∗

a(a) = –k(a)y∗
 (a).

(.)

Further, we obtain

∫ a+



f (a)

(

 –
y∗
 (a)

y(a, t)

)(

∂y(a, t)

∂a
+ δ(a)y(a, t)

)

da

= –Nβx∗
v

∗


(

xv

x∗
v

∗


–  – ln
xv

x∗
v

∗


)

+

∫ a+



(

y(a, t)

y∗
 (a)

–  – ln
y(a, t)

y∗
 (a)

)

k(a)y∗
 (a)da. (.)

We derive from (.) and (.) that

dV(t)

dt
= –

d

x(t)

(

x∗
 – x(t)

)
+

(

 –
x∗


x(t)

)

(

βx∗
v

∗
 – βx(t)v(t)

)

+ βx∗
v

∗


(

xv

x∗
v

∗


–  – ln
xv

x∗
v

∗


)

–


N

∫ a+



(

y(a, t)

y∗
 (a)

–  – ln
y(a, t)

y∗
 (a)

)

k(a)y∗
 (a)da
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+


N

(∫ a+



k(a)y(a, t)da – uv(t)

)

–


N

v∗


v(t)

(∫ a+



k(a)y(a, t)da – uv(t) – pv(t)z(t)

)

–
bp

cN
z(t). (.)

Noting that uv∗
 =

∫ ∞


k(a)y∗

 (a)da = βx∗
v

∗
N , we have

dV(t)

dt
= –

d

x(t)

(

x∗
 – x(t)

)

–


N

∫ a+



(

v∗
y(a, t)

y∗
 (a)v(t)

–  – ln
v∗
y(a, t)

y∗
 (a)v(t)

)

k(a)y∗
 (a)da

– βx∗
v

∗


(

x∗


x(t)
–  – ln

x∗


x(t)

)

+
pz(t)

N

(

v∗
 –

b

c

)

.

Since

pz(t)

N

(

v∗
 –

b

c

)

=

(

(βsN – du)

βu
–
b

c

)

pz(t)

N
= (ℜ – )(cdu + βbu)

pz(t)

βcuN
,

V ′
(t) ≤  ifℜ <  < ℜ. ByTheorem.. in [], solutions limit toM, the largest invariant

subset of {V ′
(t) = }. It is readily seen that V ′

 =  if and only if x(t) = x∗
 , y(a, t) = y∗

 (a),

v(t) = v∗
 , z(t) = . We have proved in Theorem . that E∗

 is locally asymptotically stable

if ℜ <  < ℜ, then the global asymptotic stability of E∗
 follows. �

Theorem . The immune-activated infected steady state E∗
 is globally asymptotically

stable if ℜ > .

Proof Let (x(t), y(a, t), v(t), z(t)) be any solution of system (.) with boundary condition

(.) and initial condition (.). Define

V(t) =

(

x(t) – x∗
 – x∗

 ln
x(t)

x∗


)

+


N

∫ a+



f (a)y∗
(a)

(

y(a, t)

y∗
(a)

–  – ln
y(a, t)

y∗
(a)

)

da

+


N

(

v(t) – v∗
 – v∗

 ln
v(t)

v∗


)

+
p

cN

(

z(t) – z∗
 – z∗

 ln
z(t)

z∗


)

,

where f (a) is defined in (.). It is easy to see that V(t) is nonnegative and E∗
 is a global

minimum. Calculating the derivative of V(t) along the solutions of system (.), we have

dV(t)

dt
=

(

 –
x∗


x(t)

)

(

s – dx(t) – βx(t)v(t)
)

+


N

∫ a+



f (a)

(

 –
y∗
(a)

y(a, t)

)

∂y(a, t)

∂t
da

+


N

(

 –
v∗


v(t)

)(∫ ∞



k(a)y(a, t)da – uv(t) – pv(t)z(t)

)

+
p

cN

(

 –
z∗


z(t)

)

(

cv(t)z(t) – bz(t)
)

.
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By using s = dx∗
 + βx∗

v
∗
, we obtain

dV(t)

dt
=

(

 –
x∗


x(t)

)

(

dx∗
 + βx∗

v
∗
 – dx(t) – βx(t)v(t)

)

–


N

∫ a+



f (a)

(

 –
y∗
(a)

y(a, t)

)(

∂y(a, t)

∂a
+ δ(a)y(a, t)

)

da

+


N

(

 –
v∗


v(t)

)(∫ ∞



k(a)y(a, t)da – uv(t) – pv(t)z(t)

)

+
p

cN

(

 –
z∗


z(t)

)

(

cv(t)z(t) – bz(t)
)

= –
d

x(t)

(

x∗
 – x(t)

)
+

(

 –
x∗


x(t)

)

(

βx∗
v

∗
 – βx(t)v(t)

)

–


N

∫ a+



f (a)

(

 –
y∗
(a)

y(a, t)

)(

∂y(a, t)

∂a
+ δ(a)y(a, t)

)

da

+


N

(∫ ∞



k(a)y(a, t)da – uv(t)

)

–


N

v∗


v(t)

(∫ ∞



k(a)y(a, t)da – uv(t) – pv(t)z(t)

)

–
p

cN

(

cv(t)z∗
 – bz∗



)

–
bp

cN
z(t). (.)

By using a similar method to (.)-(.), we derive from (.) that

dV(t)

dt
= –

d

x(t)

(

x∗
 – x(t)

)
+

(

 –
x∗


x(t)

)

(

βx∗
v

∗
 – βx(t)v(t)

)

+ βx∗
v

∗


(

xv

x∗
v

∗


–  – ln
xv

x∗
v

∗


)

–


N

∫ a+



(

y(a, t)

y∗
(a)

–  – ln
y(a, t)

y∗
(a)

)

k(a)y∗
(a)da

+


N

(∫ a+



k(a)y(a, t)da – uv(t)

)

–


N

v∗


v(t)

(∫ a+



k(a)y(a, t)da – uv(t) – pv(t)z(t)

)

–
p

cN

(

cv(t)z∗
 – bz∗



)

–
bp

cN
z(t). (.)

Substituting uv∗
 =

∫ a+


k(a)y∗

(a)da – pv∗
z

∗
 = βx∗

v
∗
N – pv∗

z
∗
 and v∗

 = b/c into (.), we

have

dV(t)

dt
= –

d

x(t)

(

x∗
 – x(t)

)
– βx∗

v
∗


(

x∗


x(t)
–  – ln

x∗


x(t)

)

–

∫ a+



(

v∗
y(a, t)

y∗
(a)v(t)

–  – ln
v∗
y(a, t)

y∗
(a)v(t)

)

k(a)y∗
(a)da.

Therefore, ℜ >  ensures that V ′
(t)≤  holds true. By Theorem .. in [], solutions of

(.) are limited toM, the largest invariant subset of {V ′
(t) = }. Using a similar argument
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to that in the proof of Theorem ., we know that the equality V ′
(t) =  holds true if and

only if x(t) = x∗
, y(a, t) = y∗

(a), v(t) = v∗
, z(t) = z∗

 . By LaSalle’s invariance principle, the

global asymptotic stability of E∗
 follows. This completes the proof. �

4 Numerical simulations

In this section, we give some numerical examples to illustrate the theoretical results ob-

tained in Sections  and . The mean methods are discretizing the equations and using

eulerian difference method. The value of integral terms is obtained by Simpson’s rule.

Usually, there is an incubation period after the cells are infected. In this period, the death

rate of the cells is not changed and the infected cells do not produce virion. Later there

is an outbreak period, in this period the infected cells begin to produce virion and the

production rate increases, and the death rate of infected cells also rapidly increases. After

the outbreak period, the death rate and the virion production rate of the infected cells

tend to be stable. Considering these properties we assume that the death rate δ(a) and the

virion production rate k(a) of the infected cells take the forms

δ(a) =

⎧

⎪

⎨

⎪

⎩

.,  ≤ a≤ ;

. + .(a – )e–.(a–)

,  < a≤ ;

.,  < a≤ a+,

and

k(a) =

⎧

⎪

⎨

⎪

⎩

, ≤ a ≤ ;

(a – )e–.(a–)

,  < a≤ ;

.,  < a ≤ a+,

where the maximum age of the cells a+ is supposed to be  days. The initial value is

supposed to be

xs = , vs = , ys(a) = (a + )e–.(a+), zs = .

We will take a day as the unit time and plot the solutions of system (.) from  to 

days.

Example  In system (.), we choose s = , d = ., β = ., u = , p = ., c =

., b = .. In this caseℜ = . < . By Theorem ., the infection-free steady

state E(s/d, , , ) is globally asymptotically stable, where s/d = .. (See Figure .)

Example  In system (.), we choose s = , d = ., β = ., u = , p = .,

c = ., b = .. In this case ℜ = . > , ℜ = . < . By Theorem .,

the immune-inactivated infected steady state E∗
 (x

∗
 , y

∗
 (a), v

∗
 , ) is globally asymptotically

stable, where x∗
 = ., y∗

 (a) = .σ (a), v∗
 = .. (See Figure .)

Example  In system (.), we choose s = , d = ., β = ., u = , p = ., c =

., b = . In this case ℜ = . > . By Theorem ., the immune-activated infected

steady state E∗
(x

∗
, y

∗
(a), v

∗
, z

∗
) is globally asymptotically stable, where x∗

 = ., y∗
(a) =

.σ (a), v∗
 = , z∗

 = .. (See Figure .)
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Figure 1 Example 1. ℜ0 = 0.5626 < 1. The infection-free steady state E0 is globally asymptotically stable.

Figure 2 Example 2. ℜ0 = 1.4064 > 1, ℜ1 = 0.1153 < 1. The immune-inactivated infected steady state E∗
1 is

globally asymptotically stable.

Figure 3 Example 3. ℜ1 = 1.8186 > 1. The immune-activated infected steady state E∗
2 is globally

asymptotically stable.

The results of numerical simulation are accord with theorems and the eventual number

of each variable in simulation is approximate to the theoretical value. Comparing the re-

sults of Example  and Example  we can find that the densities of infectious free virion

and infected T cells are lower whenℜ > , the humoral immunity is activated. Comparing
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the results of Example  and Example  we can see that although the humoral immunity

is activated, the density of uninfected target T cells of E∗
 is lower than that of E.

5 Conclusions

In this paper, we formulated an in-host viral infection model, in which the influence of

humoral immunity and the infection age of the infected cells are considered. Using the

method of Lyapunov functionals and LaSalle’s invariance principle, we got the conclu-

sions that the global dynamics of themodel is determined by the basic reproduction num-

ber and the immune-activated reproduction number; if ℜ < , the infection-free steady

state is globally asymptotically stable; if ℜ <  < ℜ, the immune-inactivated infected

steady state is globally asymptotically stable; and if ℜ > , the immune-activated infected

steady state is globally asymptotically stable. Comparing the expressions of immune-

inactivated infected steady state with immune-activated infected steady state, we saw that

v∗
 – v∗

 = (ℜ – ) cdu+βbu
βcu

, so humoral immunity has a positive role in the reduction of the

virus. Moreover, analyzing the immune-activated reproduction number ℜ, we found the

parameter c (the birth rate of B cells) effects the value of ℜ a lot. The birth rate of B

cells reflects the sensibility of humoral immunity to the virus; generally speaking it can be

greatly improved by vaccination.

To illustrate the theoretical results, we did some numerical simulations. Our simulation

results confirmed the analytic results. Figures - showed the stability of E, E
∗
 , E

∗
 , re-

spectively, and by comparison we saw the effect of humoral immunity in the reduction of

virus.
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