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Abstract

We study a class of periodically forced, monotone difference equations
motivated by applications from population dynamics. We give conditions
under which there exists a globally attracting cycle and conditions under
which the attracting cycle is attenuant.
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1 Introduction
If g(y) is an increasing function of y, the solution sequences of the difference
equation

yt+1 = g(yt), t = 0, 1, 2, · · · (1)

are monotonic and hence, if bounded, converge. Assuming g(y) is continuous
and letting t→∞ in (1) we find that the limit ye = limt→∞ yt of a convergent
solution is necessarily an equilibrium solution yt ≡ ye, since ye is a root of the
equilibrium equation y = g(y).We are motivated by difference equations of this
monotone type that appear as applications in population dynamics.
An example is the Beverton-Holt equation

yt+1 = r
1

1 + cyt
yt, y0 > 0
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where r and c are positive constants. If r ≤ 1, the solution of this initial value
problem converges to the equilibrium ye = 0. If r > 1 the solution converges
to the positive equilibrium ye = K = r−1

c . With K introduced explicitly, the
Beverton-Holt equation becomes

yt+1 = r
1

1 + (r − 1) ytK
yt.

Because all solutions are monotonic and converge, this difference equation is,
from a dynamics point of view, a more appropriate analog to the famous logistic
differential equation than are non-monotone maps such as the so-called “discrete
logistic” equation yt+1 = r (1− cyt) yt (with K = r−1

rc ) or the Ricker equation
yt+1 = re−cytyt (with K = 1

c ln r). As is well known, such “one hump” maps
can have periodic solutions and even chaotic solutions.
In theoretical ecology, the parameters r and K play an important role. The

coefficient r is considered a characteristic of the population (its “inherent growth
rate”), determined by life cycle and demographic properties such as birth rates,
survivorship rates, etc. The coefficient K is considered a characteristic of the
habitat or environment (called the “carrying capacity”), e.g., resource availabil-
ity, temperature, humidity, etc. The autonomous equations and their equilib-
rium theory above are appropriate in biological applications only if the r and K
are constant over time. In cases where one or both of these parameters fluctu-
ate in time (which is, of course, quite common for biological populations), the
model equations become non-autonomous. For example, periodic fluctuations
are common (caused, for example, by annual or daily fluctuations in the physi-
cal environment), in which case r and/or K become periodic functions of time.
While periodic differential equation population models have been considered
in the literature, relatively little attention has been paid to periodic difference
equation population models. (See, however, [3], [5], [6], [7], [8], [9].)
One ecological question that has been studied by means of periodic models

concerns the effect of a periodic environment on a population, i.e., the effect of
a periodic K. Attention has focused on whether or not a population is adversely
affected by a periodic environment (relative to a constant environment of the
same average carrying capacity). Early results based on the logistic differential
equation implied that a periodic carrying capacity K is deleterious in the sense
that the average of the resulting population oscillations is less than the average
of K [1], [2], [10], [11]. Later results showed this assertion can be model depen-
dent [4], [12]. A recent study utilizing non-monotone difference equations has
demonstrated the latter point. In [3], [9] it is shown, by mathematical analysis
and laboratory experiments, that it is possible for a periodic environment to be
advantageous for a population in the sense that average densities are greater in
a periodic environment than in a constant environment.
In this paper, we show that a periodic environment is always deleterious for

populations modeled by a class of monotone difference equations. This result is
analogous to that in [1], [10] for the logistic differential equation.
In a periodic environment version of the Beverton-Holt equation we replace

K by a periodic sequence K = K(t). We will restrict our attention in this paper
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to oscillations of period two. Therefore, we take K = Kav

³
1 + α (−1)t

´
where

Kav is the average of K over time and α ∈ [0, 1) the relative amplitude of the
oscillation. (We have arbitrarily chosen the oscillation so that its maximum
occurs at even time units. Our results remain valid if instead the maximum
occurs at odd time units, i.e., α ∈ (−1, 0].) In the resulting equation, we
can eliminate the parameter Kav by the rescaling xt = yt/Kav and obtain the
equation

xt+1 = r
1

1 + (r − 1) xt
1+α(−1)t

xt. (2)

Motivated by the periodically forced Beverton-Holt equation (2) we consider
a general class of periodically forced equations of the form

xt+1 = f

µ
xt

1 + α (−1)t
¶
xt, α ∈ [0, 1) (3)

where the function
h(x) $ f(x)x

satisfies the conditions

A1: h ∈ C0(R+, R+) ∩ C2(R+0 , R+)
h0(x) > 0, h00(x) < 0 for all x ∈ R+0
h(0) = 0, h(∞) <∞

Here R+ = [0,∞), R+0 = (0,∞) and h(∞) = limx→∞ h(x). Define

r $ h0(0+).

By A1, this right hand limit exists in the extended sense, i.e., 0 < r ≤ ∞.
Consider equation (3) when α = 0, i.e., consider the unforced, autonomous

equation
xt+1 = h(xt). (4)

If r ≤ 1 assumption A1 implies h(x) < x for x > 0. In this case, solutions
converge to the equilibrium 0 for all positive initial conditions x0 > 0. In this
case, we say 0 is globally attracting for x0 > 0. On the other hand, if r > 1
then there exists a unique positive root xe > 0 of the equation x = h(x). In this
case, solutions converge to the equilibrium xe for all positive initial conditions
x0 > 0, and we say xe is globally attracting for x0 > 0.

Lemma 1 Assume A1. If r ≤ 1, then the equilibrium 0 of (4) is globally
attracting for x0 > 0. If r > 1 (including r = ∞) equation (4) has a globally
attracting positive equilibrium xe.

By a two-cycle we mean a solution xt of (3) whose even and odd iterates
are both constant, i.e., x2k = c0 and x2k+1 = c1 for all t = 0, 1, 2, · · · . We will
denote a two-cycle by the ordered pair (c0, c1). If both c0 > 0 and c1 > 0 then
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we say the two-cycle is positive. The solution of (3) converges to a two-cycle
(c0, c1) if

lim
k→∞

(x2k, x2k+1) = (c0, c1). (5)

A two-cycle (c0, c1) is globally attracting for x0 > 0 if solutions of (3) converge
to (c0, c1) for all initial conditions x0 > 0.
In Section 2 we consider the asymptotic dynamics of the periodically forced

equation (3). Theorem 2 establishes, when r > 1, the existence of a (unique)
positive two-cycle that is globally attracting for x0 > 0. Our main result appears
in Section 3. Theorem 3 shows, under certain concavity conditions, that the
globally attracting two-cycle (c0, c1) when r > 1 is attenuant, i.e., it has a
suppressed average in the sense that

1

2
(c0 + c1) < xe.

This means the presence of periodic forcing in equation (3), i.e., α > 0, results
in a global attractor with decreased average.
We will have need of the following two assumptions.

A2: f ∈ C0(R+, R+) ∩ C1(R+0 , R+)
f 0(x) < 0 for all x ∈ R+0

A3: f ∈ C0(R+, R+) ∩ C2(R+0 , R+)
f 00(x) > 0 for all x ∈ R+0

Note A1 and A3 together imply A2.

2 Two-cycle Solutions
A1 implies the solution of the periodically forced equation (3) with x0 > 0 is
positive, i.e., xt > 0 for all t = 0, 1, 2, · · · . Our goal in this section is determine
when it is true that for all x0 > 0 the solution tends to a unique positive two-
cycle solution. The components of a two-cycle (c0, c1) necessarily satisfy the
pair of “two-cycle” equations

c1 = f
³

c0
1+α

´
c0

c0 = f
³

c1
1−α

´
c1.

(6)

Conversely, positive solutions c0 > 0, c1 > 0 of these simultaneous equations
define a positive two-cycle (c0, c1).

Theorem 2 Assume A1 and consider the periodically forced equation (3) for
α > 0. If r ≤ 1 then the equilibrium 0 is globally attracting for x0 > 0. If
r > 1 (including r = ∞) then there exists a positive two-cycle (c0, c1) that is
globally attracting for x0 > 0. If f(x) is increasing (e.g., if A2 holds), then this
two-cycle is strict, that is to say c0 6= c. .
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Proof. Assume x0 > 0. From the first composite of equation (3) we see
that the even and odd iterates, x2k and x2k+1, of the solution xt with initial
condition x0 > 0 satisfy the equations

ek+1 = E(ek), e0 = x0 > 0 (7)

ok+1 = O(ok), e1 = x1 > 0

respectively, where

E(x) $ f

µ
1

1− α
f

µ
x

1 + α

¶
x

¶
f

µ
x

1 + α

¶
x

O(x) $ f

µ
1

1 + α
f

µ
x

1− α

¶
x

¶
f

µ
x

1− α

¶
x

Here ek = x2k and ok = e2k+1 for k = 0, 1, 2, · · · . Alternatively we can write

E(x) = (1− α)h

µ
1 + α

1− α
h

µ
x

1 + α

¶¶
O(x) = (1 + α)h

µ
1− α

1 + α
h

µ
x

1− α

¶¶
.

Assumption A1 implies E(x) and O(x) also satisfy A1. A calculation shows

E0(0+) = O0(0+) = r2.

From Lemma 1 applied to both equations in (7) we conclude that both
sequences, and hence xt, converge to 0 if r ≤ 1.
If, on the other hand, r > 1 then each equation in (7) has a globally at-

tracting, positive equilibrium. Thus, the even iterates ek = x2k converge to
the unique positive root c0 > 0 of x = E(x) and the odd iterates ok = e2k+1
converge to the unique positive root c1 > 0 of x = O(x). If we let t = 2k in
equation (3) and let k → ∞, then we find by continuity that c0 and c1 satisfy
the first of the two-cycle equations (6). Similarly, letting t = 2k+1 and passing
k → ∞ in (3) we find that c0 and c1 also satisfy the second equation in (6).
Thus, the two constants c0 and c1 define a positive two-cycle (c0, c1) to which
xt converges.
If c0 = c1 = c then from the two-cycle equations (6) it follows that

f

µ
c

1 + α

¶
= f

µ
c

1− α

¶
.

If f is increasing, we arrive at a contradiction. Thus, in this case, c0 6= c1 and
the two-cycle is strict.

3 Attenuant two-cycles
For r > 1 (including r =∞) the autonomous equation (4) has a unique positive
equilibrium xe > 0. Changing variables from x to x/xe in equation (4), we
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can assume without loss in generality that the unique positive equilibrium is 1.
Under this assumption h(x) satisfies the added restriction

A4: h(1) = 1

(and hence f(1) = 1). Note that A1 and A4 together imply r > 1. Thus, under
these two assumptions Theorem 2 implies the existence of a positive two-cycle
(c0, c1) that is globally attracting for x0 > 0. This two-cycle is attenuant if and
only if

1

2
(c0 + c1) < 1. (8)

Theorem 3 Assume A1, A3 and A4. For each α ∈ (0, 1) the positive, globally
attracting (for x0 > 0), strict two-cycle of the periodically forced equation (3) is
attenuant.

Before proving this theorem we establish some lemmas.

Lemma 4 Assume A1 and A2. For r > 1 let (c0, c1) be the positive two-cycle
guaranteed by Theorem 2. Then 0 < c0 < c1 for each α ∈ (0, 1).

Proof. For purposes of contradiction assume c1 ≤ c0. From A2 and the
second of the two-cycle equations (6) we have

c0 = f

µ
c1
1− α

¶
c1 < f

µ
c1
1 + α

¶
c1 = (1 + α)h

µ
c1
1 + α

¶
.

By A1 and the first of the two-cycle equations (6) we have

(1 + α)h

µ
c1
1 + α

¶
≤ (1 + α)h

µ
c0
1 + α

¶
= f

µ
c0
1 + α

¶
c0 = c1,

which gives the contradiction c0 < c1.

Lemma 5 Assume A1 and A4. Then

1

2

·
(1 + α)h

µ
1

1 + α

¶
+ (1− α)h

µ
1

1− α

¶¸
< 1

for all α ∈ (0, 1).

Proof. For α ∈ [0, 1) define the function

ψ(α) $ 1

2

·
(1 + α)h

µ
1

1 + α

¶
+ (1− α)h

µ
1

1− α

¶¸
.
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Since ψ (0) = 1, it suffices to show ψ(α) is a decreasing function of α. For
α ∈ (0, 1) a calculation shows

ψ0(α) = φ(1 + α)− φ(1− α)

where

φ(x) $ 1

2

·
h

µ
1

x

¶
− 1

x
h0
µ
1

x

¶¸
.

By the Mean Value Theorem, ψ0 (α) = 2αφ0 (c) for some c ∈ (1− α, 1 + α) .
However, by A1

φ0(c) =
1

2c3
h00
µ
1

c

¶
< 0

and hence ψ0 (α) < 0.

Lemma 6 Assume A1, A3 and A4. Then h0
³

1
1+α

´
< 1 for all α ∈ [0, 1).

Proof. Since h00(x) < 0 for all x > 0, it suffices to show h0
¡
1
2

¢
< 1. By the

Mean Value Theorem, 1 − f
¡
1
2

¢
= f (1) − f

¡
1
2

¢
= 1

2f
0(c) for some c ∈ ¡12 , 1¢ .

However, A3 implies f 0(c) > f 0
¡
1
2

¢
, and thus 1 > 1

2f
0 ¡1
2

¢
+ f

¡
1
2

¢
= h0

¡
1
2

¢
.

Proof of Theorem 3. If c1 ≤ 1, the two-cycle is attenuant by Lemma 4.
Therefore we assume c1 > 1. We can rewrite the two-cycle equations (6) as

c1 = (1 + α)h

µ
c0
1 + α

¶
c0 = (1− α)h

µ
c1
1− α

¶
.

Consider the second order Taylor expansions at c = 1

(1± α)h

µ
c

1± α

¶
= (1± α)h

µ
1

1± α

¶
+ h0

µ
1

1± α

¶
(c− 1) +H± (c, α)

where

H± (c, α) $
1

2

µ
1

1± α

¶
h00
¡
ξ±
¢
(c− 1)2

and ξ± is a nonzero number between 1 and c. By A1, H± (c, α) ≤ 0. The two-
cycle equations become

(a) c1 = (1 + α)h

µ
1

1 + α

¶
+ h0

µ
1

1 + α

¶
(c0 − 1) +H+ (c0, α)

(9)

(b) c0 = (1− α)h

µ
1

1− α

¶
+ h0

µ
1

1− α

¶
(c1 − 1) +H− (c1, α) .
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Note

h0
µ

1

1− α

¶
(c1 − 1) < h0

µ
1

1 + α

¶
(c1 − 1)

since h00(x) < 0 for x > 0. Thus, from (9b) we have

c0 < (1− α)h

µ
1

1− α

¶
+ h0

µ
1

1 + α

¶
(c1 − 1)

If we add (9a) to both sides of this inequality, we obtain

1

2
(c0 + c1) <

1

2

·
(1 + α)h

µ
1

1 + α

¶
+ (1− α)h

µ
1

1− α

¶¸
+h0

µ
1

1 + α

¶µ
1

2
(c0 + c1)− 1

¶
Lemma 5 implies

1

2
(c0 + c1) < 1 + h0

µ
1

1 + α

¶µ
1

2
(c0 + c1)− 1

¶
and hence µ

1

2
(c0 + c1)− 1

¶µ
1− h0

µ
1

1 + α

¶¶
< 0.

By Lemma 6 the second factor is positive and therefore the first factor is nega-
tive.

By inequality (8), it is certainly true that a two-cycle (c0, c1) is attenuant
if max {c0, c1} ≤ 1. In this case, we call the two-cycle strongly attenuant. If,
on the other hand, an attenuant two-cycle satisfies max {c0, c1} > 1 we call the
two-cycle weakly attenuant.

Theorem 7 Assume A1, A3 and A4. For α ∈ (0, 1) sufficiently close to 0
the positive, globally attracting (for x0 > 0), strict two-cycle (c0, c1) of the
periodically forced equation (3) is weakly attenuant. For α ∈ (0, 1) sufficiently
close to 1 the two-cycle is strongly attenuant.

Proof. From the two-cycle equations (6) we have the equation

c1 = f

µ
1

1 + α
f

µ
c1
1− α

¶
c1

¶
f

µ
c1
1− α

¶
c1 (10)

and hence

1 = f

µ
1

1 + α
f

µ
c1
1− α

¶
c1

¶
f

µ
c1
1− α

¶
(11)

for c1 > 0. By A1 and A2, the right hand side, which is identical to

f

µ
1− α

1 + α
h

µ
c1
1− α

¶¶
f

µ
c1
1− α

¶
,
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is a decreasing function of c1 > 0. Therefore, any positive root of (11) is unique.
In particular the root c1 = 1 when α = 0 unique. The implicit function theorem
implies there exists a (locally unique), continuously differentiable root c1 =
c1(α) for α near 0 satisfying c1(0) = 1.
Differentiating both sides of equation (11) with respect to α and evaluating

the result at α = 0 we obtain

c01(0) = −
f 0 (1)

2 + f 0(1)
.

From f 0(1) < 0 and 0 < h0(1) = 1 + f 0(1) it follows that c01(0) > 0. Thus,
c1(α) > 1 for α > 0 sufficiently small and the two-cycle is weakly attenuant.
From equation (10) we derive the inequalities

0 < c1 = (1 + α) f

µ
1− α

1 + α
f

µ
c1
1− α

¶
c1
1− α

¶
1− α

1 + α
f

µ
c1
1− α

¶
c1
1− α

= (1 + α)h

µ
1− α

1 + α
h

µ
c1
1− α

¶¶
≤ (1 + α)h

µ
1− α

1 + α
h (∞)

¶
valid for all α ∈ (0, 1). This implies

lim
α→1−

c1(α) = 0

which implies c1 < 1 for α near 1. By Lemma 4, max {c0, c1} < 1 and the
two-cycle is strongly attenuant for α near 1.

4 Examples
Consider the periodically forced Beverton-Holt equation (2). For this equation

f(x) = r
1

1 + (r − 1)x, h(x) = r
1

1 + (r − 1)xx, r > 1.

All assumptions A1, A3 and A4 (and hence A2) are satisfied. Therefore, for each
α ∈ (0, 1) the equation (2) has an attenuant, positive, strict two-cycle (c0, c1)
that is globally attracting for x0 > 0. In fact, in this example the two-cycle is
(c0, c1) where

c0 =
(r + 1)

¡
1− α2

¢
1− α+ r (1 + α)

, c1 =
(r + 1)

¡
1− α2

¢
1 + α+ r (1− α)

and
1

2
(c0 + c1) =

1 + 2r + r2

1 + 2
³
1+α
1−α

´
r + r2

< 1.

The cycle is weakly attenuant (c1 > 1) for 0 < α < r−1
r+1 and strongly attenuant

for r−1
r+1 ≤ α < 1. See Figure 1 for an example.
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c0

c1

(c0 + c1)/2

FIGURE 1. The two-cycles of the periodically forced Beverton-Holt
equation (2) and their averages are plotted as functions of the relative
amplitude α when r = 5 > 1.

Other examples to which Theorems 2, 3 and 7 apply are

f(x) = r
1

1 + (r − 1)xp for 0 < p < 1, r > 1

and
f(x) = xp−1 for 0 < p < 1.

The latter example is a case when r = ∞. Figure 2 illustrates this example
when p = 1/2.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.2

0.4

0.6

0.8

1.0

1.2

c0

c1

(c0 + c1)/2

FIGURE 2. The two-cycles of the periodically forced equation (3),
with f(x) = x−1/2, and their averages are plotted as functions of the
relative amplitude α. In this case r =∞.
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