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E
xotic species rank among the most serious environmental 
threats of the new millennium1–3, as the relocation of species 
beyond their native range has intensified over the last five 

decades4. The impacts of some of the worst exotic species on bio-
diversity are well documented, as they are implicated in the local 
extinction of hundreds of native species5–7. While the ecological 
outcomes of the most damaging exotic species are clearly dramatic, 
the impact of many appears to be modest, with some even provid-
ing ecological benefits8,9. These contrasting effects have ignited a 
contemporary debate about the overall impacts and perceptions of 
exotic species10–14, and this debate can only be resolved by distin-
guishing innocuous from disruptive exotic species15. In the case of 
marine exotic species, there are no documented global extinctions 
attributed to them16 (but see also refs. 17–19), although some can sub-
stantially reduce native fauna20.

Based on previous syntheses and meta-analyses, we made pre-
dictions about the expected ecological effects of marine exotic 
species21–27 (Supplementary Table 1). Marine ecosystems differ 
from other environments in a number of characteristics that may 
mitigate the effects of exotic species on the abundance of native 
species. The open nature of oceans, with large and continuous 
marine habitats, and the extensive dispersal potential of many 
marine species are likely to buffer the effects of exotics through a 
high capacity to repopulate affected areas. We predict that marine 
exotic primary producers and predators will exert strong effects on 
native communities, as reported previously for aquatic and terres-
trial systems21–23,25. However, marine communities harbour a high 
proportion of generalist consumers (herbivores and omnivores28) 
that could limit the effects of exotic primary producers. In terres-
trial communities25, exotic herbivores have nonsignificant effects 

on the richness of native species, but marine exotic herbivores 
can cause reductions in the abundance and richness of native spe-
cies29,30. We expect, as has been reported for other systems, con-
trasting effects of marine exotic detritivores and overall innocuous 
effects of exotic omnivores25,27. Exotic seaweeds exert persistent 
negative effects on native primary producers, but no effects on 
herbivores and predators22. Finally, a previous meta-analysis24 of 
marine exotic ecosystem engineers indicated overall nonsignifi-
cant effects at the species and community levels and contrasting 
effects at the ecosystem level.

However, to date, the global effect of exotic species, including 
higher-order trophic groups, has not been systematically examined 
in marine ecosystems. Despite this, exotic marine species directly 
affect 12% of the marine species registered on the Red List of the 
International Union for Conservation of Nature (IUCN). This 
value is substantially higher than the percentage of vulnerable spe-
cies affected by terrestrial and freshwater exotic species (6% and 
2%, respectively)16. In fact, the signatories of the Convention on 
Biological Diversity of the United Nations agreed to achieve Aichi 
Biodiversity Target 9 by 2020, which aims, among other things, to 
identify and then control or eradicate the worst invasive species31. 
However, this target is not on track, as a systematic assessment of 
the quantitative ecological effects of exotic species has not yet been 
produced for the marine environment15.

Here, we quantified the ecological effects of exotic species on 
marine communities through an exhaustive meta-analysis of pub-
lished studies (Supplementary Table 2). We used the effect size 
Hedges’ g as a common metric to determine the change in eco-
logical variables resulting from exotic species. Hedges’ g was calcu-
lated for 1,111 observations from 159 studies at 151 different sites  
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Table 1 | List of the 76 exotic species included in our database by alphabetical order

Exotic species Taxonomic group Trophic level iuCN observations Hedges’ g P value

Ammophila arenaria (56)73 Plant P. producer No 1, 4 0.15 ± 0.83 0.714

Arcuatula senhousiaa (62)74–77 Mollusc Herbivore No 4, 27 0.21 ± 0.45 0.347

Avicennia marina (38)74 Plant P. producer No 1, 3 −0.06 ± 0.98 0.893

Avrainvillea amadelpha (68)78 Algae P. producer No 1, 1 0.32 ± 1.24 0.606

Baccharis halimifolia (42)79 Plant P. producer No 1, 6 −0.03 ± 0.74 0.926

Balanus glandula (40)80 Crustacean Omnivore No 1, 4 −0.05 ± 0.84 0.904

Batillaria attramentaria (50)81 Mollusc Detritivore No 1, 2 0.06 ± 0.96 0.893

Boccardia proboscidea (1)82 Annelid Omnivore No 1, 12 −1.67 ± 0.91 <0.001

Botrylloides violaceus (51)83 Tunicate Herbivore No 1, 9 0.08 ± 0.82 0.848

Brachidontes pharaonis (9)84 Mollusc Herbivore No 1, 6 −0.72 ± 0.73 0.053

Carcinus maenasa (10)85–91 Crustacean Predator Yes 7, 32 −0.71 ± 0.38 <0.001

Carex macrocephala (42)92,93 Plant P. producer No 2, 11 −0.04 ± 0.5 0.867

Carpobrotus edulisa (31)94–96 Plant P. producer No 3, 12 −0.14 ± 0.49 0.555

Casuarina equisetifolia (45)97 Plant P. producer No 1, 1 −0.01 ± 0.87 0.981

Caulacanthus ustulatus (63)98 Algae P. producer No 1, 18 0.23 ± 0.74 0.531

Caulerpa cylindraceaa (12)99–108 Algae P. producer No 10, 38 −0.63 ± 0.31 <0.001

Caulerpa taxifoliaa (23)109–115 Algae P. producer Yes 7, 40 −0.3 ± 0.34 0.081

Centrostephanus rodgersii (13)116,117 Echinoderm Herbivore No 2, 23 −0.62 ± 0.63 0.051

Chrysanthemoides monilifera (2)118 Plant P. producer No 1, 1 −1.3 ± 1.16 0.028

Ciona savignyi (22)83 Tunicate Herbivore No 1, 8 −0.33 ± 0.84 0.439

Cirolana harfordi (52)119 Crustacean Predator No 1, 8 0.08 ± 0.81 0.846

Codium fragilea (37)9,120–123 Algae P. producer No 5, 21 −0.07 ± 0.41 0.716

Corbicula fluminea (65)124,125 Mollusc Herbivore No 2, 17 0.28 ± 0.59 0.347

Corbula gibba (36)126 Mollusc Herbivore No 1, 4 −0.08 ± 1.07 0.878

Crepidula fornicata (19)127–129 Mollusc Herbivore No 3, 9 −0.46 ± 0.52 0.082

Didemnum vexilluma (57)83,130,131 Tunicate Herbivore No 3, 16 0.17 ± 0.53 0.52

Diplosoma listerianum (72)132 Tunicate Herbivore No 1, 4 0.53 ± 0.85 0.221

Elymus athericus (74)133 Plant P. producer No 1, 4 0.58 ± 0.93 0.216

Ficopomatus enigmaticusa (30)134–140 Annelid Omnivore No 7, 54 −0.15 ± 0.32 0.345

Gracilaria salicornia (53)141 Algae P. producer No 1, 2 0.1 ± 0.93 0.825

Gracilaria vermiculophyllaa (60)142–145 Algae P. producer No 4, 41 0.18 ± 0.41 0.368

Grateloupia turuturu (8)146 Algae P. producer No 1, 8 −0.75 ± 0.84 0.083

Hemigrapsus sanguineusa (4)90,147,148 Crustacean Omnivore No 3, 9 −0.81 ± 0.65 0.015

Holcus lanatus (39)149 Plant P. producer No 1, 13 −0.05 ± 0.76 0.887

Juncus acutus (18)150 Plant P. producer No 1, 8 −0.47 ± 0.82 0.263

Kappaphycus alvarezii (7)151 Algae P. producer No 1, 4 −0.76 ± 0.78 0.057

Laguncula pulchella (25)152 Mollusc Predator No 1, 9 −0.22 ± 0.74 0.556

Linepithema humile (27)153 Insect Omnivore No 1, 3 −0.18 ± 1.01 0.726

Lophocladia lallemandiia (54)103,104,154 Algae P. producer No 3, 16 0.12 ± 0.47 0.591

Loxothylacus panopaei (16)155,156 Crustacean Predator No 2, 3 −0.48 ± 0.92 0.304

Magallana gigasa (59)59,157–164 Mollusc Herbivore No 9, 143 0.18 ± 0.26 0.175

Maoricolpus roseus (69)165 Mollusc Herbivore No 1, 4 0.33 ± 0.91 0.467

Marenzelleria arctia (75)166 Annelid Detritivore No 1, 2 0.77 ± 0.98 0.126

Marenzelleria spp.a (70)167–169 Annelid Detritivore No 3, 10 0.51 ± 0.67 0.136

Megabalanus coccopoma (20)170 Crustacean Omnivore No 1, 2 −0.36 ± 1.35 0.599

Membranipora membranacea (15)171 Bryozoan Omnivore No 1, 1 −0.51 ± 1.44 0.482

Mnemiopsis leidyi (33)172 Ctenophora Predator Yes 1, 3 −0.14 ± 0.75 0.713

Mytella charruana (14)170 Mollusc Herbivore No 1, 2 −0.55 ± 1.36 0.429

Mytilopsis trautwineana (29)173 Mollusc Herbivore No 1, 3 −0.16 ± 0.93 0.73

Mytilus galloprovincialisa (17)174–177 Mollusc Herbivore Yes 4, 45 −0.48 ± 0.4 0.02

Continued
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(Table 1; Supplementary Figs. 1 and 2; Supplementary Table 2; and 
https://doi.pangaea.de/10.1594/PANGAEA.895681). This meta-
analysis allowed us to achieve the following: (1) determine the 
ecological effects of marine exotic species across trophic levels, 
taxonomic groups and ecological complexity; (2) elucidate the role 
of ecological characteristics such as the environment of the exotic 
species (for example, freshwater versus marine versus terrestrial), 
their mobility (mobile versus sessile), the geographical attributes of 
the native habitat (for example, continent versus island) and latitude 
on the ecological effects of marine exotics; and (3) create a unique 
ranking of marine exotic species based on their overall mean quan-
titative ecological effects.

Invasion ecology is a discipline that has complex terminology32–34; 
therefore, to aid clarity, we provide an explicit definition of the terms 
used in this study. The term ‘exotic’ refers to species that have been 
moved outside their native geographical ranges via human actions. 
The definition of ‘invasive species’ varies between and among33,35 
ecologists, stakeholders and policymakers. For many ecologists34,36, 
invasive species are established exotic species that are spreading in 
the new environment (see also ref. 36), while for most environmental 
agencies, it refers to exotic species that have a demonstrable eco-
logical or economic impact (for example, American Federal Law). 
We refer to invasive species or ‘pests’ as exotic species that exert an 
overall and statistically significant ecological impact33,36. Although 
this definition relies on human valuations of damage34, we use it 
because of the following reasons: (1) we lack quantitative evidence 

to indicate that the populations of the exotic species in our study are 
spreading beyond its initial establishment location (or locations); 
(2) it is followed by many ecologists studying invasive species33,35; 
and (3) it tunes in with the language used by policymakers and envi-
ronmental managers, providing effective guidance to meet Aichi 
Biodiversity Target 9. We use the term ‘ecological effect’ to refer to 
bidirectional ecological changes (for example, both increases and 
decreases) attributed to exotic species with regard to a control. The 
term ‘ecological impact’ is reserved only for statistically signifi-
cant ecological changes (that is, mean changes significantly differ-
ent from 0). Therefore, negative and positive effect size values are 
decreases and increases in ecological properties, respectively, with-
out implying beneficial or deleterious effects.

Results
Our findings indicate that exotic species overall significantly reduce 
the ecological properties of native marine communities (mean esti-
mated Hedges’ g = −0.14 ± 0.1 (P = 0.006); hereafter, mean effect 
sizes are reported as g ± 95% confidence intervals (CI) and P values 
for significance). Ecological changes on marine ecosystems were 
quantified for 76 exotic species, which constitute 6% of the 1,260 
marine and brackish exotic species listed in the Global Register of 
Introduced and Invasive Species (GRIIS; http://www.griis.org/). 
The ecological effect of 49 of these 76 exotic species was quanti-
fied in only one study each. However, we provide evidence to indi-
cate that our global results are robust against both the number of 

Exotic species Taxonomic group Trophic level iuCN observations Hedges’ g P value

Perna viridis (11)170 Mollusc Herbivore No 1, 2 −0.69 ± 1.37 0.322

Petrolisthes armatus (73)178 Crustacean Omnivore No 1, 4 0.53 ± 0.86 0.223

Phragmites australis (26)179 Plant P. producer No 1, 3 −0.19 ± 0.75 0.602

Poecilia latipinna (48)180 Fish Omnivore No 1, 1 0.01 ± 1.45 0.981

Potamocorbula amurensis (55)181 Mollusc Herbivore Yes 1, 2 0.14 ± 1.21 0.815

Potamopyrgus antipodarum (43)182 Mollusc Herbivore No 1, 8 −0.02 ± 0.83 0.951

Pterois volitansa (35)183–188 Fish Predator No 6, 49 −0.12 ± 0.34 0.488

Rattus norvegicus (66)43 Mammal Omnivore No 1, 11 0.28 ± 0.75 0.46

Rhizophora mangle (76)189 Plant P. producer No 1, 12 1.15 ± 0.88 0.01

Ruditapes philippinarum (47)190 Mollusc Herbivore No 1, 3 0 ± 1.16 0.998

Sabella spallanzanii (64)191,192 Annelid Omnivore No 2, 8 0.28 ± 0.65 0.395

Sagartia ornata (67)193 Cnidarian Predator No 1, 2 0.3 ± 0.94 0.532

Sargassum muticuma (46)194–204 Algae P. producer No 11, 108 0 ± 0.25 0.966

Sonneratia apetala (58)205 Plant P. producer No 1, 2 0.18 ± 1.22 0.773

Spartina alternifloraa (34)206–216 Plant P. producer No 11, 75 −0.13 ± 0.27 0.352

Spartina townsendii var. anglica (6)217,218 Plant P. producer Yes 2, 11 −0.77 ± 0.59 0.01

Stenotaphrum secundatum (5)219,220 Plant P. producer No 2, 7 −0.78 ± 0.56 0.006

Styela clava (61)83 Tunicate Herbivore No 1, 1 0.19 ± 1.43 0.792

Symbiodinium trenchii (28)221 Algae P. producer No 1, 6 −0.16 ± 0.9 0.713

Tubastraea coccinea (32)222 Cnidarian Predator No 1, 12 −0.14 ± 0.72 0.69

Undaria pinnatifidaa (49)223–225 Algae P. producer Yes 3, 34 0.05 ± 0.46 0.813

Watersipora subtorquata (71)175 Bryozoan Omnivore No 1, 4 0.51 ± 0.84 0.231

Womersleyella setacea (24)108,154 Algae P. producer No 2, 5 −0.26 ± 0.78 0.508

Xenostrobus securis (44)226 Mollusc Herbivore No 1, 7 −0.01 ± 0.79 0.966

Zeacumantus subcarinatus (21)227 Mollusc Herbivore No 1, 6 −0.33 ± 0.91 0.467

Zostera japonica (3)68 Plant P. producer No 1, 2 −0.85 ± 1.16 0.149

aThe 19 sufficiently assessed marine exotic species (with 3 or more studies represented in Fig. 5). The studies used in this meta-analysis for each exotic species are indicated in the first column, and the 

rank of the exotic species based on their mean Hedges’ g value is in parentheses. The ‘Observations’ column includes the number of studies and the number of observations, separated by a comma. 

Values in the ‘Hedges’ g’ column indicate the mean g ± CI. P values were obtained from mixed-effects models that included the study ID number as a random factor and using the rma.mv function from the 

metafor package for R. P., primary.
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exotic species and the number of independent studies based on a 
comparison of the mean ± 95% CI Hedges’ g value for species whose 
effects were assessed in one or more studies (which included the 
whole dataset) and for exotic species that included five or more 
independent studies (nine exotic species in total) (Supplementary 
Fig. 3). We show that while the effects of individual exotic species 
not included in this meta-analysis (that is, on our list of 76 species) 
may vary, the mean ± 95% CI Hedges’ g value for marine exotics is 
robust for the number of species included. There were small dif-
ferences in the mean g ± CI for the 19 sufficiently assessed exotic 
species (which uses a subset of the data) and Table 1 (which uses the 
full dataset) due to differences in the effects of the random factor. 
The results for the 19 sufficiently assessed exotic species were more 
robust and given preference when interpreting the results. We found 
that the research effort on exotic species in marine ecosystems is 
not balanced; the GRIIS list of marine exotic species includes <10% 
of primary producers, which were the subject of almost 50% of our 
observations (517 out of 1,111).

Effects of trophic level and taxonomic group. Overall, exotic spe-
cies significantly decreased the ecological properties of native pri-
mary producers and multitrophic assemblages (g = −0.19 ± 0.15 

(P = 0.014) and g = −0.17 ± 0.13 (P = 0.016), respectively) but 
not of native detritivores (g = 0.02 ± 0.27 (P = 0.870)), herbi-
vores (g = −0.12 ± 0.15 (P = 0.108)), omnivores (g = −0.15 ± 0.16 
(P = 0.051)) or predators (g = −0.14 ± 0.19 (P = 0.143)) (Fig. 1a). 
Among the exotic species, marine predators and primary produc-
ers were the only trophic groups that exerted significant decreases 
on marine ecological properties (g = −0.28 ± 0.27 (P = 0.049) and 
−0.17 ± 0.13 (P = 0.011), respectively), but not herbivores, detri-
tivores or omnivores (g = −0.07 ± 0.18 (P = 0.438), g = 0.40 ± 0.58 
(P = 0.173) and g = −0.15 ± 0.27 (P = 0.269), respectively) (Fig. 1b). 
Finally, the effect of marine exotic filter-feeder species on native 
communities was not significant (g = −0.05 ± 0.16 (P = 0.513)) 
(Supplementary Fig. 4).

The network analysis of the ecological effects between exotic 
and native marine species among trophic and taxonomic groups 
was dominated by decreases in ecological properties (for example, 
almost 65% and 54% of the total effects, respectively) (Fig. 2). Exotic 
primary producers and predators caused ecological decreases in 
almost all trophic levels (Fig. 2). Exotic algae, crustaceans and mol-
luscs were the taxonomic groups that caused overall decreases in 
the largest number of native taxa (seven, six and five, respectively). 
Meanwhile, exotic terrestrial mammals, annelids, molluscs and 
tunicates had the largest number of increasing effects (six, five, five 
and five, respectively) (Fig. 2).

Changes at species, community and ecosystem levels. Seven out 
of the ten ecological categories of response variables were not sig-
nificantly affected by exotic species. Traits related to the behav-
iour and abundance of native species were significantly reduced 
by exotic species (g = −0.53 ± 0.28 (P < 0.001) and g = −0.26 ± 0.10 
(P < 0.001), respectively) (Fig. 3). Conversely, ecological traits 
related to pollution significantly increased (g = 0.44 ± 0.41 
(P = 0.033)) (Fig. 3). There was no significant effect of exotic spe-
cies on the following factors: fitness (g = 0.25 ± 0.39 (P = 0.203)), 
growth (g = −0.11 ± 0.35 (P = 0.544)), survival (g = −0.06 ± 0.23 
(P = 0.601)), richness (g = −0.06 ± 0.12 (P = 0.344)), biogeochemical 
elements (g = 0.20 ± 0.24 (P = 0.108)), rate processes (g = 0.08 ± 0.25 
(P = 0.511)) or sediment changes (g = 0.26 ± 0.43 (P = 0.231))  
(Fig. 3). In general, the ecological effects of exotics at the community 
level were significant (g = −0.19 ± 0.10 (P < 0.001)), while changes 
at the species and ecological levels were not (g = −0.15 ± 0.16 
(P = 0.084) and g = 0.14 ± 0.19 (P = 0.138), respectively) (Fig. 3).

Context-dependency of ecological effects. Exotics of marine 
origin caused significant decreases in the ecological variables of 
marine systems (g = −0.14 ± 0.11 (P = 0.010)), while exotic spe-
cies of freshwater and terrestrial origin did not (g = −0.05 ± 0.37 
(P = 0.795) and g = −0.17 ± 0.31 (P = 0.292), respectively) (Fig. 4a). 
Sessile exotic species had significant ecological effects on native 
marine ecosystems (g = −0.14 ± 0.11 (P = 0.016)) and mobile spe-
cies did not (g = −0.12 ± 0.22 (P = 0.205)) (Fig. 4b). We found that 
the ecological effects of exotic species in marine ecosystems were 
significant in continental margins (g = −0.17 ± 0.11 (P = 0.003)) but 
not on islands (g = −0.05 ± 0.18 (P = 0.581)) (Fig. 4c). There was no 
indication that the ecological effect of marine exotic species var-
ied over latitude (P = 0.849 and P = 0.536, for the Northern and 
Southern hemispheres, respectively) (Fig. 4d).

Ranking and significance of exotic species based on their  
ecological effects. We identified eight exotic species (B. proboscidea,  
C. maenas, C. cylindracea, C. monilifera, H. sanguineus,  
M. galloprovincialis, S. anglica and S. secundatum) that caused over-
all significant decreases (mean g < 0 and 95% CI did not overlap 0;  
Table 1). Meanwhile, one species caused significant increases  
(R. mangle), and 67 species did not cause significant ecological 
changes (Table 1). A subset of 19 exotic species, whose effects were 

(381)*

(95)

(113)

(42)

(210)

(241)*

Multitrophic

Predator

Omnivore

Detritivore

Herbivore

P. producer

a

b

−1.5 −1.0 −0.5 0.0

Effect size (g)

0.5 1.0 1.5

(118)*

(113)

(13)

(349)

(513)*

Predator

Omnivore

Detritivore

Herbivore

P. producer

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Effect size (g)
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the native species or community and the exotic species. a,b, The mean 
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package for R.
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assessed in three or more independent studies, was chosen to pro-
duce a robust ranking of marine exotic species based on their eco-
logical effects. In this ranking of sufficiently assessed exotic species, 
only the European green crab C. maenas and the green macroalgae 
C. cylindracea had overall significant impacts (Fig. 5).

Discussion
Our findings indicate that globally, exotic species induce sig-
nificant changes on many ecological attributes of marine systems 
(g = −0.14 ± 0.1). This global effect is modest in magnitude com-
pared to other quantified human stressors, such as the overall 
impact of dual environmental stressors in freshwater ecosystems 
(g = −0.64 ± 0.46, as calculated from data in ref. 37 after removing 
the effects of invasive species) or the worldwide effects of fishing 
pressure on reef fish behaviour (g = 1.3 ± 0.13; values obtained from 
figure 3 in ref. 38). The global impact of marine exotic species is 
comparable to the overall effect reported for freshwater exotic spe-
cies worldwide (g = −0.27 ± 0.25; values calculated from raw data 
available in ref. 23). However, it is larger than the nonsignificant 
ecological effects reported for exotic ecosystem engineers on the 

abundance or richness of marine native species (g = 0.04 ± 0.19 and 
0.06 ± 0.26, respectively)24.

We provide a quantitative synthesis of ecological effects across 
both trophic levels and taxonomic groups, while previous meta-
analyses evaluated the effects of exotic species on certain native 
trophic levels22,23,25 or taxonomic groups21,24–26. Overall, exotic spe-
cies had significant effects on primary producers and multitrophic 
assemblages, while the other native trophic levels experienced over-
all contrasting effects. Native primary producers were affected by all 
trophic levels of exotics, which surpassed our expectations drawn 
from freshwater systems23 in that they were also affected by exotic 
predators and detritivores. Exotic predators and primary produc-
ers were the only trophic groups that exerted substantial impacts 
on marine ecological properties; these trophic groups were there-
fore identified as the most disruptive of all marine exotics. Exotic 
predators, arguably the most detrimental group for terrestrial and 
freshwater native communities6,7, caused overall decreases in the 
ecological properties of all marine trophic groups except detri-
tivores. Similarly, exotic primary producers caused ecological  
decreases at most trophic levels and taxonomic groups, which is 
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Fig. 2 | Network diagram of the ecological effects of marine exotics on native species classified by trophic level and taxonomic group. The width of the 

band represents the mean effect size Hedges’ g, where effect sizes that increase or decrease ecological properties are presented in the upper and lower 

panels, respectively. The insect group includes arachnids. Interactive diagrams are available at https://kaust-vislab.github.io/Biological-Network/.
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in contrast to previous studies that reported contrasting effects of 
exotic primary producers in freshwater23 and marine systems22. 
Conversely, exotic marine herbivores, detritivores and omnivores, 
of which previous information is scarce23, had contrasting effects on 
other trophic levels of the food web. These contrasting effects were 
probably context-dependent, with changes compensating for each 
other by going in different directions.

Exotic molluscs and crustaceans, for which no information 
from previous meta-analyses was available to make predictions, 
were the other two taxonomic groups that induced overall ecologi-
cal decreases in many native marine taxa. The findings for exotic 
mammals, the taxon that caused increases in the largest number of 
native taxa, were surprising since they are a very disruptive group in 
terrestrial ecosystems5,6,39,40 as well as in some marine coastal com-
munities41,42. This result is derived from one publication43, where 
the exotic brown rat (R. norvegicus) triggered a trophic cascade by 
directly predating on birds but indirectly enhancing the abundance 
of many benthic taxa. Further investigation is required to test the 
generality of this finding.

Exotic species significantly decreased the abundance of native 
species but not diversity, as reported in freshwater systems23. 
Marine exotics might prompt rapid declines in species abundance, 
but they may take a long time to generate local extinctions (an 
‘extinction debt’44).Our decoupled results between decreases in 

abundance but not overall changes on ecosystem functioning are 
comparable to those reported for exotics in freshwater23 and ter-
restrial systems21, and by other anthropogenic factors elsewhere45. 
This indicates that changes in community composition are often 
decoupled from those at the ecosystem level. Possible buffering 
mechanisms conferring ecosystem resistance against exotic species 
in the marine realm include functional redundancy between exotic 
and native species or between affected and non-affected native spe-
cies46. Our results differ from those reported for marine exotic eco-
system engineers, which exert contrasting strong effects on native 
ecosystem functioning but not on native community abundance24. 
The contrasting results among studies might be due to targeting 
different suites of marine exotic species and clustering ecological 
response variables differently. Interestingly, we found a lack of eco-
logical effects on survival, growth and fitness of native species, but 
profound changes in animal behaviour. Changes in behaviour of 
native species could affect native species populations in the short 
term and, where adaptation of behavioural traits is possible, buf-
fer the effects in the long term47. We found significant increases in 
ecological traits related to pollution, mainly through the increased 
concentration of heavy metals in the tissues of the exotic species 
compared with native species.

Relating features of exotic species with their ecological effects is 
of utmost importance if we aim to control thousands of exotic spe-
cies48. Sessile exotics or those with a marine origin exerted significant 
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changes on marine native communities, while mobile exotics or those 
with a freshwater or terrestrial origin did not. This result therefore 
identifies important characteristics of potentially detrimental exotic 
species. Environmental and geographical attributes of the invaded 
communities can also influence the establishment and success of 
exotic species. We found that the ecological effects of exotic species 
on marine ecosystems were substantial in continental margins but 

not on islands, which was unexpected based on reports for exotic 
avian species40 or terrestrial plants21. There was no clear indication 
that the ecological effects of marine exotic species varied over lati-
tude, although we anticipated low effects at low latitudes due to their 
high biodiversity, low space availability and strong biotic interac-
tions49,50. This finding has two possible explanations. First, although 
benthic biodiversity is highest at tropical latitudes for many marine 
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habitats (for example, coral reefs, seagrass meadows or mangrove 
forests), this does not apply to all marine ecosystems (for example, 
macroalgae beds and saltmarshes)51,52. Second, there were a few tropi-
cal and polar study locations (ten and one, respectively), which might 
have influenced the results.

About 10% of marine exotic species were qualified as inva-
sive species (as defined in ref. 33) or pests (as defined in ref. 36) by 
causing overall significant decreases in ecological variables. This 
percentage is similar to the proportion of exotic species that had 
been previously estimated to have sizeable impacts on native com-
munities36,48,53,54. However, these former estimates were based on 
semiquantitative data, unlike our estimate, which was based on a 
common metric, thus enabling a rigorous evaluation across spe-
cies and types of impacts55. Four species (C. maenas, C. taxifolia,  
M. galloprovincialis and U. pinnatifida) were included in the 
world’s 100 most invasive species by the IUCN56. While the overall  
ecological impact of C. maenas was obvious, those of C. taxifolia, 
M. galloprovincialis and U. pinnatifida are of concern since the 
wide error bars around the mean indicate that they can exert large 
impacts. The IUCN list56, the most reputable compilation of the 
worst exotic species worldwide, was based on expert judgment, and 
our list is an upgrade for marine exotics57. By separating the disrup-
tive from the innocuous species, we provide a basis for prioritizing 
and triaging eradication and management efforts, thereby offering 
a solid foundation to help meet Aichi Biodiversity Target 9 of the 
international Convention on Biological Diversity.

Our ranking of exotic species is based on the magnitude of the 
mean global effect for each exotic species. However, it is impor-
tant to consider not only the mean but also the variability of the 
effects. For instance, exotic species that inflict strong disparate 
impacts depending on geographical locations or habitat types58,59 
will have large error bars around the mean, which was the case for 
some exotic species on our list. Therefore, many of the exotic spe-
cies on our list could qualify as invasive in some locations but not 
others, although their global effect might not be significant. The 
lowest confidence interval (that is, the largest ecological decrease) 
could therefore be used to rank the species under a precautionary 
approach. The resulting ranking would, however, be very similar to 
that resulting when using the mean g.

The effects summarized here may be biased towards the most 
damaging of exotic species because studies with negligible eco-
logical effects are usually underreported in the literature60. This is 
probably because exotic species present at low abundances might go 
unnoticed or are difficult to study. In addition, quantitative analyses 
of the effects of exotic species are often funded and initiated when 
detrimental impacts are suspected, thereby probably targeting the 
most aggressive exotics. Therefore, our quantified ecological effects 
of marine exotic species may reflect a ‘worst case’ scenario, but one 
that is relevant to inform management actions under a precaution-
ary principle.

Recent assessments indicating that marine exotic species, based 
on ecosystem engineer species, have overall nonsignificant effects24 
are challenged when a broader suite of species is assessed, reveal-
ing significant ecological changes of exotic species at a global 
scale. Hence, concerns about the effects of marine exotics are war-
ranted10, especially since they will probably intensify as the vectors 
of introduction of marine exotics are expanding and diversifing61,62. 
However, our analysis also partially supports tempered views on 
the effects of marine exotics63 through the finding that the overall 
changes in magnitude are moderately significant (g < 0.2)64 and that 
there is a prevalence of overall nonsignificant effects for the major-
ity of exotic species (~90%).

In conclusion, the results provided here offer an integrated, quan-
titative assessment of the effects of exotic species, enabling the rec-
onciliation of the two polarized sides of the current debate. We also 
provide a ranked assessment of marine exotic species based on their 

quantitative ecological effects on native communities. Together, 
these results contribute to efforts to meet Aichi Biodiversity  
Target 9 of the Convention on Biological Diversity of the United 
Nations, and reveal previously unknown ecological patterns, such 
as the trend of exotic marine predators and primary producers to 
cause the largest ecological impacts.

Methods
Literature search. Quantitative data from the literature were gathered to assess 
the ecological e�ects of marine exotic species. We performed an exhaustive and 
systematic review on 4 May 2016 following the guidelines of TOP65 (transparency 
and openness promotion) and PRISMA66 (preferred reporting items for meta-
analyses) (Supplementary Table 3; Supplementary Fig. 1). We used the Web of 
Science (�omson Reuters) search engine to �nd studies using the following 
terms: (invader OR exotic OR invasive OR non-native OR alien) NEAR/5 (impact 
OR e�ect OR in�uence OR consequence*) AND (marine OR coastal OR sea OR 
estuar* OR ocean) NOT (lake OR stream OR freshwater OR terrestrial). �e search 
resulted in 1,012 publications. Each reference was randomly assigned to authors, 
who each extracted information from a set of papers.

Study selection criteria and data entering. The following criteria were used to 
select studies to include in the analysis. First, we only included studies within 
marine systems, up to and including environments getting sea spray. These 
comprised exotic species that inhabit brackish-water estuaries (such as the snail 
P. antipodarum) or that cover the coastal zones (such as the succulent terrestrial 
plant C. edulis). We included freshwater and terrestrial exotic species reported 
to interact with native marine species. Indeed, some of these species have been 
described as potential threats to coastal marine communities, such as the exotic 
terrestrial American mink (Mustela vison), which can deplete many species of 
European native fish and crabs in the rocky intertidal42. Second, we included 
species (for example, exotic species or species from the native community) 
that spend any stage of their life cycle in the marine environment. Third, we 
only included studies that quantitatively compared control and experimental 
treatments (for example, exotic species removals versus additions, or exotic 
species versus native species treatments). Articles lacking appropriate controls 
were excluded. Fourth, we only included studies reporting the mean values of 
variables, number of replicates and a measure of variability around the mean. 
If these data could not be obtained from a paper but did appear to have been 
recorded, the authors of the original study were contacted to request the relevant 
information. Fifth, when multiple and distinct habitat types or exotic species were 
examined separately within the same article, they were entered in the database as 
separate observations (for example, each observation was a row in our database). 
Sixth, if an article reported data on studies conducted at several locations, they 
were included as independent studies. Seventh, if more than two densities of 
exotic species were compared in a study (for example, low, medium and high 
abundance of the exotic species), they were entered in the database as separate 
observations. Eighth, if response variables were measured at multiple time points, 
we recorded the first and last sampling events except if there was a clear pattern 
in the data that was missed by recording only the first and last sampling events. 
In those cases, an additional point in the middle was recorded. Ninth, if multiple 
sampling techniques were used to estimate impacts within one area, only results 
from the most efficient sampling method were included. Tenth, for studies 
reporting multiple native community measures (for example, abundance, biomass, 
richness and diversity) and data on individual native species, we extracted 
information on community abundance and richness and collected data for a 
maximum of two individual native species either from the most abundant species 
or from the native species that was the focus of the study. Eleventh, for studies 
that reported results for the same species at several life stages or sizes, they were 
entered in the database as separate observations.

From an initial selection of 1,012 published studies, 159 studies were found 
to contain suitable quantitative data from 151 study locations (Supplementary 
Table 2; Supplementary Figs. 1 and 2). We assessed the effects of exotic species on 
the following ten types of metrics (Supplementary Table 4): abundance, richness, 
biogeochemical elements (stocks or fluxes of carbon, nitrogen, phosphorus 
and silicate), rate processes (production, photosynthesis, respiration and 
decomposition), survival (including mortality), growth (including percentage 
growth), fitness, behaviour, pollution (including heavy metal concentration  
and water clarity), and sediment changes. We then grouped these response variables 
at the species, community and ecosystem levels (Supplementary Table 4).  
A dropdown list was provided to co-authors to standardize data entry and to 
exclude redundant measurements. The trophic level of the species was determined 
after performing data searches on the diet of each exotic species in the Web of 
Science database and in the Invasive Species Compendium in the Center for 
Agriculture and Biosciences International. Filter-feeders were categorized as 
follows: (1) bivalve molluscs, tunicates and suspension-feeding gastropods were 
categorized as herbivores because they consume primarily phytoplankton; and  
(2) barnacles, bryozoans and suspension-feeding annelids and crabs were 
categorized as omnivores because they are not restricted to microscopic algae for 
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food. The same criteria were followed to categorize the trophic level of the native 
species, for which, in addition, sponges were classified as omnivores. For exotic 
species names, we used the ones most recently listed in the World Register of 
Marine Species. Data were obtained from tables or extracted from plots using Graph 
Click (available at http://www.arizona-software.ch/graphclick/download.html).

Data analysis. Hedges’ g effect size and variance were calculated for each 
observation (1,111 observations in total; see also https://doi.pangaea.de/10.1594/
PANGAEA.895681) to estimate the differences in the response variable between 
control and experimental treatment. Hedges’ g weighs cases by their sample size 
and the inverse of their variance67. Hedges’ g ranges from −∞ to +∞ and can be 
interpreted as follows64: |g| ≤ 0.2 considered a small effect; 0.2 ≤ |g| ≥ 0.5 a medium 
effect; 0.5 ≤ |g| ≥ 0.8 a large effect; and |g| ≥ 1.0 a very large effect. The effect size 
Hedges’ g was calculated as follows67:

= − × . .g X X J( ) / s dE C pooled

where XE and XC are the mean of the experimental (for example, presence of exotic 
species) and control groups (for example, absence of exotic species), respectively. 
J corrects for bias attributed to different sample sizes by differentially weighting 
studies as follows:

= − × + − −J N N1 (3 / (4 ( 2) 1))E C

The pooled standard deviation (s.d.pooled) was calculated as follows64,67:

. . = − × . . + − × . . + −N N N Ns d (( 1) (s d ) ( 1) (s d ) ) / ( 2)pooled E E
2

C C
2

E C

where s.d. is the standard deviation of the experimental or control group and N 
is the sample size. We weighted the effect sizes to account for inequality in study 
variance by using the inverse of the sampling variance, in which the variance for 
each effect size (Vg) was calculated as follows64:

= + × + × +V N N N N g N N(( ) / ( )) ( / (2 ( )))g E C E C
2

E C

Meta-analyses were completed using the metafor package for R69. We ran mixed-
effects models that included the study identification (ID) number and exotic 
species name as random factors to account for the effect of the exotic species within 
a study and across studies (for example, when several observations for a species 
were obtained from the same publication or from several publications). For models 
with categorical fixed factors (for example, trophic level of native species, trophic 
level of exotic species, level of ecological complexity, type of ecological response 
variable, origin and mobility of exotic species, continentality and exotic species 
name), effect sizes were significant if the following criteria were met: (1) their 
95% CI did not overlap with zero; and (2) P values were ≤0.05. For the model with a 
continuous fixed factor (latitude), the predictor was considered to have significant 
effects at P ≤ 0.05. In all statistical models, we used the rma.mv function, which 
determines statistical significance based on a Wald-type test.

Filter-feeders are a special guild that comprises several trophic levels and can 
have important ecological effects. We therefore performed an additional analysis 
on the effects of the trophic level of exotic species on native species including 
filter-feeders as a trophic level (27 exotic species were filter-feeders) to quantify 
their effects.

Publication bias. Publication bias, which is the selective publication of articles 
finding significant effects over those that find nonsignificant effects, might distort 
the results in a meta-analysis64. In our case, publication bias could lead to an 
overestimate of the effects of exotic species in marine ecosystems. The functions 
regtest and trimfill are not implemented in the metafor package for mixed-
effects models69. Therefore, potential publication bias was evaluated using Egger’s 
regression test70 by running models that included the standard error (s.e.) of the 
effect sizes (included as the square root of the variance) as a moderator71. Potential 
publication bias was determined when the intercept of the model was different 
from zero at P ≤ 0.05. If potential bias was detected, we examined the data for 
potential outliers by looking at the effect sizes with standardized residual values 
exceeding the absolute value of three72 using the rstandard function in R. Potential 
outliers were removed to adjust for publication bias. Adjusting for publication 
bias did not changed the outcome of the analyses (by comparing fitted random-
effects models with and without the influence of the potential outliers), except 
for both the effects of exotic species on native omnivores and the biogeochemical 
elements (Supplementary Table 5). We removed the potential outliers detected 
in the sensitivity analysis and re-ran the mixed-effects models for the effects 
of exotic species on the effects of trophic level (represented in Fig. 1) and the 
ecological categories of the response variables (represented in Fig. 3). Otherwise, 
our sensitivity analyses showed that our findings are robust against publication bias 
(Supplementary Table 5).

Standardization of variables. We performed the following calculations to 
standardize our dataset.

Variation around the mean. The s.d. was used as the measure of variation. When 
another statistic was reported (for example, s.e. or CI), it was converted to the 
s.d. using the following calculations (where n is the number of replicates, d.f. the 
degress of freedom and α the probability of rejecting the null hypothesis):

. . = . . × ns d s e

= . . ×
α . .
tCI s e ,d f

Growth data. If data were reported as biomass increase, we used the initial (Bo) and 
final (Bt) reported in the paper, and calculated the fractional growth (Fg):

= ∕F B B[ ]g t o

The s.d. of Fg (s.d.Fg) is then . . = × . . ∕Fs d (s d B )Fg g Bt t . When data were reported 
as the percentage growth (%G) with its s.d. (s.d.%G), we converted %G into Fg.

Mortality and survivorship data. If data were reported as initial and final number of 
individuals in the populations (No and Nt, respectively), we calculated the fraction 
of survivors (Fs) as follows:

= ∕F N N[ ]s t o

where Nt is the number of the survivors at time t and No is the number of 
individuals at the beginning of the experiment.

The s.d. of Fs (s.d.Fs) was calculated as follows:

. . = × . . ∕Fs d (s d N )Fs s Nt t

When data were reported as percentage survivorship (%S) with its s.d. (s.d.%S), we 
converted %S to Fs.

When the data were reported as number of dead and when the results were 
reported as percentage mortality, the calculations were performed as above, but 
converted from number of percentage dead into number of percentage surviving.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data underlying the study have been deposited in PANGAEA at https://doi.
pangaea.de/10.1594/PANGAEA.895681.

Code availability
The R script used in this manuscript will be deposited in the Github community 
repository upon publication (https://github.com/ngeraldi/marine-exotics-global-
analysis).
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We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

All data underlying the study is deposited in PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.895681 and will be public after publication. In addition, 

Supplementary material Table 2 lists the 159 references reviewed on this study.

The Nature trademark is a registered trademark of Springer Nature Limited.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description In this study we assessed the global ecological effects of exotic species on native communities. We extracted data from the literature 

and gathered 1111 observations. We ran mixed-effects models, using the rma.mv function from the metafor package for R, including 

study ID and exotic species name as independent random factors to account for the effects of study and species ID when several 

observations were obtained from the same publication or exotic species. The number of observations per treatment is indicated in 

parenthesis in all the graphs and at every treatment level. 

Research sample An exhaustive literature search was performed in ISI Web of Knowledge using the following terms: (invader OR exotic OR invasive OR 

non-native OR alien) NEAR/5 (impact OR effect OR influence OR consequence*) AND (marine OR coastal OR sea OR estuar* OR 

ocean) NOT (lake OR stream OR freshwater OR terrestrial). A search performed on May 4 2016 resulted in 1012 publications. 

Sampling strategy In order to extract data from the published literature, we created a set of study selection criteria and a protocol for data extraction 

from the literature

Data collection All authors (11 in total), except CMD, extracted data and information from published literature. Each of the 1012 references was 

randomly ordered and given an original reference number, and authors extracted information from a set of papers (all authors 

extracted information from 60 papers except AA and NRG that extracted information from 200+ papers).  Agreement between 

authors on the application of criteria was achieved after discussion and clarification of study selection criteria against particular 

studies. An exhaustive protocol was then created to extract data from publications. Agreement on data extraction between authors 

was attained by extracting information using a common subset of references (n=2), followed by an amendment of the protocol for 

data extraction.   

Timing and spatial scale Data from publications was extracted from November 2016 to April 2017. 

Data exclusions Only studies that met our study criteria (see methods) were included in the analysis

Reproducibility We did not run experiments on this study

Randomization We did not run experiments on this study

Blinding A set of study criteria were followed to collect the data from the published literature

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

The Nature trademark is a registered trademark of Springer Nature Limited.
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