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Álvaro Alonso1, Cristina Aponte7, Álvaro Bayón8, Peter J. Bellingham9,
Mariana C. Chiuffo10, Nicole DiManno11, Kahua Julian11, Susanne Kandert12,
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ABSTRACT

Non-native tree (NNT) species have been transported worldwide to create or enhance services that are fundamental
for human well-being, such as timber provision, erosion control or ornamental value; yet NNTs can also produce
undesired effects, such as fire proneness or pollen allergenicity. Despite the variety of effects that NNTs have on multiple
ecosystem services, a global quantitative assessment of their costs and benefits is still lacking. Such information is critical
for decision-making, management and sustainable exploitation of NNTs. We present here a global assessment of NNT
effects on the three main categories of ecosystem services, including regulating (RES), provisioning (PES) and cultural
services (CES), and on an ecosystem disservice (EDS), i.e. pollen allergenicity. By searching the scientific literature,
country forestry reports, and social media, we compiled a global data set of 1683 case studies from over 125 NNT
species, covering 44 countries, all continents but Antarctica, and seven biomes. Using different meta-analysis techniques,
we found that, while NNTs increase most RES (e.g. climate regulation, soil erosion control, fertility and formation),
they decrease PES (e.g. NNTs contribute less than native trees to global timber provision). Also, they have different
effects on CES (e.g. increase aesthetic values but decrease scientific interest), and no effect on the EDS considered.
NNT effects on each ecosystem (dis)service showed a strong context dependency, varying across NNT types, biomes
and socio-economic conditions. For instance, some RES are increased more by NNTs able to fix atmospheric nitrogen,
and when the ecosystem is located in low-latitude biomes; some CES are increased more by NNTs in less-wealthy
countries or in countries with higher gross domestic products. The effects of NNTs on several ecosystem (dis)services
exhibited some synergies (e.g. among soil fertility, soil formation and climate regulation or between aesthetic values
and pollen allergenicity), but also trade-offs (e.g. between fire regulation and soil erosion control). Our analyses provide
a quantitative understanding of the complex synergies, trade-offs and context dependencies involved for the effects of
NNTs that is essential for attaining a sustained provision of ecosystem services.

Key words: biological invasions, cultural ecosystem services, exotic trees, forestry, global assessment, meta-analysis,
provisioning ecosystem services, regulating ecosystem services.
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I. INTRODUCTION

Humans rely on the multiple services that ecosystems provide
(MEA, 2005). Tree species play a key role in delivering
ecosystem services, as they provide products (i.e. provisioning
services, PES) such as timber, firewood, fibre, pulp or fodder.
They also contribute to regulatory processes (regulating
services, RES), such as climate regulation (via carbon uptake),
soil formation and stabilization, and nutrient and water
cycling (MacDicken, 2015; MacDicken et al., 2015). Trees
also offer non-material benefits (cultural services, CES), such
as aesthetic or inspiration values; they are featured in the
folklore, tales and legends of most human cultures, and
contribute to people’s sense of place (Kueffer & Kull, 2017;
Mason et al., 2017).

With the increasing global demands of tree-derived
ecosystem services (MacDicken et al., 2015), many
fast-growing, stress-tolerant or simply beautiful tree species
have been extensively planted beyond their native ranges
(Brundu & Richardson, 2016; Dickie et al., 2014a; Evans,
2009). Examples include non-native conifers being planted
worldwide for timber and pulp (Brundu & Richardson, 2016);
Acacia, Eucalyptus or Pinus boosting land reclamation and
sand dune stabilization worldwide (Evans, 2009; Griffin et al.,
2011); legume trees (e.g. Acacia, Gleditsia or Prosopis) being used
to prevent desertification and provide fodder or firewood in
arid and impoverished regions of Africa and Asia (Shackleton
et al., 2014; Witt, 2017); and shade and ornamental trees (e.g.
Ailanthus, Jacaranda, Prosopis, Platanus and Robinia) providing
amenities to rural and urban populations worldwide (Dickie
et al., 2014a). Yet, many non-native tree (NNT) species
also contribute to landscape homogenization, reduce native
biodiversity, and alter ecosystem functioning in undesirable
ways (Cardinale et al., 2012; Gaertner, Richardson & Privett,
2011; Gamfeldt et al., 2013). NNTs may even result in
direct negative impacts on human well-being (i.e. ecosystem
disservices, EDS) (Shackleton et al., 2016), such as toxicity or
allergenicity. Therefore, NNTs also create threats to people’s
livelihoods and human well-being, such as depletion of soil
nutrients and water reserves (Castro-Díez et al., 2012; Le
Maitre et al., 1996; Shackleton et al., 2014), increased fire
hazard (D’Antonio, 2000; Gaertner, Le Maitre & Esler,
2017; Nagler et al., 2005), damage to infrastructure and
archaeological remains (Booy et al., 2017; Celesti-Grapow
& Blasi, 2004), or harm to human health (Nentwig, Mebs

& Vilà, 2017; Schindler et al., 2015). These costs may be

exacerbated when NNTs naturalize, and especially if they

become invasive by spreading outside the areas where they

were planted (Brundu & Richardson, 2016; Richardson &

Rejmánek, 2011). Understanding how NNTs affect multiple

(dis)services and how these effects correlate with each other

is essential for enabling policy makers to balance costs and

benefits, and manage conflicts over the use of NNTs (Dickie

et al., 2014a; Pejchar & Mooney, 2009).

Most of our knowledge on the effects of NNTs on

ecosystem services derives from local or regional studies, but

these effects likely depend on the environmental conditions,

history and cultural background of each region (Castro-Díez

et al., 2014a; Corbin & D’Antonio, 2011; Kueffer & Kull,

2017). Moreover, current knowledge is biased towards

easy-to-study services and the most widely distributed NNTs

(Hernandez-Morcillo, Plieninger & Bieling, 2013; Hulme

et al., 2013). Furthermore, many costs and benefits caused

by NNTs are reported by different actors with multiple

disciplinary backgrounds (e.g. foresters versus conservation

biologists) using distinct publication types (e.g. scientific

papers, reports or social media) (Krumm & Vítková, 2016).

This paper presents the first global assessment of NNT effects

on multiple ecosystem (dis)services, covering the three main

categories of ecosystem services: regulating, provisioning

and cultural services (de Bello et al., 2010; Haines-Young &

Potschin, 2013; MEA, 2005), and an ecosystem disservice.

Specifically, we (i) evaluate the overall magnitude and

direction of the effects that NNTs have on multiple ecosystem

(dis)services, using native vegetation as a control; (ii) explore

the role of environmental, geographical and socio-economic

factors as potential predictors of the variation of NNT effects

on (dis)services; and (iii) identify synergies and trade-offs

among NNT effects on different ecosystem (dis)services. We

address these questions through a global meta-analysis of a

comprehensive data set gathered from published scientific

literature, country-level economic and forestry reports, and

social media.

II. MATERIALS AND METHODS

Given that different stakeholders may perceive the same

service change as beneficial or detrimental, we avoid
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the value-laden term ‘impact’ and use the more neutral
one ‘effect’ to document objectively the changes produced
by NNTs on ecosystem (dis)services (Jeschke et al., 2014).
Thus, although throughout the manuscript we describe an
effect as an increase/decrease of a (dis)service (Pyšek et al.,
2012), we merely inform on the direction of the change,
rather than judging the value of the change.

(1) Data compilation

We focused on NNTs worldwide. We defined trees
as ‘perennial woody plants with many secondary branches
supported clear of the ground on a single main stem or trunk
with clear apical dominance (including palms)’ (Richardson
& Rejmánek, 2011, p. 789). ‘Non-native’ trees were defined
as tree species introduced (accidentally or intentionally)
by humans to new geographic areas, considering the
whole introduction–naturalization–invasion continuum (i.e.
planted, naturalized and invasive species) (Richardson, Pyšek
& Carlton, 2011). The ‘non-native’ status of a tree was stated
at the species level (i.e. ignoring the distribution of subspecies
or varieties) and at the country scale, following regional
and national floras and checklists (see online Supporting
information, Appendix S1). For Brazil, USA and Canada
however, non-native status was considered at the state level
due to their large size and environmental and biogeographic
heterogeneity. Archaeophytes (i.e. species introduced before
1492) were excluded because in many cases they could not
be clearly assigned to native tree (NT) or NNT at a country
level. Hybrids between NTs and NNTs were also excluded
for the same reason.

We covered the three most widely recognized categories
of ecosystem services (de Bello et al., 2010; Haines-Young
& Potschin, 2013; MEA, 2005), i.e. regulating (RES),
provisioning (PES) and cultural (CES) ecosystem services.
We also considered an ecosystem disservice (EDS) – i.e.
a negative impact on human well-being (Shackleton et al.,
2016) – specifically pollen allergenicity, which can be
treated as a potential drawback from NNTs to human
health (Vaz et al., 2017b). The selection of variables and
data sources for each ecosystem (dis)service was achieved
through an international participatory approach under the
COST Action FP1403: Non-native tree species for European
forests – experiences, risks and opportunities (http://nnext.boku.ac
.at), and relied on the possibility of worldwide coverage, cost
and time efficiency, availability, and ease of communication
across multiple countries. Data for RES were derived from
an extensive scientific literature review, while data for PES,
CES and EDS were collected from a thorough information
search on reports and websites, among other sources (see
Sections II.1a–d ).

(a) Regulating ecosystem services (RES)

We agreed on a list of 10 relevant RES that cover the benefits
that people obtain from the capacity of ecosystems to regulate
climate, floods, disease, waste, and water (de Bello et al.,
2010; Haines-Young & Potschin, 2013; MEA, 2005). For

each RES, we identified a set of underlying target variables
which covered ecosystem properties, processes, and/or traits
of dominant species that underpin the capacity of ecosystems
to regulate processes and mitigate effects of disturbances
(de Bello et al., 2010; Quetier et al., 2007) (Table 1). We
performed a literature search of scientific publications, using
ISI Web of Knowledge (http://webofknowledge.com/) and
Scopus (https://www.scopus.com). The search was carried out
in December 2015 and updated in December 2016, covering
the period between 1904 and 2015 with no restriction on
language. Our search string included: (Exotic* OR Alien*
OR invas*) AND (*native*) AND (tree*) AND the set of key
words shown in Table 1 combined with ‘OR’.

Publications retrieved from our searches were filtered
according to the following criteria: (i) the study compares
any target variable between a site dominated by a NNT
and a control site with native vegetation; (ii) the NNT site
and the control site are close to each other and have similar
environmental conditions, according to the authors of the
papers; and (iii) the paper provides means, deviation and
sample size of the target variable. The final number of
selected papers was 135 (Appendix S2).

Using data obtained from the selected publications,
individual data sets were created for each RES (see Table 1).
Each data set consisted of a table where rows were case studies
and columns covered the mean, deviation and replication of
a target variable in a NNT site and in a control site, as well as
other explanatory variables, which were subsequently used
to explain the variability of effect sizes (see Section II.1e).
When the same paper provided measures on more than one
target variable, we adopted any of the following decisions: (i)
for variables associated with different ecosystem services, we
kept them as independent case studies because each service
was independently analysed; and (ii) for variables associated
with the same service, we selected the one most directly
related to the service or we aggregated all values into one
to avoid pseudo-replication (see Appendix S3 for details). In
total, our data set contained 1688 case studies.

For each case study we calculated a standardized effect
size using Hedges’ d (Rosenberg, Adams & Gurevitch, 2000),
i.e. the difference of mean values between the NNT and
the control site, weighted by the number of replications and
by the inverse of the variance (Appendix S4A). When the
variable had a negative relation with the ecosystem service,
we changed the sign of the effect size. A positive effect size
thus indicates that the NNT site has a higher contribution to
the particular ecosystem service than the control site and vice
versa.

(b) Provisioning ecosystem services (PES)

We considered two main categories of products obtained
from areas where land cover was classified as ‘forest’:
timber products (any kind of goods obtained from harvesting
trees) and non-timber products (any biological resource
in woodland except timber) (MEA, 2005). Details on the types
of products included in each category and specific sources of
information for each country are shown in Appendix S5.
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Table 1. Target variables used as proxies for different regulating ecosystem services (RES). Variables include quantifications of
ecosystem processes, ecosystem or community properties and traits of dominant plant species. The positive or negative sign beside
each variable indicates the relation with the ecosystem service. The last column shows the list of specific key words used in the search
in ISI Web of Knowledge and Scopus

Target variables
Regulating ecosystem
services Ecosystem processes

Ecosystem/community
properties Plant species traits

Key words used in the
literature search†

Climate regulation Carbon sequestration +

Biomass production+

Aboveground plant
mass/C +

Root mass +

Soil carbon +

Total plant mass +

Tree basal area +

Chlorophyll concentration
+

Photosynthetic rate +

Relative growth rate +

Tree height +

Trunk area/diameter +

Trunk diameter
increment +

Carbon sequestration,
Carbon storage,
Primary production,
RGR, Growth rate,
Photosynthetic rate,
Chlorophyll
concentration,
Microclimate, Climate
regulation, Canopy
temperature, Wind

Fire-risk prevention Canopy fuel continuity –
Canopy water content +

Litter mass/depth –
Litter water content +

Understorey biomass –

Calorific value –
Effective heat of

combustion –
Leaf moisture +

Volatile compounds –

Fire, Fire frequency, Fire
susceptibility, Fire
intensity, Burning
temperature, Fire
spread, Forest fire,
Wildfire

Fire regime, Fire
behavio?r, Fuel
propert*, Flammability

Flood regulation Flood frequency –
Stream water velocity –

Flood frequency, Flood*
Water velocity, River

flow, Run?off, Flood
protection, Flood
defence, Flood storage,
Flood generation, Flood
detention, Flood event

Plague control Forest plague frequency –
Abundance insectivorous

species +

Leaf lignin content +

Polyphenol content +

Plague frequency, Disease
frequency, Tree
pathogens, Natural pest
control, Pest control,
Biological control,
Biological pest control

Pollination Pollinator visitation rate to
flowers +

Pollinat*, Pollination
service, Pollinator
efficiency, Flower
visitor, Zoophilous

Pollution regulation Soil NOx emissions – Concentration of heavy
metals in tissues +

Plant isoprene emissions –
Plant monoterpene

emissions –
Plant NOx emissions –

Air purification, Air
clean*, Pollut*,
Contamination, Noise,
BVOC, Biogenic
emission*, Volatil*,
Water quality, Water
purification, Water
clean*, Sequestration,
Mining

Soil erosion control Leaf litter production + Litter layer mass/depth +

Root mass per unit soil
area +

Understorey biomass +

Root depth + Soil erosion, Weathering,
Soil loss, Sediment,
Root depth, Root
density, Erosion
protection, Soil
stability, Sand stability,
Root depth, Root
density, Soil erodibility,
Soil floor
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Table 1. Continued

Target variables
Regulating ecosystem
services Ecosystem processes

Ecosystem/community
properties Plant species traits

Key words used in the
literature search†

Soil fertility Canopy nutrient content
+

Carbon exchange capacity
+

Soil base saturation +

Soil nutrient content +

Leaf nutrient content +

Litter nutrient content +

N fixation, (Soil, Leaf,
Leaves, Litter) AND
(Nutrient*, Nitrogen,
Phosphorus, CEC)

Soil formation Infiltration rate of
nutrients +

Litter accumulation rate
+

Litter decomposition rate
+

Mineralization rate +

Nutrient input by litterfall
+

Soil microbial activity +

Soil respiration rate +

Litter layer mass/depth +

Root mass per unit soil
area +

Soil invertebrate
abundance +

Soil organic matter +

Hyphal length +

Litter C:N –
Litter lignin –
Litter lignin:N –

LMA, SLA, SLM,
Nitrogen, Phosphorus,
Lignin, Litter
decomposition, Litter
C:N, Litter C/N,
Mineralization,
Nitrification,
Ammonification, Soil
respiration, Microbial
biomass, Soil organic
matter, Soil
compaction, RGR,
Growth rate, Litter
layer, Litter?fall, Soil
invertebrates, Root
specific length, Hyphal
length

Water regulation Canopy interception of
rainfall +

Evapotranspiration +

Infiltration rate +

Canopy water content +

Leaf area index +

Litter layer mass/depth +

Soil moisture +

Water repellency –

Sap flow rate +

Stomatal conductance
+/–

Transpiration rate +

Tree water consumption
rate +

Water use efficiency +

Canopy water content,
Soil moisture, Runoff,
LAI, Litter layer,
Evapotranspiration,
Infiltration, Water
recharge,
Transpiration, Sap
flow, Stomatal
conductance, Water use
efficiency

†Compound key words were introduced between inverted commas.

For timber products, we performed an intensive search

of country reports where information on provisioning of

harvested timber (m3 y–1) was available per species, at

country or sub-country (state or administrative region) level,

for the period 2007–2015. The difference between the

proportion of timber provided by NNTs and by NTs was

calculated as the effect size for each country/region (i.e. case

study). A positive value indicates a higher timber provision

by NNTs than by NTs, and vice versa (see Appendix S5 for

further details).

For non-timber products, we considered 16 categories,

following the classification of the Secretariat of the

Convention on Biological Diversity (https://www.cbd

.int/doc/publications/cbd-ts-06.pdf; Appendix S5). Fruits

obtained from tree crops were excluded because they come

from non-forest land cover zones. Given that production

of different non-timber products is often species specific

and may differ in orders of magnitude across products (e.g.

cork production is expressed in t ha–1 y–1, while honey and

edible fungi in kg ha–1 y–1) they could not be aggregated

across species. Moreover, information on productivity per

species at the region/state level was generally not available

for several of these 16 categories. To overcome these

limitations, we compared the uniqueness in the production of

non-timber products between NNTs and NTs. Uniqueness

was recorded as the number of categories of non-timber

products (N = 0–16) that could be obtained only from

NNTs or only from NTs at country level (e.g. in Spain

and Portugal, cork is exclusively produced by a NT, so this

product counts as unique to NTs; by contrast, honey can

derive from both NTs and NNTs, thus not counting as

unique to any group). We compiled data for a total of 16

countries, each one representing a case study.

To assess whether NNTs have higher non-timber

uniqueness than NTs in each country, we calculated the

effect size using the log odds ratio under Peto’s method

(logORP ), which is frequently used in meta-analyses to

aggregate data reported as frequencies. The logORP is

the difference between an observed value and the value

expected by chance in a contingency table (Borenstein

Biological Reviews 94 (2019) 1477–1501  2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
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et al., 2009). In this case, the observed value was the

number of non-timber categories unique to NNTs, while

the expected value was calculated from the number of

NNT and NT species present in the country, expecting

that both groups have the same uniqueness for non-timber

production (for further details on logORP calculation see

Appendix S4B). A positive logORP value indicates that NNTs

supply more unique non-timber product categories than

expected according to the proportion of NNT species in

the country. Specific sources of information are shown in

Appendix S5.

(c) Cultural ecosystem services (CES)

CES cover non-material benefits people obtain from ecosys-

tems through spiritual enrichment, cognitive development,

reflection, recreation, and aesthetic experiences (MEA,

2005). These benefits were grouped under five categories:

recreation and ecotourism, aesthetic, inspiration, cultural

heritage and scientific interest (MEA, 2005). For each CES

category we selected at least one representative source of

quantitative information (Vaz et al., 2018). For example, as

sources for aesthetic value, we selected catalogues of orna-

mental plant dealers and catalogues of species present in

urban parks (see Table 2 for all CES sources and Appendix

S6 for further details). For each case study (e.g. each cat-

alogue), we calculated the effect size using the logORP (as

in Section II.1b). In this case, the observed value was

the frequency of NNT species in the CES source; the

expected value was calculated assuming that both NNT

and NT species have the same chances of being included

in the source (Appendix S4B). LogORp values higher or

lower than 0, respectively, indicate an increase or decrease

in the particular CES caused by NNTs. Data on CES

were collected for different regions/states for most coun-

tries. For USA, only data for Hawaii could be collected.

In total, our database contained 938 case studies from

13 countries.

(d ) Ecosystem disservice (EDS)

The contribution of NNTs to the EDS pollen allergenicity

was assessed using the same procedure described for CES.

In this case, the source of information was the Allergome
website (www.allergome.org), which compiles worldwide

information on allergenicity of plant species. For each of

62 countries/regions we counted the number of NNT and

NT species with and without allergenic pollen, using the lists

of tree species present in each country. We then calculated

the effect size using logORP , in which the observed value

was the frequency of NNT species producing allergenic

pollen. The expected value was calculated assuming that

both NNTs and NTs have the same chances of being

allergenic (see Table 2 and Appendix S4B). LogORp values

higher or lower than 0, respectively, indicate a higher or lower

contribution from NNT species to the EDS than expected by

chance.

(e) Predictors of the variation of NNT effects on ecosystem (dis) services

Based on previous knowledge (Brundu & Richardson, 2016;
Castro-Díez et al., 2014a; Kull et al., 2011; Vilà & Pujadas,
2001) we selected a set of nine predictors to explain the
variation of NNT effects on ecosystem (dis)services (Table 3).
For RES, we selected one biogeographic predictor (biome),
two properties of the vegetation structure (native ecosystem
type and NNT stand type), one functional property of
NNTs (N-fixing), and the phylogenetic relatedness between
species (see Section II.2b). Biome was selected because the
literature suggests that the effects of non-native plants on the
nutrient cycle depend on the large-scale climatic conditions,
as captured by biomes (Castro-Díez et al., 2014a). The type
of native ecosystem (e.g. grassland, shrubland, forest, etc., see
categories in Table 3) was included to account for the gross
functional distance between the NNT and the dominant
control vegetation, a key factor to explain the magnitude of
the impacts caused by non-native plants (Castro-Díez et al.,
2014a; Chapin et al., 1996; D’Antonio & Corbin, 2003).
The type of NNT stand (whether planted or naturalized)
may explain variations in the effects of NNTs on RES
because of different functioning between an artificial (planted)
stand and a spontaneous self-maintained system (forest with
naturalized NNTs) (Cruz-Neto et al., 2018; Paz et al., 2015).
Finally, the N-fixing ability of NNTs was selected because
of its well-known effect on soil properties and processes
(Castro-Díez et al., 2014a; Liao et al., 2008; Vilà et al., 2011).
For PES, CES, and EDS we also selected biome, plus two
indicators of socio-economic development (gross domestic
product and human development index), two demographic
predictors (population density and proportion of rural
population), and an index of human disturbance (ecological
footprint) (Table 3). Socio-economics and demography are
recognized determinants of people’s demands for resources
and their perception of cultural assets from non-native plants
(Kueffer, 2017; Kull et al., 2011; Vaz et al., 2018; Vilà &
Pujadas, 2001). The numeric predictors were not significantly
correlated in our data set (Spearman’s rank correlation test:
rs < 0.045, P > 0.05). Information on the sources used to
obtain these predictors and the rationale for their selection
is shown in Appendix S7.

(2) Data analyses

(a) Computation of grand mean effect size

To assess the contribution of NNTs to the provision of each
ecosystem service across RES, PES CES and EDS (with
the exception of timber provision, see below), all effect sizes
(Hedges’ d or logORP ) obtained for each ecosystem (dis)
service were combined using a random effects meta-analysis
model (REMA) to provide a grand mean effect size [either
d+ for numerical data (RES) or logORw for frequency data
(non-timber PES, CES and EDS)], where the weight of each
case study was the reciprocal of the case study variance. In a
random-effects model, the variance of each study results from
the variability within (i.e. sampling error) and among case
studies (i.e. the random component). We calculated the latter
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Table 3. Predictors used to explain the variation of non-native tree (NNT) effect size on ecosystem (dis)services across case studies.
The last column indicates the category of ecosystem service to which the predictor was applied (RES, regulating; PES, provisioning;
CES, cultural ecosystem services; EDS, ecosystem disservice).

Acronym Description Predictor categories
Applied to ecosystem

service category

(Bio)Geographic context
1. Biome Biome of the study site or

dominating in the
country

Tropical forest∗

Subtropical forest
Subtropical desert
Mediterranean
Temperate forest
Temperate grassland/desert
Boreal forest

RES, PES, CES, EDS

Stand and species properties
2. Ecosystem Native ecosystem type (Semi)desert

Grassland
shrubland
Open forest
Forest
Urban

RES

3. Stand type NNTs in forest plantations
or naturalized

NNTs in planted stands
NNTs in naturalized stands

RES

4. N-fixation NNT is N-fixing or not NNTs N-fixing
NNTs not N-fixing

RES

Socio-economic development
5. GDP Nominal gross domestic

product (US Dollars)
Numeric data CES, PES, EDS

6. HDI Human Development
Index (ranking values)

Numeric data CES, PES, EDS

Demography

7. PopDens Population density (km-2) Numeric data CES, PES, EDS
8. RurPop Proportion of rural

population (%)
Numeric data CES, PES, EDS

Human disturbance
9. EFP Ecological footprint

(ranking values)
Numeric data CES, PES, EDS

∗The term ‘forest’ is used here in a broad sense, including also savannahs and woodlands.

using the restricted maximum-likelihood estimation (REML)
for numeric data, and the DerSimonian-Laird (DL) model for
frequency data (Borenstein et al., 2009; Viechtbauer, 2010),
using the rma() function implemented in the R package
metafor (Viechtbauer, 2010). This function also provides
the 95% confidence intervals for each grand mean effect
size and a two-tailed parametric test checking whether
the effect size differs from zero. Given the non-normal
distribution of the residuals of some models, we additionally
assessed the two-tailed significance of each grand mean effect
size through non-parametric permutation tests under 1000
iterations using the permutest() function from package metafor
(Viechtbauer, 2010).

In our data sets some case studies were derived from the
same publication (RES), or refer to the same NNT species
(RES), or come from the same country (RES, PES and CES),
and thus may be more closely related to each other than to
other case studies. To explore if non-independence affected
the results, we additionally assessed the grand mean effect size
and its significance using multi-level meta-analysis models
(MLMAs), each including one source of non-independence

(publication, NNT species or country) as random factor
(Nakagawa & Santos, 2012). These models allow for different
variations of effect sizes between case studies within the same
level of the random factor. MLMA models were fitted using
the rma.mv() function in metafor. Differences in fit between the
REMA and MLMA models were assessed using the Akaike
Information Criterion corrected for small sizes (AIC c), so that
the more complex models (MLMAs) are considered to be
an improvement on the simplest one (REMA) if they result
in a reduction of AIC c of two points or more (Burnham &
Anderson, 2004; Senior et al., 2016).

In the case of timber provision, the effect size of each case
study was the difference between the proportions of timber
provided by NNTs and by NTs, with no associated variance.
Case studies were in most cases the largest administrative
regions below the country level (equivalent to European
NUTS-2), but for six countries (Bulgaria, Czech Republic,
Chile, Ireland, New Zealand, and Portugal) data were only
available at the country level. The grand mean effect size
(±95% confidence intervals) was calculated as the weighted
median (due to non-normal distribution) across all case
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studies. The weighting factor was the proportion of all global

timber produced by each country/region (multiplied by

1000 for scaling reasons), so that country/regions with larger

annual timber harvest (NNT+NT) contributed more to the

grand mean effect size. A two-tailed Wilcoxon rank test was

computed to assess whether the grand mean effect differed

from zero, using the wilcox.test() function in R.

(b) Computation of heterogeneity and structured meta-analyses

For each grand mean effect size calculated with REMA

(either d+ or logORw), we computed the heterogeneity across

effect sizes using several statistics: (i) the Q T statistic is the sum

of squares of the deviations of each effect size from the grand

effect size, weighed by the inverse of the effect sizes’ variances.

Q T was tested against a chi-squared distribution with n–1

degrees of freedom (n = number of case studies) to assess

whether the observed heterogeneity is greater than expected

by chance (Borenstein et al., 2009). The caveat of the Q T

statistic is that its reliability and significance depend on the

number of case studies (Borenstein et al., 2009; Nakagawa &

Santos, 2012). Thus, we computed two additional statistics;

(ii) T 2 which is the estimate of the between-case study

variance; and (iii) I 2 which is the proportion (in %) of the

total variation in effect sizes that is due to the between-study

variance (T 2) (Borenstein et al., 2009; Nakagawa et al., 2017).

The three statistics were calculated using the rma() function

of the metafor R package. In the case of the MLMA models,

we partitioned I 2 between the random factor level and the

case study level following Nakagawa & Santos (2012).

We further assessed whether the variation of effect

sizes could be explained by the predictors (fixed factors)

shown in Table 3. We performed random-effects (REMA)

structured meta-analyses using the rma() function, which

allows incorporating predictors and returns coefficients and

an omnibus test assessing whether the coefficient differs

from zero. For continuous predictors, the function also

provides the regression slope and its significance. Given

the non-normal distribution of residuals in many cases,

we additionally assessed the two-tailed significance of the

predictors over 1000 iterations with the permutest() function

(Viechtbauer, 2010).

In the case of RES, we also tested for a phylogenetic signal

on the NNT effects using the Phytools R package (Revell,

2012). We first constructed a phylogeny of NNT species,

starting from the time-calibrated molecular phylogeny of

Zanne et al. (2014). We selected the taxa of our study

(at genus level) using the congeneric.merge() function; then

we pruned the phylogeny with the drop.tip() function to

obtain a separated NNT phylogeny for each RES with a

minimum of 10 species (otherwise the statistical power was

considered too low). The phylogenetic signal was assessed

using two common comparative metrics (Blomberg’s K and

Pagel’s λ) (Blomberg, Garland & Ives, 2003; Pagel, 1999).

Although the rationale behind these metrics is different,

both approach 1 when the species phylogenetic signal

approximates predictions under a Brownian motion model

of evolution, and approach 0 when there is no phylogenetic
signal.

To explain the variation of NNT effects on timber
provision, separate linear models were conducted with the
R function lm() to assess the effects of the biome and
socio-economic predictors in Table 3. In some cases, effect
sizes were aggregated at the country level before performing
the linear models to match the scale at which predictors were
available. Country was tested as an additional predictor,
as this data set did not allow us to perform a MLMA
with country as a random factor (see Section II.2a). In the
analysis of country, the six countries where timber provision
was only available at country level were removed from
the analyses. To improve homoscedasticity, the effect size
(the difference between the proportions of timber provided
by NNTs and by NTs) was transformed according to the
formula: arcsine (sign(x) × sqrt(abs(x))). To compensate for
the different contribution of each case study to global timber
production, the weighting factor was included in all linear
models with the R function offset().

(c) Publication bias

Meta-analysis results may be affected by publication bias,
i.e. the selective publication of articles finding significant
effects over those which find non-significant effects (Begg,
1994). Publication bias for each RES was investigated by
exploring asymmetry in a funnel plot, with effect sizes on
the x-axis and standard error of effect sizes on the y-axis. In
the absence of publication bias, this plot is expected to be
a symmetric funnel shape, with a larger dispersion of effect
sizes for studies with smaller sample size, i.e. those with large
standard errors of effect size (Borenstein et al., 2009). We
assessed funnel asymmetry using the random/mixed-effects
version of the Egger’s test, which performs a structured
meta-analysis with the standard error as predictor, and
returns its slope and significance (Sterne & Egger, 2005).
This test was implemented using the regtest() function
of the metafor package (Viechtbauer, 2010). A significant
relationship implies asymmetry in the funnel plot, which
may be an indication of publication bias due to missing
values on one side of the funnel. However, there are other
reasons for funnel asymmetry besides publication bias, such
as heterogeneity (Nakagawa & Santos, 2012; Viechtbauer,
2010). Thus, when the Egger’s test on the meta-analysis
without predictors indicated asymmetry, we repeated the
test on the meta-analysis with the predictor which explained
more heterogeneity. If this test still reported asymmetry, we
assessed the impact of publication bias by removing case
studies responsible for funnel asymmetry (Borenstein et al.,
2009), and by applying the trim-and-fill method (Duval &
Tweedie, 2000). This method uses an iterative procedure to
remove the most extreme small studies from the asymmetric
side of the funnel plot, then adds the original studies back
into the analysis, imputes a mirror image for each one, and
re-computes the meta-analysis. If the new grand mean effect
size retains the same sign and significance, then we conclude
that publication bias has a trivial or modest impact, but
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if there is a shift of the sign or significance of the grand
mean effect size, then the impact of publication bias may be
substantial (Nakagawa & Santos, 2012).

(d ) Synergies and trade-offs between ecosystem (dis)services

Some variables are simultaneously involved in multiple
services, which may lead to synergies and trade-offs among
services within and among categories (Cord et al., 2017; de
Groot, Wilson & Boumans, 2002). For instance, depth of
the litter layer is positively related to soil formation but
negatively to fire-risk prevention (see Table 1), which may
lead to trade-offs between these services. We checked for
the existence of positive and negative relationships among
the effects of NNTs on different ecosystem (dis)services.
Given that the unit of observation differed across types of
ecosystem (dis)services (NNT species for RES versus country
or administrative region for PES, CES and EDS), associations
were evaluated through two separate analyses. For RES, we
computed the mean effect size (d+) of each NNT species on
each service and tested for significant correlations among the
effects of the same NNT species on different RES. For PES,
CES and EDS, we calculated the mean effect size (logORw) for
each country/region, and analysed the correlations among
the NNT effects found in the same countries/regions on
different PES, CES and EDS. We used pairwise Spearman
rank correlation tests in R software.

R codes and part of the data used in this study are available
in the repository Consorcio Madroño (doi: 10.21950/EGM8SE).

III. RESULTS

(1) Description of the data set

We analysed a total of 1683 case studies (529 on RES, 154
on PES, 938 on CES, and 62 on the EDS pollen allergenicity).
Data covered 44 countries (33 on RES, 22 on PES, 13 on CES
and 13 on EDS), all continents except Antarctica, and seven
biomes (Fig. 1). Continents with developed countries, such
as Europe, were over-represented with respect to their size,
whereas large continents such as Asia and Africa were
under-represented (Fig. S1). Temperate, mediterranean and
tropical biomes accounted for most case studies, while other
biomes were less (boreal forest, subtropical forest and desert,
and temperate grassland/desert) or not (polar) represented
(Fig. S2).

The best represented ecosystem services were soil
formation (RES), soil fertility (RES), timber provision
(PES), recreation and ecotourism (CES), and aesthetics
(CES), with more than 115 case studies each. The least
represented ecosystem services were pollution regulation
(RES), pollination (RES), non-timber provision (PES) and
scientific interest (CES), with less than 20 case studies each
(Fig. 2). For plague control and flood regulation (RES), no
valid case studies were found.

Our RES data set covered a total of 125 NNT species.
Among them, four species (Ailanthus altissima (Mill.) Swingle,

Pinus radiata D. Don, Robinia pseudoacacia L., and Falcataria
moluccana (Miq.) Barneby & J.W. Grimes) were the best
represented, with 20–22 case studies; four additional species
(Acacia saligna (Labill.) Wendl., A. longifolia (Andrews) Willd.,
Eucalyptus globulus Labill., and Ligustrum lucidum W.T. Aiton)
were represented by 10–17 case studies. At the other
extreme, 44 NNT species were each represented by a single
case study (Table S1). The PES, CES and EDS data sets
covered the (dis)services provided by all NNT versus all NT
species of a country or region (see Section II.1); thus, the list
of NNT species was not specified in this case.

(2) Effects of non-native tree species on regulating
ecosystem services

Our random-effects meta-analysis (REMA) of 529 case
studies obtained from the scientific literature revealed
that NNTs increased climate regulation, soil fertility, soil
formation and soil erosion control, but decreased fire-risk
prevention (Fig. 2A). Asymmetry in funnel plots (Fig. S3)
and Egger’s tests suggest the presence of publication bias
for climate regulation, soil fertility and fire-risk prevention;
however, the asymmetry of the latter disappeared when
ecosystem type was included as predictor (Table S2).
For climate regulation and soil fertility, the trim-and-fill
procedure did not change the mean effect size, suggesting
that the impact of publication bias was trivial (Table S2). In
addition, the removal of the six case studies responsible for
the funnel asymmetry in the soil fertility data set (see Fig.
S3) resulted in a smaller, but still significant, mean effect
size (d+ shifted from 0.63, P = 0.012 to 0.46, P = 0.027).
For pollution regulation, pollination and water regulation we
found no significant effects of NNTs (Fig. 2A).

Compared with REMA, MLMA including either refer-
ence, country or NNT species as a random factor, generally
improved the model’s explanatory power (AIC c reduction
≥2). However, results were largely consistent between
REMA and the MLMA. The only exceptions were soil fertil-
ity and soil formation, which were not significantly affected
by NNTs when NNT species (soil fertility) or country (both
RES) were added as random factor in MLMA (Table S3).

The heterogeneity of NNT effects across case studies was
high (I 2

> 80%) for all RES except pollination, Fig. 2A,
Table S3). Biome explained the heterogeneity of effects on
climate regulation, soil formation and soil erosion control
(Table S4), with larger effects in low-latitude biomes (tropical
and subtropical forests) than in middle-latitude biomes
(mediterranean and temperate forest) (Fig. 3A–C). Fire-risk
prevention was more decreased by NNTs in shrublands
than in grasslands and forests (Fig. 3D). The increase of
soil fertility and formation by NNTs was greater in stands
of naturalized NNTs than in NNT plantations (Fig. 3E,
F). Finally, higher increases of soil fertility, soil formation,
soil erosion control, and water regulation were found when
NNTs were N-fixing (Fig. 3G–J). The remaining effects of
predictors on RES were non-significant (Table S4). The
ability of the Fabaceae clade (encompassing N-fixing species)
to contribute most to soil fertility and soil formation was
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Fig. 1. Simplified representation of the distribution of case studies. Data were collected to evaluate worldwide effects of non-native
tree species on regulating (RES), provisioning (PES) and cultural (CES) ecosystem services and ecosystem disservices (EDS). For
simplicity only RES are represented at the local scale (dots), whereas data for PES, CES and EDS are represented at the country
scale (flags). The map shows the biomes considered in this study for illustrative purposes (simplified from the FAO Global Ecological
Zones). The term ‘forest’ is used in a broad sense, including also savannahs and woodlands.

also reflected in the significant values of Pagel’s λ, which

indicated a phylogenetic signal in these effects. However, for

the rest of RES, neither Pagel’s λ nor Blomberg’s K show

a phylogenetic signal attributable to a Brownian model of

evolution (Table 4).

(3) Effects of non-native tree species
on provisioning ecosystem services

From our global data set of 144 case studies obtained from

worldwide forestry reports, we found that the proportion

of timber obtained from NTs was slightly higher than

that obtained from NNTs (Fig. 2B). ANOVA tests showed

large differences in NNT effects across biomes (F = 6.07,

P < 0.001), and across countries (F = 17.91, P < 0.001).

Timber production in the subtropical forest biome relied

mostly on NNTs while temperate and boreal biomes relied

more on NTs (Fig. 4A). Some countries obtained timber

mostly from NNTs (Argentina, Chile, Ireland, New Zealand,

South Africa, UK), while others relied almost exclusively on

NT (Austria, Bulgaria, Canada, Czech Republic, Germany,

Japan, Switzerland, USA – with the exception of Hawaii)

(Fig. 4B).

Among the five uncorrelated socio-economic and

demographic predictors, only the proportion of rural

population was negatively related to the effect size

(slope = –0.04, P = 0.002), indicating that regions with a

higher proportion of rural population rely less on NNTs for

timber provision (Table S5).

On the basis of the information collected for 16 countries,

we found less uniqueness of non-timber products in NNTs

than NTs, i.e. there are more categories of non-timber

products that are exclusively obtained from NTs than from

NNTs (Fig. 2B).

(4) Effects of non-native tree species on cultural
ecosystem services

Our global data set revealed that NNTs have a wide

range of effects on the five CES categories considered.

According to REMA results, NNTs increased aesthetic values

determined from catalogues of plant dealers and inventories

of urban parks. For recreation and ecotourism, NNTs

were present more often in ecotourism websites, but less

in nature routes than NTs than expected by chance

(Fig. 2C). NNTs increased cultural heritage (i.e. they were

over-represented in catalogues of monumental trees) but

have less scientific interest (i.e. they are the subject of fewer

scientific publications, according to the Scopus database) than

NTs (Fig. 2C). We found no effects of NNTs on inspiration

(assessed from the frequency of occurrence in artistic

photographs) (Fig. 2C). Including country as a random

factor in MLMA improved all models (i.e. explained a high

proportion of the residual between-case studies variance (I 2)

and decreased the AIC c by at least two units, Table S6), but

results were consistent with those of REMA for most CES.

The only exception was recreation and ecotourism, where

the negative selection of NNTs for nature routes was not
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Fig. 2. Effects of non-native tree (NNT) species on ecosystem services assessed using the random-effects model (REMA). The mean
effect size of NNTs and 95% confidence intervals are depicted across the set of case studies considered for each regulating (A),
provisioning (B) and cultural (C) ecosystem services (sample sizes are indicated next to each service). Positive or negative mean effect
sizes, respectively, indicate that NNTs (or sites dominated by NNTs) had greater or smaller scores for the service, compared to
native tree (NT) species or to control sites dominated by native vegetation. Asterisks to the right of the bars indicate that the mean
effect size differs significantly from zero according to a permutation test with 1000 iterations. Values on the right axis indicate the
heterogeneity I 2, which is the proportion (in %) of the total variation in effect sizes that is due to between-study variance.

significant when country was included as random factor in

MLMA (Table S6).

Heterogeneity of effect sizes across case studies was high

for most CES (I 2
> 80%, except for recreation/ecotourism

and inspiration, Fig. 2C, Table S6). Biome contributed to

explaining the variation of NNT effects on aesthetics and

recreation and ecotourism (Table S7). NNTs contributed

more to aesthetics in tropical and temperate biomes than

in mediterranean and boreal ones, and NNTs were used

more in tourism websites in the mediterranean than in other

biomes (Table S8). In countries with higher gross domestic

products, NNTs contributed more to aesthetics, and were
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Fig. 3. Predictors explaining the effects of non-native tree (NNT) species on regulating ecosystem services (RES) under random-effects
structured meta-analysis: biome (A–C), native ecosystem type (D), stand type (E, F) and N-fixation of the NNT (G–J). The figure
shows the mean effect size (d+) of NNTs and 95% confidence intervals across the set of case studies considered for each predictor
category. Positive or negative mean effect sizes, respectively, indicate that sites dominated by NNTs had a greater or smaller score
of the RES than control sites with native vegetation.

Table 4. Results from two common metrics used in comparative analyses (Blomberg’s K and Pagel’s λ) to test for a significant
phylogenetic signal in the effects of non-native trees (NNTs) on regulating ecosystem services (RES). Each cell contains the value of
the metric and its significance (P) according to the expectation of a Brownian model of evolution. N represents the number of NNT
species in each RES. Significant results (P < 0.05) are indicated with asterisks.

Metric
Climate

regulation
Fire-risk

prevention
Pollution
regulation

Soil
erosion control

Soil
fertility

Soil
formation

Water
regulation

Blomberg’s K (P ) 0.025 (0.859) 0.184 (0.289) 0.456 (0.588) 0.056 (0.686) 0.543 (0.091) 0.063 (0.687) 0.087 (0.661)
Pagel’s λ (P ) 0.000 (1.000) 0.001 (1.000) 0.001 (1.000) 0.117 (0.326) 1.006** (0.001) 0.393* (0.037) 0.001 (1.000)
N 54 35 14 37 56 79 57

more used in tourism websites, but they were selected less

often for nature routes. In countries with higher values of

the human development index, NNTs had less effect on

aesthetics and recreation and ecotourism services, suggesting

larger effects in less-developed countries. In countries with

higher population density or with a higher proportion of rural

population, NNTs contributed less to aesthetics but more

to recreation and ecotourism. The contribution of NNTs

to cultural heritage declined at higher population density.

NNTs were less selected as recreation and ecotourism, and

inspiration assets in countries with larger ecological footprints

(i.e. human disturbance, Table S7).
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Fig. 4. Effect size of non-native trees (NNTs) on timber provision across biomes (A) and across countries (B). For each biome/country
the horizontal band represents the median; box limits are defined by the 25th and 75th percentiles; upper whiskers are the smallest
of the maximum country/biome value and 75th percentile + 1.5 × box extension; lower whiskers are the largest of the smallest
biome/country value and 25th percentile – 1.5 × box extension. Circles indicate extreme values outside the whisker interval. The
number of case studies in each biome/country is indicated (biomes/countries with less than three case studies were not included in
the statistical analysis).

(5) Effects of non-native tree species on the
ecosystem disservice

Overall, NNTs producing allergenic pollen were not more

frequent than expected, either using REMA or MLMA with

country as a random factor (logORw ± SE = 0.093 ± 0.197

and 0.587 ± 0.365, with REMA and MLMA, respectively,

P > 0.05, N = 62, Table S6). Nevertheless, NNT effects on

pollen allergenicity varied widely with context (I 2 = 91%).

In tropical and temperate biomes, NNTs contributed more

to pollen allergenicity than in mediterranean and boreal ones

(Table S8). Higher NNT contribution to pollen allergenicity

was also associated with countries with higher gross domestic

products. Finally, pollen allergenicity was increased less

by NNTs in countries with a higher proportion of rural

population (Table S7).

(6) Relationships between ecosystem services

The effects of NNTs on several RES were correlated

with each other. Most Spearman correlations were positive

[i.e. among soil fertility, soil formation and erosion

control, as well as climate regulation, and water regulation

(RS = 0.41–0.68, P = 0.010–<0.001)]. However, fire-risk

prevention was negatively correlated with other RES
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(RS = –0.69 and –0.67, P < 0.001 for soil erosion control
and water regulation, respectively, Table S9).

The overall effects of NNTs on PES, CES and
EDS within countries/regions were somewhat correlated.
The most significant was a positive correlation between
the two sources of information used for aesthetics, i.e.
catalogues of plant dealers and urban parks (RS = 0.89,
P > 0.001). Aesthetics was also positively correlated with
pollen allergenicity (RS = 0.56–0.65, P = 0.01), suggesting
that many ornamental NNTs produce allergenic pollen.
Uniqueness of non-timber products was negatively related
to pollen allergenicity (RS = –0.71, P = 0.03). Although
marginally significant, countries where the contribution of
NNTs to pollen allergenicity was higher tended to show
higher scientific interest in NNTs (RS = 0.58, P = 0.06,
Table S10).

IV. DISCUSSION

(1) The data set

Our study is the first comprehensive global analysis of the
effects of NNTs on ecosystem (dis)services that brings
together information from a broad spectrum of scientific
subjects, as well as from online sources. Despite the global
scope, information was more abundant for developed
countries, mediterranean and temperate forest biomes,
and for tree species with high societal interest. This
geographical and taxonomic bias is well documented in the
ecological literature (Hulme et al., 2013; Martin, Blossey &
Ellis, 2012; Pyšek et al., 2008; Wilson et al., 2007). Human
population and forest cover are unevenly distributed across
biomes, and scientific institutions are more abundant in
wealthy regions (Wilson et al., 2007). Our RES data set
covered one third of the 430 NNT species known to be
invasive (Rejmánek & Richardson, 2013), of which just
22 species accounted for half of the case studies. This fact
highlights that scientists repeatedly target the few species with
known large impacts on social-ecological systems (Hulme
et al., 2013; Pyšek et al., 2008). The coverage of ecosystem
services was limited by the need to find measures suitable
for pairwise comparisons and by the need to harmonize data
across multiple countries. Despite these limitations, this study
offers the most complete and up-to-date analysis of current
knowledge on NNTs worldwide, and allowed us to identify
key gaps for future research.

(2) Effects of non-native trees on ecosystem services

Overall, we found more increases than decreases in
ecosystem services attributable to NNTs. This result is
consistent with many NNTs having been deliberately
introduced to create or enhance particular ecosystem services
(Brundu & Richardson, 2016; Evans, 2009; Potgieter et al.,
2017). The increase in several RES due to the presence
of NNTs may be attributed to their high productivity,

a trait often selected for NNT introduction (Richardson,

1998; Woziwoda, Kopec & Witkowski, 2014). Increased

productivity of forests may promote climate regulation (via
carbon uptake), and soil formation, fertility and erosion

control (through higher root growth and/or the supply

of more organic matter to the soil) (Evans, 2009; Mori,

Lertzman & Gustafsson, 2017). The decrease in both timber

and non-timber PES by NNT was unexpected, given that

the purpose of many tree introductions is the supply of

particular products (Brundu & Richardson, 2016; Evans,

2009; MacDicken, 2015). In the case of timber, this is

because many temperate regions rely almost exclusively on

NTs. The lower uniqueness of non-timber products found for

NNTs suggests that many of these species were introduced to

increase the quality or quantity of products already supplied

by NTs, rather than to produce novel products (Krumm &

Vítková, 2016). Regarding CES, the ornamental value of

non-native plants was previously reported to be associated

with the human preference for novelty and unusual features,

e.g. the colourful or large flowers of Jacaranda and Magnolia,

the crown shape and size of Sequoia and Ficus (Kueffer &

Kull, 2017; van Wilgen & Richardson, 2012). This may

explain the selection of NNTs as aesthetic, tourist and

heritage assets (Vaz et al., 2018). However, this does not

explain the reduced touristic value of nature routes caused by

NNTs. Ornamental NNTs are usually confined to gardens or

urban parks. Outside these areas, NNTs can occur because

they were planted for non-aesthetic purposes (e.g. timber

production or land reclamation), or as naturalized escapes

from plantations. The traits that promote non-aesthetic uses

of NNTs (e.g. fast growth; Richardson, 1998), or those

associated with naturalization success (e.g. profuse seed

production or resprouting capacity; Castro-Díez et al., 2011;

Richardson & Rejmánek, 2004) can lead to monotonous

and homogenized landscapes which are apparently less

attractive to users of nature routes. Despite the growing

number of studies on non-native species (Hulme et al., 2013),

the scientific interest in NNTs was overwhelmingly lower

than for NTs. This may be because ecological interest in

non-native species and their impacts is recent compared to

the long history of research on pristine habitats and native

species (Hulme et al., 2013; Vaz et al., 2017a).

Given that biodiversity often promotes multiple ecosystem

services in forests (Gamfeldt et al., 2013; Mori et al., 2017;

Poorter et al., 2015), the increase of ecosystem services by

NNTs found here seems at odds with the low biodiversity

usually found in NNT-dominated systems (Gaertner et al.,
2011; Pyšek et al., 2012; Vilà et al., 2011). Our results may

have been exacerbated by the fact that the baseline for

comparison may include degraded or non-forest ecosystems.

Moreover, replacing NTs with NNTs may maximize a

particular ecosystem service at the expense of reducing the

ecosystem’s capacity to provide multiple services (Dickie

et al., 2014a; Evans, 2009; van Wilgen & Richardson,

2012), and most studies covered herein focus on single,

rather than multiple, ecosystem services. We also note that

maximizing some particular ecosystem services may not
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always be beneficial for society or ecosystem functioning.
For example, in the naturally infertile soils of some parts
of Hawaii and the South African fynbos, the increase of
soil nitrogen driven by the introduction of N-fixing NNTs
is disrupting ecosystem functioning and altering several
ecosystem services, such as soil fertility and water supply
(Gaertner et al., 2011; Le Maitre et al., 1996; Vitousek &
Walker, 1989). Thus, focussing environmental policies on
ecosystem services may overlook the intrinsic value of nature
and leave biodiversity under-protected (Dee et al., 2017;
McCauley, 2006; Silvertown, 2015).

(3) Variability of non-native tree effects
on ecosystem services worldwide

NNT effects in most ecosystem (dis)services showed medium
to high heterogeneity, with I 2 values above 80% in most
cases. This high heterogeneity is typical of ecological studies,
where effect sizes derive from different species and different
contexts (Senior et al., 2016). Nevertheless, we were able to
explain part of this heterogeneity. Nitrogen-fixing NNTs
had especially strong effects on soil fertility, in agreement
with previous studies (Castro-Díez et al., 2014a; Liao et al.,
2008; Vilà et al., 2011). Compared with non-N-fixing NNTs,
N-fixing NNTs may attain a higher production in infertile or
degraded soils, explaining their contribution to soil formation
(by supplying more organic matter to the soil), and to erosion
control and water regulation (by a denser protective cover of
the soil and a greater net of roots belowground). Accordingly,
the low proportion of N-fixing NNTs among planted
stands (9.1–14.1%), compared with naturalized stands
(41.5–51.2%), may explain the larger effect size of NNTs
on soil fertility and formation found in naturalized stands.
Certain RES were more affected by NNTs in low-latitude
biomes than in temperate biomes, possibly related to the
stronger effect of non-native plants on the nitrogen cycle
in benign climates reported previously (Castro-Díez et al.,
2014a). Many NNTs are selected primarily for their high
potential productivity (Richardson, 1998; Woziwoda et al.,
2014), a trait that underpins many ecosystem services.
However, that high potential productivity would be realized
more in environments where the favourable period for plant
growth is longer (e.g. tropical forests) (Castro-Díez et al.,
2014a).

The degree of phylogenetic relatedness among species
showed a small role in explaining variation of NNT effects
on RES. This means that closely and distantly related
species have similar effects. The only phylogenetic signal
was found for the effects of NNTs on soil fertility and soil
formation, and is associated with the phylogenetic proximity
among N-fixing NNTs, which had greater effects on
these RES.

The great cross-country and cross-biome variation
observed in the contribution of NNTs to timber provision
might be explained by several non-exclusive arguments. First,
regions with high availability or variety of NT species (e.g.
USA, Brazil) have less need to introduce NNTs to supply
their timber needs. Second, regions with a non-profitable

pool of NT species (e.g. because of prevailing slow growth

rates, as occurs in the Mediterranean Basin) may have

favoured plantations of profitable NNTs. Third, some former

European colonies (e.g. Argentina, Australia, Chile, New

Zealand or South Africa) have a stronger tendency to plant

NNTs, due to the colonial ethos of ‘national development’,

to cultural links with the colonists’ home countries or with

other colonies, or to the loss of native cultures that were more

dependent on native species (Carruthers et al., 2011; Speziale

et al., 2012). Thus, a complex interaction of environmental,

social and historical factors seems to have shaped species

selection for PES (Kueffer, 2017). This also explains the

poor role of socio-economic and demographic predictors

when considered alone. Nonetheless, regions with a small

proportion of rural population (or more urbanised regions)

seem to rely more on NNTs for timber. This suggests that

rural societies tend to rely more on native assets, because

the populace has a closer connection with the environment

or less need of resources (Carruthers et al., 2011; Shackleton

et al., 2007; Speziale et al., 2012).

Our results showed that NNTs contributed more to

CES in countries with greater nominal gross domestic

products. Wealthy regions foster the trade and maintenance

of non-native plants (Gavier-Pizarro et al., 2010; Humair

et al., 2015; Vilà & Pujadas, 2001), and thus their contribution

to CES (Vaz et al., 2018). Nevertheless, NNT contribution

to aesthetics, and to recreation and ecotourism decreased in

regions with higher human development index (i.e. higher life

expectancy, education level, and income), a trend previously

observed in the Iberian Peninsula (Vaz et al., 2018). This

suggests a higher awareness of the risks associated with

NNTs, and thus a higher preference for NTs as ornamental

and tourism assets in more developed regions (Nuñez &

Pauchard, 2010; Vaz et al., 2018). Finally, we found a lower

contribution of NNTs to tourism and inspiration services

in regions with larger ecological footprint, suggesting that

a higher pressure on natural resources makes people prefer

NTs as inspirational and tourism assets.

Some predictors that explain the heterogeneity of NNT

effects relate to intrinsic properties of individual NNTs

(e.g. N-fixation ability) or to the environments in which

they occur (e.g. biome). Other predictors relate more to

the social dimension, such as socio-economy, demography,

and cultural background. Whereas ecological conditions

are expected to be more or less stable in the long term,

the social dimension (e.g. human perceptions, norms and

values, social memory, institutions and rules) is more prone

to changes in a few generations. This has important

consequences for the way in which NNTs affect ecosystem

services through time (Kueffer & Kull, 2017; Kull et al.,

2018; Shackleton et al., 2016). There are many examples of

people embracing introduced species in their practices and

traditions in preference to native species used previously

(i.e. the ‘shifting baseline syndrome’; Kueffer & Kull, 2017;

Nuñez & Simberloff, 2005; Speziale et al., 2012). This poses

an additional risk to focusing environmental policies solely on
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ecosystem services, whose values for people are changeable
over short time frames (Silvertown, 2015).

Despite the patterns of variation in NNT effects on
ecosystem services revealed here, a large proportion of
variation remains unexplained. This suggests that other
predictors that were not considered in our analysis are
important, such as NNT functional traits (e.g. plant size,
seed mass or leaf habit; Castro-Díez et al., 2014a; Pyšek
et al., 2012), or the historical factors accounting for the
cultural and trade relations between distant regions through
time (Speziale et al., 2012). Other potential predictors may
operate at local scales, and thus could not be included in our
global-scale analysis (e.g. silvicultural practices, individual
choices, attitudes, and behaviours; Grove et al., 2006; Kull
et al., 2018).

(4) Synergies and trade-offs among the effects
of non-native trees on ecosystem services

The correlations found among most RES can be explained
by the fact that some tree traits simultaneously contribute
to different RES. In particular, the potential growth rate
of trees may underpin many of the identified links across
the effects of NNTs on RES: fast-growing trees can be
important carbon sinks and thus contribute to climate
regulation, while simultaneously promoting erosion control
and soil formation through rapid development of a protective
soil cover, enhancing soil organic matter, and contributing
to regulation of the water cycle. Yet, trade-offs across RES
may also arise when the same trait contributes positively
to some services and negatively to others (Potgieter et al.,
2017). Thus, some fast-growing trees can also increase fire
risk by supplying a high quantity of fuel to the system,
and because they invest less resources in protection against
disturbances (Herms & Mattson, 1992). Regarding CES, we
identified a strong correlation between the two sources of
aesthetic information (i.e. catalogues of ornamental plant
dealers and tree inventories of urban parks) indicating strong
consistency between them. By contrast, the lack of correlation
between the two indicators of recreation and ecotourism
(i.e. official tourism websites and nature routes) indicates
that they capture different aspects of ecotourism attraction:
tourism websites may tend to highlight the ‘unusual’ or the
‘spectacular’ to attract visitors (e.g. a plantation of sequoias
in northern Spain or conifers along the Garden Route
in South Africa), whereas users of nature routes appreciate
more ‘pristine’ nature dominated by native species (Vaz et al.,
2018). We also found a synergy between aesthetics and pollen
allergenicity, suggesting that NNTs with aesthetic value may
also exhibit traits that promote pollen allergenicity (e.g. wind
pollination, which was found to increase with urbanization;
Williams, Hahs & Vesk, 2015). This result converges with
others showing high allergenicity in non-native air-borne
pollen from ornamental NNTs (Belmonte & Vilà, 2004;
Bosch-Cano et al., 2011). Unfortunately, differences in scale
of study used for RES compared with PES, CES and EDS
precluded us from exploring other synergies and trade-offs
across different categories of ecosystem services.

(5) Methodological limitations and future
perspectives

Publication bias in the scientific literature may have affected
our RES analysis. Funnel plot asymmetry suggests that
the positive effects of NNTs on climate regulation and soil
fertility may have been inflated by publication bias. However,
the two methods applied (trim and fill and removal of case
studies from the extreme of the funnel) suggest consistent
results. Future updates might minimize publication bias,
e.g. by extending the literature search to grey literature
(Borenstein et al., 2009).

Another methodological issue in meta-analysis is
non-independence among case studies (Nakagawa &
Santos, 2012; Noble et al., 2017). Although partly removed
by aggregating related case studies, non-independence
remained in our data sets due to multiple case studies
derived from the same publication, the same NNT species,
or the same country. The impact of non-independence on
results may be assessed by comparing the results from the two
meta-analysis models, MLMA and REMA (with and without
the source of non-independence as a random factor). Only
three ecosystem services (soil fertility, soil formation and
touristic value of nature routes) changed from being affected
by NNTs (REMA) to a non-significant effect (MLMA with
country as random factor, and also with NNT species in
the case of soil fertility). This indicates that results for these
services cannot be extended to any random set of case
studies. For instance, the increase in soil fertility by NNTs
was due to N-fixing trees; thus, a data set with fewer N-fixing
NNTs would be likely to return a non-significant result. Also,
the effect of NNTs on the touristic value of nature routes
varied across countries (e.g. it was decreased in Australia and
Spain, but increased in Italy and South Africa). Thus, the
overall decrease may be attributed to the high proportion of
case studies from Australia and Spain (Appendix S6). Future
studies should account for this bias by representing each
country with a number of case studies proportional to its
population or size.

In the case of case of CES, EDS and non-timber PES, we
used a novel indicator-based approach, previously described
in Vaz et al. (2018). This approach allows assessing whether
NNTs are preferred or rejected for particular services,
using the ‘offer’ (i.e. availability) of NNTs in the region
as a reference value. This approach has the advantage
of integrating multiple sources of information, allowing
reproducibility and updates as the sources expand (Vaz
et al., 2018). In addition, sources of information from social
media (e.g. tourism, image-sharing, or commercial websites)
have a much wider coverage than traditional scientific
media (Richards & Friess, 2015; Wood et al., 2013). Yet, the
approach has some caveats: lower data quality (e.g. potential
mistakes in species names in catalogues); low resolution of
the analysis (effect sizes are calculated for a group of NNTs
of a country/region, rather than for particular species);
sensitivity of the effect size metric (logORP ) to the choice
of data types and control data (Vaz et al., 2018); or the
inability to compare magnitudes of logORw across ecosystem
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(dis)services with data sources provided in different units (e.g.
species counts, species cover, or number of photographs). In
summary, this novel approach is useful to obtain preliminary
insights on the directions of effects of NNTs on certain
ecosystem (dis)services assessed poorly by scientific media,
and to cover spatial and temporal scales not attainable
through traditional scientific methodologies. Future studies
should validate our results for specific contexts using other
methodologies (Hernandez-Morcillo et al., 2013).

Our understanding of how NNTs, and non-native
species in general, influence several ecosystem services
simultaneously is poor (Vilà & Hulme, 2017). The approach
used here to identify associations among responses of
ecosystem services to NNTs represents a first crude
exploration. Unfortunately, differences in scale of study
used for RES (species), and for PES, CES and EDS
(countries/regions), together with the limited number of
species or countries common to many ecosystem services,
precluded us from using a multivariate approach (Spake
et al., 2017). Such an approach would allow identifying
bundles of services according to their response to NNTs
(Raudsepp-Hearne, Peterson & Bennett, 2010), knowing how
the impact on such bundles changes in space (Spake et al.,
2017) and thus identifying areas most at risk from NNTs.

V. CONCLUSIONS

(1) Our comprehensive worldwide review revealed more
increases than decreases in ecosystem services attributable
to NNTs. However, the strong context dependency of the
effects, and the limitations of the concept of ‘ecosystem
services’, means that these results must be interpreted with
caution. The anthropocentric view of nature prominent
in recent conservation literature may encourage the
maximization of a few ecosystem services in the short
term at the expense of long-term sustainability and
multifunctionality.

(2) Part of the variation in NNT effects across case studies
is explained by stable factors (e.g. biogeography, traits of
NNTs), but some is due to changeable socio-economic and
demographic factors.

(3) Trade-offs and synergies between ecosystem services
emerge because they may be associated with the same plant
traits.

(4) This review revealed some key knowledge gaps that
need attention, such as the lack of information from large
areas of Africa and Asia, and for many NNT species
whose contribution to ecosystem services has not yet been
documented.
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Belmonte, J. & Vilà, M. (2004). Atmospheric invasion of non-native pollen in the

Mediterranean region. American Journal of Botany 91, 1243–1250.

Biological Reviews 94 (2019) 1477–1501  2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



1496 Pilar Castro-Díez and others
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Hulme), pp. 295–310. Springer, Switzerland.

*Wittstock, T., Zimmermann, R. & Aas, G. (2012). Influence of site climate on the

radial growth of Sequoiadendron giganteum and Picea abies. Allgemeine Forst und Jagdzeitung

183, 55–62.

Wood, S. A., Guerry, A. D., Silver, J. M. & Lacayo, M. (2013). Using social media

to quantify nature-based tourism and recreation. Scientific Reports 3, 7.

Woziwoda, B., Kopec, D. & Witkowski, J. (2014). The negative impact of

intentionally introduced Quercus rubra L. on a forest community. Acta Societatis

Botanicorum Poloniae 83, 39–49.

*Yazaki, K., Kuroda, K., Nakano, T., Kitao, M., Tobita, H., Ogasa, M. Y. &

Ishida, A. (2015). Recovery of physiological traits in saplings of invasive Bischofia tree

compared with three species native to the Bonin Islands under successive drought

and irrigation cycles. PLoS One 10, e0135117.

*Yazaki, K., Sano, Y., Fujikawa, S., Nakano, T. & Ishida, A. (2010). Response

to dehydration and irrigation in invasive and native saplings: osmotic adjustment

versus leaf shedding. Tree Physiology 30, 597–607.

*Yelenik, S. G., Stock, W. D. & Richardson, D. M. (2004). Ecosystem level

impacts of invasive Acacia saligna in the South African fynbos. Restoration Ecology 12,

44–51.

*Yelenik, S. G., Stock, W. D. & Richardson, D. M. (2006). Functional group

identity does not predict invader impacts: differential effects of nitrogen-fixing exotic

plants on ecosystem function. Biological Invasions 9, 117–125.

*Zamora Nasca, L., Montti, L., Grau, R. & Paolini, L. (2014). Effects of glossy

privet’s invasion on the water dynamics of the Argentinean Yungas forest. Bosque 35,

195–205.

Biological Reviews 94 (2019) 1477–1501  2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Non-native tree effects on ecosystem services 1501

Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A.,

FitzJohn, R. G., McGlinn, D. J., O’Meara, B. C., Moles, A. T., Reich, P. B.,

Royer, D. L., Soltis, D. E., Stevens, P. F., Westoby, M., Wright, I. J., et al.

(2014). Three keys to the radiation of angiosperms into freezing environments (vol

506, pg 89, 2014). Nature 514, 394–394.

IX. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.
Appendix S1. Sources of information used in each country
to obtain the list of native and non-native tree species.
Appendix S2. List of references identified by our search
criteria for regulating ecosystem services.
Appendix S3. How we dealt with pseudo-replicates in
regulating ecosystem services.
Appendix S4. Detailed protocols for statistical analysis.
Appendix S5. Description of data sources of provisioning
ecosystem services.
Appendix S6. Description of data sources of cultural
ecosystem services and the disservice pollen allergenicity.
Appendix S7. Description of data sources of predictors used
to explain the variation of the effects of non-native trees on
ecosystem services.
Fig. S1. Number of case studies on provisioning (PES),
cultural (CES), regulating services (RES) and ecosystem
disservice (EDS) per (sub)continent.
Fig. S2. Number of case studies on provisioning (PES),
cultural (CES), regulating services (RES) and ecosystem
disservice (EDS) per biome.
Table S1. Non-native tree species in the regulating
ecosystem services (RES) data set.

Fig. S3. Funnel plots for each meta-analysis on the effect of
non-native trees on regulating ecosystem services (RES).
Table S2. Analysis of publication bias in the meta-analyses
exploring the effects of non-native tree species on regulating
ecosystem services (RES).
Table S3. Comparison of meta-analysis models constructed
to assess the grand mean effect sizes of non-native tree (NNT)
species on regulating ecosystem services (RES).
Table S4. Heterogeneity (Q M ) of effect sizes of non-native
tree (NNT) species on regulating ecosystem services (RES)
across case studies explained by four qualitative predictors
under random-effects structured meta-analysis.
Table S5. Results of the linear models relating the effect
size of non-native tree species on timber provision with five
socio-economic and demographic predictors.
Table S6. Comparison of meta-analysis models constructed
to assess the grand mean effect size (and its 95% confidence
intervals, CI) of non-native tree (NNT) species on cultural
ecosystem services (CES) and on the disservice (EDS) pollen
allergenicity.
Table S7. Structured meta-analysis assessing the contri-
bution of predictors to explaining the heterogeneity of
non-native tree (NNT) species effect size on cultural ecosys-
tem services and on the disservice pollen allergenicity.
Table S8. Effect size of non-native tree species on cultural
ecosystem services (CES) and on one disservice (pollen
allergenicity), separated by biome.
Table S9. Pairwise Spearman correlation coefficients among
the effects of non-native tree species on different regulating
ecosystem services.
Table S10. Pairwise Spearman correlation coefficients
among the effects of non-native tree species on provisioning
and cultural ecosystem services, and on the disservice pollen
allergenicity.
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