
Emergent ecosystem functions follow1

simple quantitative rules2

Juan Diaz-Colunga1,2 ∗, Abigail Skwara1,2 ∗, Jean C. C. Vila1,2, Djordje Bajic1,2�, and3
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Abstract | The functions and services provided by ecosystems emerge from myriad interactions11

between organisms and their environment. The difficulty of incorporating this complexity into quan-12

titative models has hindered our ability to predictively link species-level composition with ecosystem13

function. This represents a major obstacle towards engineering ecological systems for environ-14

mental and biotechnological purposes. Inspired by similar findings in evolutionary genetics, here15

we show that the function of ecological communities often follows simple equations that allow us16

to accurately predict and optimize ecological function. This predictability is facilitated by emergent17

“species-by-ecosystem” interactions that mirror the patterns of global epistasis observed in many18

genetic systems. Our results illuminate an unexplored path to quantitatively linking the composition19

and function of ecological communities, bringing the tasks of predicting biological function at the20

genetic, organismal, and ecological scales under the same quantitative formalism.21

The Earth’s ecosystems carry out countless functions of technological importance, from food pro-22

duction in farms and crop fields to biofuel production in sugarcane biorefineries (1,2). Learning how23

we may engineer and optimize ecological functions is a major aspiration of modern science, with the24

potential to resolve a wide range of currently open technological challenges across research fields25

and sectors of the economy. Addressing this challenge requires us to find a general answer to a sim-26

ple question: Given a list of candidate species, which ones should one choose to form a community27

that maximizes a target function? This question has been posed in a wide range of contexts, from28

which crop mixtures should be used to maximize yield or improve soil health (1,3) to which phage29

cocktails are most effective at clearing bacterial infections (4,5), but a general strategy to solve it is30

still lacking. Purely empirical approaches are generally unfeasible given the astronomic dimension-31

ality of the problem: with as few as 25 candidate species, one could form over 30 million possible32

combinations, and testing them all is unpractical. Theoretical approaches have not yet delivered a33

general solution either. Ecological function emerges from complex webs of molecular, physiological,34

and organismal interactions. Incorporating all of this complexity into predictive models has only been35

achieved in a small number of case studies, and those required extensive parametrization (6–9).36

The challenging nature of predicting biological function is not exclusive to ecology. At the organ-37

ismal, genetic, and molecular scales, biological function is also highly complex, emerging from phys-38

iological, biophysical and biochemical interactions between components. For instance, the growth39

rate of a cell emerges from interactions between its metabolic pathways, while the catalytic activity40

of an enzyme arises from biophysical and biochemical interactions between its amino acids. Given41

this complexity, predicting the effect of a mutation on the fitness of an organism or on the stability42

of an enzyme might also appear to be a formidable task, not that different in scope from predict-43

ing the change in ecosystem function after adding a new species to a community. Encouragingly,44

quantitative genetics research has consistently found that the phenotypic and fitness effects of a45

mutation are often well-estimated by simple linear equations, which can be empirically determined46

for each mutation from a small number of measurements and do not require extensive parame-47

terization nor fine-grain modeling. For instance, the effect of a particular mutation on the relative48
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Fig. 1. An ecological parallel to global epistasis. (A) Recent work in quantitative genetics has found that
the fitness effect of a mutation is often dependent on the fitness of the genetic background where it arises
— a phenomenon that has been termed global epistasis. (B) We hypothesize that an ecological parallel
to global epistasis might exist, where the addition of a species to a community might induce a change in
ecosystem function that depends on the function of the community to which it is added. (C) The fitness effect
of a mutation exhibits a global scaling with the background fitness that is often well estimated by a linear fit.
The slope and intercept of the fit vary across different mutations. Data from Khan et al. (11) (D) The fitness
effect of a mutation can be broken down into two contributions: first, a global contribution that scales with the
background fitness and is approximated by a linear equation, and, second, an idiosyncratic contribution that
is not predictable from the background fitness and is represented by the residuals of the fits. (E) Analogously,
the functional effect of a species on an ecological background scales linearly with the background function
(here, the above-ground biomass of a plant consortium). Data from Kuebbing et al. (33), non-native species.

fitness of a microorganism is often predictably linked to the fitness of its genetic background (Fig.49

1A). The existence of these quantitative patterns is a manifestation of global epistasis (10–19), a50

phenomenon which includes (but is not limited to) the common observation that beneficial mutations51

have smaller positive effects in fitter backgrounds (diminishing returns epistasis). The existence of52

global epistasis makes it possible to build predictive effective models of biological function that do53

not require the integration of fine-grain mechanisms (even though those are of course valuable for54

interpretation purposes). Recent studies have exploited global epistasis to develop highly promising55

methodologies that are successful at inferring the full map between genotype and phenotype in large56

combinatorial spaces from just a subset of measured genotype-phenotype pairs (20–24).57

2

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.21.496987doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496987
http://creativecommons.org/licenses/by-nc/4.0/


Inspired by this idea, we hypothesized that an ecological analogue to global epistasis might exist,58

where the functional effect of adding a species to an ecosystem (an effective ecological background)59

could be well estimated from simple, linear relationships linking it to the function of the communities60

to which it is added (Fig. 1B). If this hypothesis were correct, we could then predict how adding a61

species to a community should change its function. This would pave the way to predictively connect-62

ing species-level composition to quantitative function. To test this hypothesis, we set out to examine63

previously published data of plant, bacterial, and algal ecosystems, under distinct environmental64

conditions and for a variety of collective functions. We found that a parallel concept to global epis-65

tasis can indeed be formulated for ecological systems. By conducting new experiments, we show66

that, as we had hoped, this allows us to build accurate quantitative models that predict and opti-67

mize ecological function. Our findings argue that the same quantitative formalism can be applied to68

predict biological function across widely different scales and levels of biological organization, from69

molecules and organisms to ecological communities.70

Species-by-ecosystem effects across different ecological contexts71

Genetic interactions capture how the fitness effect of a mutation changes in different genetic con-72

texts. Historically, the study of genetic interactions (epistasis) has broken them down as the sum of73

pairwise interactions (G×G), third-order interactions (G×G×G), fourth-order, and so on (25). This74

has paralleled the similar partitioning of ecological interactions as the sum of pairwise species-75

by-species (S×S) and higher-order (e.g., S×S×S) effects (26–32). Recent work in genetics has76

proposed that epistasis can be instead partitioned into a global epistasis component, described by77

a linear regression between the fitness effect of a mutation and the fitness of the background, and78

an idiosyncratic component described by the residuals of this fit (Fig. 1C-D). Based on the success79

of recently found parallelisms between genetic and functional ecological interactions (28,29,31), we80

reasoned that the latter can be partitioned in the same manner, as the sum of (i) a global, species-81

by-community (S×C) interaction described by how the functional effect of a species scales with the82

function of the community to which it is added, and (ii) an idiosyncratic interaction captured by the83

residuals.84

To assess the possible merits of this hypothesis, we first re-examined published data from a re-85

cent experiment that combinatorially assembled (almost) all possible combinations of four different86

plants (33). Each species assemblage can be described by a unique combination of species pres-87

ence/absence (s). The function of each assemblage (F(s)), which in this case was the above-ground88

biomass, was measured at harvest time. From such data, one can determine the functional effect of89

adding each species (i) to various background communities formed by different plant combinations90

(Fig. 1B) as, i.e., ∆Fi (s) = F (s + i)−F (s), where we have called s + i the assemblage resulting from91

the addition of species i to the background s (Fig. 1B). In Fig. 1E we plot the functional effects of92

each species — ∆Fi (s) for species i — against the function of its ecological backgrounds, F(s). As93

a comparison, in Fig. 1C we show data from ref. (11), which measured the fitness effects of various94

different beneficial mutations in E. coli placed in several combinatorial backgrounds made up by the95

other mutations (Fig. 1C). The functional effect of species additions exhibits a strong parallel with96

the patterns of global epistasis observed in genetic systems, scaling linearly with the function of the97

background community. As is the case for mutations, the particular linear equation that estimates98

the functional effects is unique for each species.99

Global epistasis has been seen in a wide range of other genetic contexts, including yeast (14,17)100

and bacteria (12). To determine how general this parallel to global epistasis may be in ecological101

systems, we analyzed a collection of published data sets from our own laboratory and others. Each102

community in these data sets is made up by different organism types: terrestrial plants (33), phy-103

toplankton (34), and both Gram-negative and Gram-positive bacteria (8,29,35). The ecological104

conditions of these communities vary widely, including the number of organismal generations, the105

type and frequency of resource addition, and the form of propagation. The functions themselves106

are very different too: from the production of biomass or the net metabolic activity to the secre-107
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Organisms type Number of species Ecosystem function Source of data set
Terrestrial plants Two sets of 4 each Above-ground biomass Kuebbing et al. (33)
Phytoplankton 5 Biomass production Ghedini et al. (34)
Bacteria 6 Xylose oxidation rate Langenheder et al. (35)
Bacteria 6 Starch hydrolysis rate Sanchez-Gorostiaga et al. (29)
Bacteria 25 Butyrate secretion Clark et al. (8)

Table 1. Data sets of combinatorial ecosystem function used in this study.

tion of specific metabolites or the degradation of environmental polymers. Table 1 summarizes the108

data sets we considered, all of which include multiple combinatorial assemblages of species from109

candidate pools of between 4 and 25 taxa.110

As shown in Fig. 2, we found that the functional effect of a species was in general well described111

by simple linear relationships of the form ∆Fi (s) = ai + bi F (s) + ϵi (s). We generically call this112

expression the functional effect equation (FEE) of species i. The intercepts (ai) and slopes (bi)113

of the fitting lines differ across taxa, suggesting that they are determined by the interplay between114

each individual species and the rest of the community — and thus can be interpreted as emergent115

species-by-ecosystem interactions as we expected. The terms ϵi (s) (i.e., the residuals of the fits)116

capture the idiosyncratic component of said interactions. Global S×C interactions were present and117

strong across species and data sets (average R2 = 0.42, fig. S1).118

Many species (∼50%) across all datasets in Table 1 display negatively sloped FEEs (red lines119

in Fig. 2). This trend is also commonly observed in population genetics: the fitness effect of a120

genomic mutation most often becomes either less beneficial or more deleterious as the fitness of121

the genetic background increases (10–12,15,17,18). These two situations are typically referred to122

as diminishing returns and increasing costs, respectively. Often, diminishing returns and increasing123

costs are exhibited by the same species, which can be beneficial or deleterious depending on the124

function of the background community in which where they are introduced: they can increase the125

community function when added to low performing ecological backgrounds, but decrease it when126

added to high performing ones. A second major fraction of all species (∼45%) have effects on127

ecosystem function that are dominated by idiosyncrasies in the species-by-community interactions,128

making it so the functional effect displays no global relationship with F (s) and instead depends on129

the particular composition of each ecological background (black lines in Fig. 2). As we shall see130

in what follows, these flat patterns are also informative and useful for predictive purposes. Finally,131

a smaller number of species (∼5%) exhibit positively sloped FEEs (blue lines in Fig. 2), becoming132

more beneficial (or less deleterious) in backgrounds with higher functions. We refer to these patterns133

as accelerating returns (or decreasing costs).134

Notably, in one of the data sets we examined (Sanchez-Gorostiaga et al. (29)) one bacterial135

species (P. polymyxa, Fig. 2D, rightmost panel) displays a functional effect on the amylolytic rate136

of the consortia that can be described by two distinct FEEs, i.e., its FEE appears split into two137

“branches”. Closer examination of this case indicates that the two branches are determined by the138

presence or absence of a second species (B. thuringiensis) in the ecological background (fig. S2).139

This suggests that some specific species-by-species pairwise interactions may not be well captured140

by a global species-by-ecosystem trend, and instead can induce major shifts in the FEEs. Compa-141

rable patterns have been observed in population genetics, where strong idiosyncratic mutation-by-142

mutation interactions have been found that modify the global mutation-by-genotype fitness effects143

(19).144

Together, our analyses suggest that global species-by-ecosystem interactions can be observed145

across a wide range of ecological contexts and functions. The specific molecular mechanisms146

through which species interact with one another and contribute to collective functions are often com-147

plex, context-dependent and difficult to characterize. However, the emergence of FEEs suggests148

that these complex microscopic details may be absorbed into an emergent species-by-community149

functional trend, which can in principle be fit from a small number of observed communities. This150
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Fig. 2. Functional effects across species and ecosystems. The functional effect of a species often scales
with the function of the community to which it is added. This phenomenon is observed across very different
organism types, ecological conditions, and collective functions (Table 1). The scaling is frequently well de-
scribed by a linear relationship (red lines: negative slopes, blue lines: positive slopes, black lines: flat slopes).
(A) Data from Kuebbing et al. (33), native species. (B) Data from Ghedini et al. (34) (C) Data from Langen-
heder et al. (35) (D) Data from Sanchez-Gorostiaga et al. (29) (E) Data from Clark et al. (8)

indicates that the functional effect of a taxon on a given ecological background may be predictable151

with no prior information on the traits of that taxon or its interactions with all its ecological partners.152

Thus, we hypothesized that FEEs could be exploited to predict community function without the need153

for fine-grained mechanistic ecological models.154

Global functional effects for the design of optimal consortia155

Our starting hypothesis is simple: if we have a set of species and, for all of them, we know how156

adding them to a community would change its function, then we should be able to predict the function157

of any combinatorial assemblage from that set. Knowledge of the FEEs of a set of species should158

thus find a solution to the question we posed at the outset of this paper: Given a list of species,159

which ones should one choose to form a community that maximizes a given function? To test this160

hypothesis, we built a small library consisting of eight bacterial species that were isolated from soil161

samples (Materials and Methods). Five of these species were Pseudomonas strains that produce162

pyoverdines in monoculture, while the remaining three were non-producing Enterobacteriaceae (Fig.163

3A, Materials and Methods). The cumulative production of pyoverdines is a good candidate for a164

community function: first, it can be quantified using simple readings of optical density (Materials and165

Methods) and, second, the production of pyoverdines responds to intra-species signaling (36) and166
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Fig. 3. Global functional effects can be exploited to predict community function. (A) We isolated and
eight bacterial species from environmental samples and identified them at the genus level (Materials and
Methods). Five of them exhibited secretion of pyoverdines when grown in monoculture in minimal M9 citrate
medium (Materials and Methods). (B) We assembled 164 consortia by inoculating combinations of these
eight species into minimal M9 citrate medium, and incubated them still for 48 h. We then collected the spent
media and quantified the concentration of pyoverdines (Materials and Methods). (C) We found variable levels
of pyoverdines secretion, with the concentrations in the supernatants ranging from 0 to roughly 70 µM. About
20% of the assemblages exhibited higher activity than the consortium formed by all five pyoverdines secretors.
(D) Global species-by-community interactions emerged in our experiment, as evidenced by the correlations
between the functional effects of the species and the functions of their ecological backgrounds (R2 ∼ 0.5 for
all species). Dots and error bars represent means and standard deviations across three biological replicates.
(E) We hypothesize that sequentially adding functional effects could serve to predict the function of an out-
of-sample community (s1) from that of an in-sample community (s0) as described in the main text. (F) We
evaluated the viability of our prediction method by assembling 61 new consortia (which served as the out-of-
sample test set of communities) and comparing their predicted and measured levels of pyoverdines secretion.
We found a good agreement (R2 = 0.8) between the observations and the predictions. Dots and error bars
represent means and standard deviations across two biological replicates.

is often controlled by population size via quorum sensing (37). Due to the potential for interactions167

in our system, it is not immediately obvious which of the 255 potential consortia one could assemble168

would produce the most pyoverdines under our conditions.169
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Using this function and species set as our case study, we combinatorially assembled a set of170

background consortia by inoculating unique combinations of those species in minimal media at171

fixed inoculum sizes (Materials and Methods). We then allowed each assemblage to grow for 48172

h, and measured the concentration of pyoverdines in the spent media at harvest time (Fig. 3B,173

Materials and Methods). In parallel experimental lines, we added each of the eight isolates to each174

of the background consortia — giving a total of 164 unique assemblages with variable levels of175

pyoverdines secretion (between 0 and 70 µM concentration in the spent media, Fig. 3C). We thus176

quantified the functional effects of each isolate in every background, and fit a linear regression for177

each species obtaining its functional effect equation. Consistent with what we found in the other178

data sets, clear linear FEE patterns were observed, indicating the presence of global species-by-179

community interactions (Fig. 3D).180

A simple visual inspection of the FEEs can be useful from the perspective of ecosystem design.181

Species whose functional effects remain below or close to zero can be expected to have a deleteri-182

ous (or at best insignificant) impact on function regardless of their ecological context, and thus it is183

reasonable to exclude them from a prospective optimal community. This straightforward observation184

can serve to narrow down the list of potentially desirable species. In our experiment, the functional185

effects of all three non-producers (Enterobacter sp., Raoultella sp. and Klebsiella sp.) were al-186

most always negative or very small (∆F ≲ 0) (Fig. 3D), as we had expected. The five pyoverdines187

producers, on the other hand, had positive functional effects (∆F > 0) in at least some ecological188

contexts. If there were no interactions, we should expect that the best community would include189

all five producers. However, we found that roughly 20% of the assemblages in our experiment had190

higher function than this naive assemblage of all contributing species (Fig. 3C). Out of the commu-191

nities tested in our experiment, the highest functional output was achieved by a single species in192

monoculture (Pseudomonas sp. 01). While this is the case for this particular experiment, it is worth193

noting that the best consortium is not necessarily a monoculture. In other experimental data sets,194

the best performing community contained multiple taxa (fig. S3), even including some that had no195

activity in isolation — such as P. polymyxa in the Sanchez-Gorostiaga et al. data set (Fig. 2D), or C.196

aerofaciens in the Clark et. al data set (Fig. 2E). Together, these experiments and analyses indicate197

that the combination of species that optimizes a particular function is not trivial to know a priori or198

to predict relying on intuition alone. We reasoned that, once the FEEs are known, they could be199

leveraged to predict community functions based in composition, and thus to find optimal consortia.200

To test this hypothesis, we developed a simple method based on concatenating species func-201

tional effects (Fig. 3E). Suppose that we have measured the function of a consortium (i.e., one of202

the 164 assemblages used to produce the ∆F-vs-F plots in Fig. 3D; henceforth an in-sample com-203

munity), and we are interested in predicting the function of an assemblage that has not been tested204

(an out-of-sample community). We call the in-sample and out-of-sample communities s0 and s1,205

respectively, and their functions F (s0) and F (s1) respectively. In the example shown in Fig. 3E, s1206

has three more species (i, j and k ) than s0. Because we know the FEEs for each of those species,207

we hypothesized that sequentially adding their functional effects to the starting in-sample function208

F (s0) could serve to predict the function of the out-of-sample community F (s1). For instance, the209

first addition of species i to the in-sample community s0 would have an effect in function that we210

can estimate from the linear FEE for species i: ∆Fi (s0) = ai + bi F (s0) + ϵi (s0). This procedure can211

be iterated for species j and k , ultimately giving a prediction for the function of the out-of-sample-212

community F (s1). Predictions can be further refined by estimating the residuals of the FEEs using213

maximum likelihood, as discussed in the Supplementary Text.214

To test the viability of this idea, we built a set of 61 new consortia that had not been assembled215

in our first experiment. These served as our out-of-sample test set of communities. We used the216

method described above to predict their functions, and then assembled them experimentally (under217

identical conditions to those in the first round of experiments) to quantify their empirical levels of218

pyoverdines secretion (Fig. 3B, Materials and Methods). As shown in Fig. 3F, we found a good219

agreement between the predictions and the observations (R2 = 0.8). Notably, reducing the number220
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of in-sample communities used to fit the FEEs only moderately affected the ability of our method221

to predict out-of-sample functions. Even when FEEs were fit to a very small number of points (as222

few as ∼4), the signal was still strong (R2 ∼ 0.5) and the method was able to successfully identify223

optimal consortia (fig. S4). This suggests that our approach could be scalable to much larger224

combinatorial spaces: while the number of potential assemblages scales exponentially with the225

number of candidate species, our results indicate that only a few measurements per species could226

suffice to provide quantitative predictions of community function.227

To test whether this simple method could be robust across ecological conditions, organism types,228

and ecosystem functions, we turned to the five data sets described in Table 1. For each of them,229

we applied the method described above (Fig. 3E) to predict the functions of a subset of randomly230

chosen out-of-sample communities. We repeated this process 500 times, each of them with a differ-231

ent set of out-of-sample assemblages, and quantified the R2 between predictions and observations.232

We generally found our method to be reliable (average R2 between 0.5 and 0.8 depending on the233

data set, Fig. 4), even when the number of data points used to fit the FEEs was further reduced234

(fig. S5). Interestingly, the Clark et al. data set (8) yielded the smallest R2 between predictions and235

observations. This is not entirely surprising: besides having the smallest fraction of communities236

in the training set (as the total number of potential communities exceeds 33 million) this data set237

contains the most species with flat FEEs (Fig. 2E, black lines), that is, whose functional effects238

are dominated by an idiosyncratic rather than a global component (Fig. 1E). Note, however, that239

flat FEEs are informative. The magnitude of the deviations from the FEE (even if flat) are useful to240

discern between those species whose contribution to ecosystem function is relatively independent241

of their ecological background (i.e., those for which the residuals are small) and those whose con-242

tribution depends on their ecological context in a highly idiosyncratic manner (i.e., those with large243

residuals). While the former case might be well captured by our predictive method, the latter could244

suggest the presence of highly specific species-by-species interactions — not absorbed into a global245

species-by-community trend — for which fine-grained ecological models might be more appropriate.246

Given the apparent ubiquity and usefulness of global species-by-ecosystem functional effects,247

we asked how generally they can be expected to emerge. Can any arbitrary mapping between248

community composition and function lead to ∆F-vs-F correlations? Intuitively, one might expect that249

a negative slope should be seen if the association between composition and function were random.250

In this scenario, the functions of any two communities differing in the presence of a single taxon251

would be completely uncorrelated, and they can be seen as independent “draws” from a generic252

distribution of functions. If the first draw gives a large value for the function, the second is likely253

to give a smaller one and vice-versa. Thus, the subtraction of the two random functions (namely254

F2 − F1) would be likely to be positive if F1 was small and negative if F1 was large, leading to a255

negative correlation between F2 − F1 and F1.256

To test this intuition, we randomized the pairing between communities and functions in our data257

500 times. Consistent with our reasoning, we found that the functional effects and the background258

functions exhibited a negative correlation in the randomized data sets (fig. S6). Interestingly, though,259

the FEEs we fit to our empirical data were significantly different to those in the randomized control260

(fig. S6). Negative slopes around −1 are generically observed when the association between com-261

munity composition and function is random, but significantly different slopes commonly emerge in262

many real ecological contexts (e.g., Fig. 2 and Fig. 3D). Despite the existence of negatively sloped263

∆F-vs-F correlations, randomizing the association between composition and function should elimi-264

nate, or at the very least severely diminish, the ability of FEEs to predict community function out of265

sample. Application of our predictive method to the randomized data set yielded unsurprisingly poor266

results (fig. S6). Together, these realizations suggest that the observed FEEs in empirical data sets267

across ecosystems and functions are not a trivial consequence of having a bounded set of functional268

values. This randomization control provides a benchmark against which we can determine whether269

the empirical FEEs do indeed capture ecologically meaningful information on how species contribute270

to ecosystem function.271
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Fig. 4. Predicting community function across data sets. We evaluated the ability of the method described
in the main text (and Fig. 3E) to predict community functions in all data sets in Table 1. For that, we left
20% of the communities in the data sets out of the sample, used the remaining 80% to fit FEEs, and applied
our method to predict the function of the out-of-samples. We quantified the accuracy of the method as the
R2 between the predictions and the observations. We repeated the same process 500 times, each leaving a
different subset of communities out of sample (randomly chosen). Main plots show an example of predicted
against observed functions for one of the runs. Insets show histograms of the R2 between predictions and
observations across the 500 runs. (A) Data from Kuebbing et al. (33). (B) Data from Ghedini et al. (34)
(C) Data from Langenheder et al. (35) (D) Data from Sanchez-Gorostiaga et al. (29) (E) Data from Clark et
al. (8)

Discussion272

Our experiments and analyses demonstrate that, despite their enormous microscopic complexity,273

emergent community functions are determined by simple quantitative rules. The core finding of this274

paper is that the change in community function caused by adding a new species to a community275

is often well estimated by simple linear equations. These functional effect equations represent an276

ecological parallel to the phenomenon known as global epistasis in quantitative genetics, where the277

fitness effect of a mutation scales with the fitness of the genetic background to which it is added.278

We propose that these linear trends may be interpreted as emergent species-by-ecosystem interac-279

tions, which approximate the functional effect of a species without having to specify every pairwise280

and higher-order interaction individually. The existence of these patterns reveals a tractable struc-281

ture in the mapping between community compositions and functions, which we have shown can be282

exploited to identify optimal consortia from a very limited amount of empirical observations.283

Building fine-grained predictive models that integrate the complex web of molecular and organis-284

mal interactions that take place in ecological communities has been and remains extremely challeng-285

ing. Even in those studies that have reported success (6–9), parameterization required exhaustive286

empirical work, which is highly specific to the taxa, environmental conditions, and functions being287

studied. Machine learning strategies are more scalable (38,39), but extracting relevant, interpretable288

biological information from them is generally difficult. If we abandon fine-grained models and opt in-289

stead for coarse-graining the description of our communities, we find a more generalizable strategy290

to explain ecosystem function that consists of condensing community structure through a metric of291
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its biodiversity (40,41). When averaged across communities, biodiversity is indeed often related to292

ecosystem function, but the variation is generally high. By compressing the compositional state of293

a multi-species community (a high dimensional vector) to a scalar metric of biodiversity, we lose the294

level of granularity that is needed for rational ecosystem design.295

Overcoming these limitations, our results point to a general, scalable, and interpretable solution296

to the problem of optimizing ecosystem function. Most importantly, they show that the problem of297

connecting structure to function in biology can be approached from the same modeling framework298

at all biological scales — from the molecular to the ecological. At the organismal level and below,299

recent studies have been successful at inferring the map between genotypes and phenotypes from300

partial observations and without the need for fine-grained, molecular-level description of biological301

function (20,22–24). These methods rely on the existence of regularities in genotype-phenotype302

maps, which are revealed by the emergence of global epistasis. Our work demonstrates that anal-303

ogous regularities may exist in the mapping between ecosystem composition and function. This304

suggests that the increasingly large assortment of predictive and analytical tools from evolutionary305

genetics could be adapted and imported to ecology, exposing an unexplored path to predictively306

linking structure and function in ecosystems, and opening opportunities for cross-pollination across307

fields.308
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