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GLOBAL ESTIMATES FOR SINGULAR INTEGRALS
OF THE COMPOSITE OPERATOR

SHUSEN DING AND BING LIU

Abstract. We establish the Poincaré-type inequalities for the
composition of the homotopy operator and the projection opera-
tor applied to the nonhomogeneous A-harmonic equation in John

domains. We also obtain some estimates for the integral of the
composite operator with a singular density.

1. Introduction

In our recent paper [5], we investigated singular integrals of composite oper-
ators and established some inequalities for composite operators with singular
factors. In this paper, we keep working on the same topic and derive global
estimates for the singular integrals of composite operators in δ-John domains.
The purpose of this paper is to estimate the Poincaré-type inequalities for
the composition of the homotopy operator T and the projection operator H
over the δ-John domain. Differential forms and these two key operators are
widely used not only in analysis and partial differential equations [1], [3], [14],
[18], but also in physics [2], [7], [9], [15]. We all know that any differential
form u can be decomposed as u = d(Tu) + T (du), where d is the differential
operator and T is the homotopy operator. We also need to estimate the com-
position of the homotopy operator T and the projection operator H in many
situations. For example, when we consider the decomposition of H(u) in the
case of the Poisson’s equation, we have to study the composition T ◦ H of the
homotopy operator T and the projection operator H . The reason that we
establish inequalities with the singular weights was motivated from physics.
In real applications, we often need to estimate the integrals with singular fac-
tors. For example, let us assume that the object P with mass m1 is located
at the origin and the object Q with mass m2 is located at (x, y, z) in R
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Then, Newton’s Law of Gravitation states that the magnitude of the gravi-
tational force between two objects P and Q is |F| = m1m2G/d2(P,Q), where
d(P,Q) =

√
x2 + y2 + z2 is the distance between P and Q, and G is the grav-

itational constant. Thus, we have to evaluate a singular integral whenever
the integrand contains |F| as a factor and the integral domain includes the
origin. Also, when calculating an electric field, we will deal with the inte-
gral E(r) = 1

4πε0

∫
D

ρ(x) r−x
‖r−x‖3 dx, where ρ(x) is a charge density and x is the

integral variable. The integral is singular if r ∈ D. When we consider the
integral of the vector field F = ∇f , we have to deal with the singular integral
if the potential function f contains a singular factor, such as the potential
energy in physics. It is clear that the singular integrals are more interesting
to us because of their wide applications in different fields of mathematics and
physics.

We assume that Ω is a bounded, convex domain and B is a ball in R
n,

n ≥ 2, throughout this paper. We use σB to denote the ball with the same
center as B and with diam(σB) = σ diam(B), σ > 0. We do not distinguish
the balls from cubes in this paper. We use |E| to denote the Lebesgue measure
of the set E. We say w is a weight if w ∈ L1

loc(R
n) and w > 0 a.e. Let M be a

domain in an oriented, compact, C∞ smooth Riemannian manifold of dimen-
sion n ≥ 2. Differential forms are extensions of functions in R

n. For example,
the function u(x1, x2, . . . , xn) is called a 0-form. Moreover, if u(x1, x2, . . . , xn)
is differentiable, then it is called a differential 0-form. The 1-form u(x)
in R

n can be written as u(x) =
∑n

i=1 ui(x1, x2, . . . , xn)dxi. If the coeffi-
cient functions ui(x1, x2, . . . , xn), i = 1,2, . . . , n, are differentiable, then u(x) is
called a differential 1-form. Similarly, a differential k-form u(x) is generated
by {dxi1 ∧ dxi2 ∧ · · · ∧ dxik

}, k = 1,2, . . . , n, that is, u(x) =
∑

I uI(x)dxI =∑
ui1i2···ik

(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik
, where I = (i1, i2, . . . , ik), 1 ≤ i1 < i2 <

· · · < ik ≤ n. Let ∧l = ∧l(Rn) be the set of all l-forms in R
n, D′(M, ∧l) be

the space of all differential l-forms on M and Lp(M, ∧l) be the l-forms u(x) =∑
I uI(x)dxI on M satisfying

∫
M

|uI |p < ∞ for all ordered l-tuples I , l =
1,2, . . . , n. We denote the exterior derivative by d : D′(M, ∧l) → D′(M, ∧l+1)
for l = 0,1, . . . , n − 1, and define the Hodge star operator � : ∧k → ∧n−k as fol-
lows. If u = ui1i2···ik

(x1, x2, . . . , xn)dxi1 ∧ dxi2 ∧ · · · ∧ dxik
= uI dxI , i1 < i2 <

· · · < ik, is a differential k-form, then �u = �(ui1i2···ik
dxi1 ∧ dxi2 ∧ · · · ∧ dxik

) =
(−1)

∑
(I)uI dxJ , where I = (i1, i2, . . . , ik), J = {1,2, . . . , n} − I , and

∑
(I) =

k(k+1)
2 +

∑k
j=1 ij . The Hodge codifferential operator d� : D′(M, ∧l+1) →

D′(M, ∧l) is given by d� = (−1)nl+1 � d� on D′(M, ∧l+1), l = 0,1, . . . , n − 1.
We write ‖u‖s,M = (

∫
M

|u|s)1/s and ‖u‖s,M,w = (
∫

M
|u|sw(x)dx)1/s, where

w(x) is a weight. The differential forms can be used to describe various sys-
tems of PDEs and to express different geometric structures on manifolds. For
instance, some kinds of differential forms are often utilized in studying defor-
mations of elastic bodies, the related extrema for variational integrals, and
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certain geometric invariance. Differential forms have become invaluable tools
for many fields of sciences and engineering, see [12] and [15].

We are particularly interested in a class of differential forms satisfying the
well known nonhomogeneous A-harmonic equation

(1.1) d�A(x,du) = B(x,du),

where A : M × ∧l(Rn) → ∧l(Rn) and B : M × ∧l(Rn) → ∧l−1(Rn) satisfy the
conditions:

(1.2) |A(x, ξ)| ≤ a|ξ|p−1, A(x, ξ) · ξ ≥ |ξ|p, |B(x, ξ)| ≤ b|ξ|p−1

for almost every x ∈ M and all ξ ∈ ∧l(Rn). Here a, b > 0 are constants
and 1 < p < ∞ is a fixed exponent associated with (1.1). If the operator
B = 0, equation (1.1) becomes d�A(x,du) = 0, which is called the (homo-
geneous) A-harmonic equation. A solution to (1.1) is an element of the
Sobolev space W 1,p

loc (M, ∧l−1) such that
∫

M
A(x,du) · dϕ + B(x,du) · ϕ = 0 for

all ϕ ∈ W 1,p
loc (M, ∧l−1) with compact support. Let A : M × ∧l(Rn) → ∧l(Rn)

be defined by A(x, ξ) = ξ|ξ|p−2 with p > 1. Then, A satisfies the required
conditions and d�A(x,du) = 0 becomes the p-harmonic equation

(1.3) d�(du |du|p−2) = 0

for differential forms. If u is a function (0-form), the equation (1.3) reduces to
the usual p-harmonic equation div(∇u| ∇u|p−2) = 0 for functions. A remark-
able progress has been made recently in the study of different versions of the
harmonic equations, see [1], [8], [13], [16], [17]. Let ∧lM be the lth exterior
power of the cotangent bundle, C∞(∧lM) be the space of smooth l-forms on
M and W (∧lM) = {u ∈ L1

loc(∧lM) : u has generalized gradient}. The har-
monic l-fields are defined by H(∧lM) = {u ∈ W (∧lM) : du = d�u = 0, u ∈ Lp

for some 1 < p < ∞}. The orthogonal complement of H in L1 is defined by
H ⊥ = {u ∈ L1 : 〈u,h〉 = 0 for all h ∈ H }. Then, the Green’s operator G is
defined as G : C∞(∧lM) → H ⊥ ∩ C∞(∧lM) by assigning G(u) be the unique
element of H ⊥ ∩ C∞(∧lM) satisfying Poisson’s equation ΔG(u) = u − H(u),
where H is the harmonic projection operator that maps C∞(∧lM) onto H
so that H(u) is the harmonic part of u. See [14] for more properties of these
operators.

The operator Ky with the case y = 0 was first introduced by Cartan
in [3]. Then, it was extended to the following version in [6]. To each y ∈ Ω,
there corresponds a linear operator Ky : C∞(Ω, ∧l) → C∞(Ω, ∧l−1) defined
by (Kyu)(x; ξ1, . . . , ξl−1) =

∫ 1

0
tl−1u(tx + y − ty;x − y, ξ1, . . . , ξl−1)dt and the

decomposition u = d(Kyu) + Ky(du). A homotopy operator T : C∞(Ω, ∧l) →
C∞(Ω, ∧l−1) is defined by averaging Ky over all points y ∈ Ω:

Tu =
∫

Ω

φ(y)Kyudy,
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where φ ∈ C∞
0 (Ω) is normalized so that

∫
Ω

φ(y)dy = 1.

2. Main results

We first introduce the following definition and lemmas that will be used in
this paper.

Definition 1. A proper subdomain Ω ⊂ R
n is called a δ-John domain,

δ > 0, if there exists a point x0 ∈ Ω which can be joined with any other point
x ∈ Ω by a continuous curve γ ⊂ Ω so that

d(ξ, ∂Ω) ≥ δ|x − ξ|
for each ξ ∈ γ. Here, d(ξ, ∂Ω) is the Euclidean distance between ξ and ∂Ω.

Lemma 1 ([4]). Let φ be a strictly increasing convex function on [0, ∞) with
φ(0) = 0, and D be a domain in R

n. Assume that u is a function in D such
that φ(|u|) ∈ L1(D,μ) and μ({x ∈ D : |u − c| > 0}) > 0 for any constant c,
where μ is a Radon measure defined by dμ(x) = w(x)dx for a weight w(x).
Then, we have ∫

D

φ

(
a

2
|u − uD,μ|

)
dμ ≤

∫
D

φ(a|u|)dμ

for any positive constant a, where uD,μ = 1
μ(D)

∫
D

udμ.

Lemma 2 ([11]). Let u ∈ C∞(∧lM) and l = 1,2, . . . , n, 1 < s < ∞. Then,
there exists a positive constant C = C(s), independent of u, such that

‖dd∗G(u)‖s,M + ‖d∗dG(u)‖s,M + ‖dG(u)‖s,M

+ ‖d∗G(u)‖s,M + ‖G(u)‖s,M ≤ C(s)‖u‖s,M .

We will need the following Covering lemma appearing in [10].

Lemma 3. Each Ω has a modified Whitney cover of cubes V = {Qi} such
that

⋃
i Qi = Ω,

∑
Qi ∈V χ√

5
4 Q

≤ NχΩ and some N > 1, and if Qi ∩ Qj �= ∅,

then there exists a cube R (this cube need not be a member of V ) in Qi ∩ Qj

such that Qi ∪ Qj ⊂ NR. Moreover, if Ω is δ-John, then there is a distin-
guished cube Q0 ∈ V which can be connected with every cube Q ∈ V by a chain
of cubes Q0,Q1, . . . ,Qk = Q from V and such that Q ⊂ ρQi, i = 0,1,2, . . . , k,
for some ρ = ρ(n, δ).

Lemma 4. Let u ∈ Ls
loc(Ω, ∧l), l = 1,2, . . . , n, 1 < s < ∞, H : C∞(Ω, ∧l) →

C∞(Ω, ∧l) be the projection operator and T : C∞(Ω, ∧l) → C∞(Ω, ∧l−1) be the
homotopy operator. Then, there exists a constant C = C(n, s,Ω), independent
of u, such that

(2.1) ‖T (H(u))‖s,B ≤ C(n, s,Ω)|B| diam(B)‖u‖s,B

for all balls B ⊂ Ω.
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Proof. Let T be the homotopy operator and u be locally Ls integrable l
form. From [6], there exists a constant C1(n, s,Ω), independent of u, such
that

(2.2) ‖Tu‖s,B ≤ C1(n, s,Ω)|B| diam(B)‖u‖s,B .

By using Lemma 2, we have

‖ΔG(u)‖s,B(2.3)
= ‖(dd∗ + d∗d)G(u)‖s,B ≤ ‖dd∗G(u)‖s,B + ‖d∗dG(u)‖s,B

≤ C2(s)‖u‖s,B .

Thus, by (2.2) and (2.3), we have

‖TH(u)‖s,B

≤ C1(n, s,Ω)|B| diam(B)‖H(u)‖s,B

= C1(n, s,Ω)|B| diam(B)‖u − ΔG(u)‖s,B

≤ C1(n, s,Ω)|B| diam(B)
(

‖u‖s,B + ‖ΔG(u)‖s,B

)
≤ C1(n, s,Ω)|B| diam(B)

(
‖u‖s,B + C2(s)‖u‖s,B

)
≤ C3(n, s,Ω)|B| diam(B)‖u‖s,B

which ends the proof of Lemma 4. �

We considered a singular integral in the paper [5] since the type of singular
integral was commonly seen when solving problems in physics and engineering
fields. The integral that was considered in paper [5] was over any open ball
contained in a bounded region Ω. Now we consider the integral globally on
δ-John domain Ω. We state the following version of Theorem 3 in [5] as a
lemma and omit the proof since the proof would be the same as the proof of
Theorem 3 in [5] by using Lemma 4 and noticing that 1

d(x,∂Ω) ≤ 1
rB − |x| for

any x ∈ B, where rB is the radius of ball B.

Lemma 5. Let u ∈ Ls
loc(Ω, ∧l), l = 1,2, . . . , n, 1 < s < ∞, be a solution of

the nonhomogeneous A-harmonic equation in a bounded and convex domain Ω,
H be the projection operator and T be the homotopy operator. Then, there
exists a constant C(n, s,α,λ,Ω), independent of u, such that(∫

B

|T (H(u))|s 1
dα(x,∂Ω)

dx

)1/s

≤ C(n, s,α,λ,Ω)|B|γ
(∫

ρB

|u|s 1
|x − xB |λ dx

)1/s

for all balls B with ρB ⊂ Ω, ρ > 1, and any real number α and λ with α > λ ≥ 0
and γ = 1 + 1

n − α−λ
ns . Here xB is the center of the ball.
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Theorem 1. Let u ∈ D′(Ω, ∧1) be a solution of the A-harmonic equation
(1.1), H be the projection operator and T be the homotopy operator. Assume
that s is a fixed exponent associated with the nonhomogeneous A-harmonic
equation. Then, there exists a constant C(n,N, s,α,λ,Q0,Ω), independent of
u, such that (∫

Ω

|T (H(u)) − (T (H(u)))Q0 |s 1
dα(x,∂Ω)

dx

)1/s

(2.4)

≤ C(n,N, s,α,λ,Q0,Ω)
(∫

Ω

|u|sg(x)dx

)1/s

for any bounded and convex δ-John domain Ω ⊂ R
n, where g(x) =∑

i χQi

1
|x−xQi

|λ . Here α and λ are constants with 0 ≤ λ < α < min{n, s +
λ + n(s − 1)}, and the fixed cube Q0 ⊂ Ω, the cubes Qi ⊂ Ω and the constant
N > 1 appeared in Lemma 3, xQi is the center of Qi.

Proof. We use the notation appearing in Lemma 3. There is a modified
Whitney cover of cubes V = {Qi} for Ω such that Ω =

⋃
Qi, and∑

Qi ∈V χ√
5
4 Qi

≤ NχΩ for some N > 1. Since Ω =
⋃

Qi, for any x ∈ Ω, it
follows that x ∈ Qi for some i. Applying Lemma 5 to Qi, we have(∫

Qi

|TH(u)|s 1
dα(x,∂Ω)

dx

)1/s

(2.5)

≤ C1(n, s,α,λ,Ω)|Qi|γ
(∫

σQi

|u|s 1
dλ(x,xQi)

dx

)1/s

,

where σ > 1 is a constant. Let μ(x) and μ1(x) be the Radon measures defined
by dμ = 1

dα(x,∂Ω) dx and dμ1(x) = g(x)dx, respectively. Then,

μ(Q) =
∫

Q

1
dα(x,∂Ω)

dx(2.6)

≥
∫

Q

1
(diam(Ω))α

dx = M(n,α,Ω)|Q|,

where M(n,α,Ω) is a positive constant. Then, by the elementary inequality
(a + b)s ≤ 2s(|a|s + |b|s), s ≥ 0, we have(∫

Ω

|T (H(u)) − (T (H(u)))Q0 |s 1
dα(x,∂Ω)

dx

)1/s

(2.7)

=
(∫

⋃
Q

|T (H(u)) − (T (H(u)))Q0 |s dμ

)1/s

≤
(∑

Q∈V

(
2s

∫
Q

|T (H(u)) − (T (H(u)))Q|s dμ
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+ 2s

∫
Q

|(T (H(u)))Q − (T (H(u)))Q0 |s dμ

))1/s

≤ C1(s)
((∑

Q∈V

∫
Q

|T (H(u)) − (T (H(u)))Q|s dμ

)1/s

+
(∑

Q∈V

∫
Q

|(T (H(u)))Q − (T (H(u)))Q0 |s dμ

)1/s)

for a fixed Q0 ⊂ Ω. The first sum in (2.7) can be estimated by using Lemma 1
with ϕ = ts, a = 2, and Lemma 5,∑

Q∈V

∫
Q

|T (H(u)) − (T (H(u)))Q|s dμ(2.8)

≤
∑
Q∈V

∫
Q

2s|T (H(u))|s dμ

≤ C2(n, s,α,λ,Ω)
∑
Q∈V

|Q|γs

∫
ρQ

|u|s dμ1

≤ C3(n, s,α,λ,Ω)|Ω|γs
∑
Q∈V

∫
Ω

(|u|s dμ1)χρQ

≤ C4(n,N, s,α,λ,Ω)|Ω|γs

∫
Ω

|u|s dμ1

≤ C5(n,N, s,α,λ,Ω)
∫

Ω

|u|sg(x)dx.

To estimate the second sum in (2.7), we need to use the property of δ-John do-
main. Fix a cube Q ∈ V and let Q0,Q1, . . . ,Qk = Q be the chain in Lemma 3.

|(T (H(u)))Q − (T (H(u)))Q0 |(2.9)

≤
k−1∑
i=0

|(T (H(u)))Qi − (T (H(u)))Qi+1 |.

The chain {Qi} also has property that, for each i, i = 0,1, . . . , k − 1, with
Qi ∩ Qi+1 �= ∅, there exists a cube Di such that Di ⊂ Qi ∩ Qi+1 and Qi ∪
Qi+1 ⊂ NDi, N > 1.

max{ |Qi|, |Qi+1| }
|Qi ∩ Qi+1| ≤ max{ |Qi|, |Qi+1| }

|Di| ≤ C6(N).

For such Dj , j = 0,1, . . . , k − 1, Let |D�| = min{|D0|, |D1|, . . . , |Dk−1| }, then

(2.10)
max{ |Qi|, |Qi+1| }

|Qi ∩ Qi+1| ≤ max{ |Qi|, |Qi+1| }
|D�| ≤ C7(N).
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By (2.6), (2.10) and Lemma 5, we have

|(T (H(u)))Qi − (T (H(u)))Qi+1 |s(2.11)

=
1

μ(Qi ∩ Qi+1)

×
∫

Qi ∩Qi+1

|(T (H(u)))Qi − (T (H(u)))Qi+1 |s dx

dα(x,∂Ω)

≤ C8(n,α,Ω)
|Qi ∩ Qi+1|

×
∫

Qi ∩Qi+1

|(T (H(u)))Qi − (T (H(u)))Qi+1 |s dx

dα(x,∂Ω)

≤ C8(n,α,Ω)C7(N)
max{|Qi|, |Qi+1| }

∫
Qi ∩Qi+1

|(T (H(u)))Qi − (T (H(u)))Qi+1 |s dμ

≤ C9(n,N, s,α,Ω)
i+1∑
j=i

1
|Qj |

∫
Qj

|T (H(u)) − (T (H(u)))Qj |s dμ

≤ C10(n,N, s,α,λ,Ω)
i+1∑
j=i

|Qj |γs

|Qj |

∫
ρQj

|u|s dμ1

= C10(n,N, s,α,λ,Ω)
i+1∑
j=i

|Qj |γs−1

∫
ρQj

|u|s dμ1.

Since Q ⊂ NQj for j = i, i + 1, 0 ≤ i ≤ k − 1, from (2.11)

|(T (H(u)))Qi − (T (H(u)))Qi+1 |sχQ(x)(2.12)

≤ C11(n,N, s,α,λ,Ω)
i+1∑
j=i

χNQj (x)|Qj |γs−1

∫
ρQj

|u|s dμ1

≤ C12(n,N, s,α,λ,Ω)
i+1∑
j=i

χNQj (x)|Ω|γs−1

∫
ρQj

|u|s dμ1.

We know that |Ω|γ−1/s < ∞ since Ω is bounded and γ − 1
s = 1+ 1

n + λ
ns − 1

s −
α
ns > 0 when α < s+λ+n(s − 1). Thus, from (a+ b)1/s ≤ 21/s(|a|1/s + |b|1/s),
(2.9) and (2.12),

|(T (H(u)))Q − (T (H(u)))Q0 |χQ(x)

≤ C13(n,N, s,α,λ,Ω)
∑
D∈V

(∫
ρD

|u|s dμ1

)1/s

χND(x)
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for every x ∈ R
n. Then∑

Q∈V

∫
Q

|(T (H(u)))Q − (T (H(u)))Q0 |s dμ

≤ C13(n,N, s,α,λ,Ω)
∫

Rn

∣∣∣∣ ∑
D∈V

(∫
ρD

|u|s dμ1

)1/s

χND(x)
∣∣∣∣
s

dμ.

Notice that ∑
D∈V

χND(x) ≤
∑
D∈V

χρND(x) ≤ NχΩ(x).

Using elementary inequality |
∑M

i=1 ti|s ≤ Ms−1
∑M

i=1 |ti|s, we finally have
∑
Q∈V

∫
Q

|(T (H(u)))Q − (T (H(u)))Q0 |s dμ(2.13)

≤ C14(n,N, s,α,λ,Ω)
∫

Rn

(∑
D∈V

(∫
ρD

|u|s dμ1

)
χD(x)

)
dμ

= C14(n,N, s,α,λ,Ω)
∑
D∈V

(∫
ρD

|u|s dμ1

)

≤ C15(n,N, s,α,λ,Ω)
∫

Ω

|u|sg(x)dx.

Substituting (2.8) and (2.13) in (2.7), we have completed the proof of Theo-
rem 1. �

We know from [6] that there is a constant C(n, s,Ω), independent of u,
such that ‖∇T (u)‖s,B ≤ C(n, s,Ω)|B| ‖u‖s,B for any B ⊂ Ω and all differential
forms u. Hence, using Lemma 2, we obtain

‖∇TH(u)‖s,B(2.14)
≤ C1(n, s,Ω)|B| ‖H(u)‖s,B

= C1(n, s,Ω)|B| ‖u − ΔG(u)‖s,B

≤ C2(n, s,Ω)|B|
(

‖u‖s,B + ‖(dd∗ + d∗d)G(u)‖s,B

)
≤ C2(n, s,Ω)|B|

(
‖u‖s,B + C3(s)‖u‖s,B

)
≤ C4(n, s,Ω)‖u‖s,B.

Using (2.14), we have the following Lemma 6 whose proof is similar to the
proof of Lemma 5.

Lemma 6. Let u ∈ Ls
loc(Ω, ∧l), l = 1,2, . . . , n, 1 < s < ∞, be a solution of the

nonhomogeneous A-harmonic equation in a bounded and convex domain Ω, H
be the projection operator and T be the homotopy operator. Then, there exists
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a constant C(n, s,α,λ,Ω), independent of u, such that(∫
B

| ∇T (H(u))|s 1
d(x,∂Ω)α

dx

)1/s

(2.15)

≤ C(n, s,α,λ,Ω)|B|γ
(∫

ρB

|u|s 1
|x − xB |λ dx

)1/s

for all balls B with ρB ⊂ Ω and any real number α and λ with α > λ ≥ 0 and
γ = 1 + 1

n − α−λ
ns . Here xB is the center of the ball.

Notice that (2.15) can also be written as

(2.15′) ‖∇TH(u)‖s,B,w1 ≤ C(n, s,α,λ,Ω)|B|γ ‖u‖s,ρB,w2 .

Next, we prove the imbedding inequality with a singular factor in the John
domain.

Theorem 2. Let u ∈ D′(Ω, ∧1) be a solution of the A-harmonic equa-
tion (1.1), H be the projection operator and T be the homotopy operator.
Assume that s is a fixed exponent associated with the nonhomogeneous A-har-
monic equation. Then, there exists a constant C(n, s,α,λ,Ω), independent of
u, such that

‖∇(T (H(u)))‖s,Ω,w1 ≤ C(n, s,α,λ,Ω)‖u‖s,Ω,w2 ,(2.16)
‖T (H(u))‖W 1,s(Ω),w1 ≤ C(n, s,α,λ,Ω)‖u‖s,Ω,w2(2.17)

for any bounded and convex δ-John domain Ω ⊂ R
n. Here the weights are de-

fined by w1(x) = 1
dα(x,∂Ω) and w2(x) =

∑
i χQi

1
|x−xQi

|λ , respectively. α and λ

are constants with 0 ≤ λ < α < λ + (n + 1)s.

Proof. Applying the Covering lemma and Lemma 6, we have (2.16) imme-
diately. For inequality (2.17), using Lemma 5 and the Covering lemma, and
noticing that 1 + 1

n − α−λ
ns > 0 when α < λ + (n + 1)s, we have

(2.18) ‖T (H(u))‖s,Ω,w1 ≤ C1(n, s,α,λ,Ω)|Ω|1+1/n−(α−λ)/(ns)‖u‖s,Ω,w2 .

By the definition of the ‖ · ‖W 1,s(Ω),w1 norm, we know that

‖T (H(u))‖W 1,s(Ω),w1(2.19)

= diam(Ω)−1‖T (H(u))‖s,Ω,w1 + ‖ ∇(T (H(u)))‖s,Ω,w1 .

Substituting (2.16) and (2.18) into (2.19) yields

‖T (H(u))‖W 1,s(Ω),w1 ≤ C2(n, s,α,λ,Ω)‖u‖s,Ω,w2 .

We have completed the proof of the Theorem 2. �

Theorem 3. Let u ∈ D
′
(Ω, ∧1) be a solution of the A-harmonic equa-

tion (1.1), H be the projection operator and T be the homotopy operator. As-
sume that s is a fixed exponent associated with the nonhomogeneous
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A-harmonic equation. Then there exists a constant C(n,N, s,α,λ,Q0,Ω), in-
dependent of u, such that

‖T (H(u)) − (T (H(u)))Q0 ‖W 1,s(Ω),w1(2.20)
≤ C(n,N, s,α,λ,Q0,Ω)‖u‖s,Ω,w2

for any bounded, convex δ-John domain Ω ⊂ R
n. Here the weights are defined

by w1(x) = 1
dα(x,∂Ω) and w2(x) =

∑
i χQi

1
|x−xQi

|λ , α and λ are constants with
0 ≤ λ < α < min{n,λ + n(s − 1)}, and the fixed cube Q0 ⊂ Ω and the constant
N > 1 appeared in Lemma 3.

Proof. Since (T (H(u)))Q0 is a closed form, ∇((T (H(u)))Q0) =
d((T (H(u)))Q0) = 0. Thus, by using Theorem 1 and (2.16), we have

‖T (H(u)) − (T (H(u)))Q0 ‖W 1,s(Ω),w1

= diam(Ω)−1‖T (H(u)) − (T (H(u)))Q0 ‖s,Ω,w1

+ ‖∇(T (H(u)) − (T (H(u)))Q0)‖s,Ω,w1

= diam(Ω)−1‖T (H(u)) − (T (H(u)))Q0 ‖s,Ω,w1 + ‖∇(T (H(u)))‖s,Ω,w1

≤ C1(n,N, s,α,λ,Q0,Ω)‖u‖s,Ω,w2 + C2(n, s,α,λ,Ω)‖u‖s,Ω,w2

≤ C3(n,N, s,α,λ,Q0,Ω)‖u‖s,Ω,w2 .

Thus, (2.20) holds. The proof of Theorem 3 has been completed. �
As applications of our main results, we consider the following examples.

Example 1. Let B = 0, A(x, ξ) = ξ|ξ|p−2, p > 1, and u be a function
(0-form) in (1.1). Then, the operator A satisfies the required conditions
and the nonhomogeneous A-harmonic equation (1.1) reduces to the usual
p-harmonic equation

(2.21) div(∇u| ∇u|p−2) = 0

which is equivalent to

(2.22) (p − 2)
n∑

k=1

n∑
i=1

uxk
uxiuxkxi + | ∇u|2Δu = 0.

If we choose p = 2 in (2.21), we have the Laplace equation Δu = 0 for func-
tions. Hence, the equation (2.21), (2.22) and the Δu = 0 are the special cases
of the nonhomogeneous A-harmonic equation (1.1). Therefore, all results
proved in Theorems 1, 2 and 3 are still true for u that satisfies one of the
above three equations.

Example 2. Let f : Ω → R
n, f = (f1, . . . , fn), be a mapping of the Sobolev

class W 1,p
loc (Ω,Rn), 1 ≤ p < ∞, whose distributional differential Df = [∂f i/

∂xj ] : Ω → GL(n) is a locally integrable function on Ω with values in the space
GL(n) of all n × n-matrices, i, j = 1,2, . . . , n. A homeomorphism f : Ω → R

n

of Sobolev class W 1,n
loc (Ω,Rn) is said to be K-quasiconformal, 1 ≤ K < ∞,
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if its differential matrix Df(x) and the Jacobian determinant J = J(x, f) =
detDf(x) satisfy

(2.23) |Df(x)|n ≤ KJ(x, f),

where |Df(x)| = max{ |Df(x)h| : |h| = 1} denotes the norm of the Jacobi ma-
trix Df(x). It is well known that if the differential matrix Df(x) = [∂f i/∂xj ],
i, j = 1,2, . . . , n, of a homeomorphism f(x) = (f1, f2, . . . , fn) : Ω → R

n satis-
fies (2.23), then, each of the functions

(2.24) u = f i(x), i = 1,2, . . . , n, or u = log |f(x)|,

is a generalized solution of the quasilinear elliptic equation

(2.25) divA(x, ∇u) = 0,

in Ω − f −1(0), where

A = (A1,A2, . . . ,An), Ai(x, ξ) =
∂

∂ξi

(
n∑

i,j=1

θi,j(x)ξiξj

)n/2

and θi,j are some functions, which can be expressed in terms of the differential
matrix Df(x) and satisfy

(2.26) C1(K)|ξ|2 ≤
n∑
i,j

θi,jξiξj ≤ C2(K)|ξ|2

for some constants C1(K),C2(K) > 0. All results proved in Theorems 1, 2
and 3 are still true if u is defined in (2.24).

Example 3. The Jacobian determinant J(x, f) of a mapping f has been
well studied and widely used in many areas of mathematics and physics. We
know that the Jacobian J(x, f) of a mapping f : Ω → R

n, f = (f1, . . . , fn) is
an n-form, specifically, J(x, f)dx = df1 ∧ · · · ∧ dfn, where dx = dx1 ∧ dx2 ∧
· · · ∧ dxn. Hence, Lemma 4 proved in this paper can be used to estimate the
Jacobian J(x, f) of a mapping f .

Our results can be applied to all differential forms or functions satisfying
some version of the A-harmonic equation, the usual p-harmonic equation or
the Laplace equation. The projection operator has found many applications
in physics and computer sciences. For the purpose of evaluation or estima-
tion functions related to partial differential equations, the projection operator
method often plays the key role, see [7] and [9] for example. The homotopy
operator is also commonly used in computer science and computer engineer-
ing [2]. Considering the length of the paper, we only list the above three
examples here. For more application, see [1], [2], [12], [15].
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