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Abstract. We present a method for estimating monthly

burned area globally at 1◦ spatial resolution using Terra

MODIS data and ancillary vegetation cover information. Us-

ing regression trees constructed for 14 different global re-

gions, MODIS active fire observations were calibrated to

burned area estimates derived from 500-m MODIS imagery

based on the assumption that burned area is proportional

to counts of fire pixels. Unlike earlier methods, we al-

low the constant of proportionality to vary as a function of

tree and herbaceous vegetation cover, and the mean size of

monthly cumulative fire-pixel clusters. In areas undergoing

active deforestation, we implemented a subsequent correc-

tion based on tree cover information and a simple measure

of fire persistence. Regions showing good agreement be-

tween predicted and observed burned area included Boreal

Asia, Central Asia, Europe, and Temperate North Amer-

ica, where the estimates produced by the regression trees

were relatively accurate and precise. Poorest agreement was

found for southern-hemisphere South America, where pre-

dicted values of burned area are both inaccurate and im-

precise; this is most likely a consequence of multiple fac-

tors that include extremely persistent cloud cover, and lower

quality of the 500-m burned area maps used for calibration.

Application of our approach to the nine remaining regions

yielded comparatively accurate, but less precise, estimates

of monthly burned area. We applied the regional regres-

sion trees to the entire archive of Terra MODIS fire data

to produce a monthly global burned area data set spanning

late 2000 through mid-2005. Annual totals derived from this

approach showed good agreement with independent annual

estimates available for nine Canadian provinces, the United

States, and Russia. With our data set we estimate the global
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annual burned area for the years 2001–2004 to vary between

2.97 million and 3.74 million km2, with the maximum occur-

ring in 2001. These coarse-resolution burned area estimates

may serve as a useful interim product until long-term burned

area data sets from multiple sensors and retrieval approaches

become available.

1 Introduction

Research over the past 25 years has led to increased recog-

nition of the important role biomass burning plays in the

global carbon cycle and the production of trace gas and

aerosol emissions. Consequently, Earth-system modeling ef-

forts now often include fire-related information. In particu-

lar, there is a strong need for spatially and temporally explicit

estimates of the quantity of biomass consumed through com-

bustion (Scholes et al., 1996). Typically such estimates are

based on a simple relationship of the form (e.g., Seiler and

Crutzen, 1980; Hao et al., 1990; Pereira et al., 1999)

M = ABc, (1)

where M is the mass of vegetation combusted within a given

time interval, A is the area burned during the same time in-

terval, B is the biomass density, and c is a factor describ-

ing the completeness of combustion. Although all of the

terms appearing on the right hand side of Eq. (1) are highly

variable, burned area is particularly difficult to estimate be-

cause of the potentially high spatial and interannual vari-

ability in this quantity at continental to global scales. It

is therefore especially important that accurate, spatially ex-

plicit, multi-year estimates of burned area are available when

relying on a relationship having the form of Eq. (1). At

present, however, there is a dearth of such data. While a
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number of satellite-based global burned area products are

currently under development, specifically GLOBSCAR (Si-

mon et al., 2004), GBA2000 (Tansey et al., 2004), and the

MODIS burned area product (Justice et al., 2002; Roy et al.,

2002), none are yet available on a multi-year basis.

Unlike burned area data, long-term observations of ac-

tive fires made with spaceborne sensors are readily available.

Representative multi-year examples include the Along-Track

Scanning Radiometer (ATSR) nighttime fire product (Arino

and Rosaz, 1999), the Visible and Infrared Scanner (VIRS)

monthly fire product (Giglio et al., 2003a), the Moderate

Resolution Imaging Spectroradiometer (MODIS) global fire

product (Justice et al., 2002), and the Geostationary Oper-

ational Environmental Satellite (GOES) Wildfire Automated

Biomass Burning Algorithm (WF ABBA) fire product (Prins

et al., 1998). At their most basic level, active fire products

contain information about the location and timing of fires that

are burning at the time of the satellite overpass, usually in the

form of swath-based fire masks or as lists of fire pixel loca-

tions and dates. These observations are in turn often sum-

marized at coarse spatial resolutions (e.g., 0.5◦×0.5◦) over

daily or monthly time periods, yielding data products con-

taining gridded counts of active fire pixels. Although these

“fire count” products capture many aspects of the spatial dis-

tribution and seasonality of burning, it is difficult to relate

them to actual area burned due to inadequate temporal sam-

pling, variability in fuel conditions and cloud cover, differ-

ences in fire behavior, and issues related to spatial resolution

(Scholes et al., 1996; Eva and Lambin, 1998; Kasischke et

al., 2003).

Despite these difficulties, the lack of long-term, spatially-

explicit global burned area data has meant that active fire ob-

servations must often be used as a proxy for area burned (e.g.,

Setzer and Pereira, 1991; Scholes et al., 1996; Stroppiana et

al., 2000; Potter et al., 2001; van der Werf et al., 2003, 2004;

Langmann and Heil, 2004). Perhaps the most common ap-

proach has been to assume that the area burned is propor-

tional to simple counts of fire pixels, i.e.

A(i, t) = αNf(i, t), (2)

where A is the area burned within a particular spatial region

labeled by the index i – typically a grid cell – during a fixed

time period labeled by the index t , Nf is the number of fire

pixels observed within the same region during the same time

period, and α is a constant representing the effective burned

area per fire pixel.

The reported accuracies of the burned area estimates ob-

tained with Eq. (2) vary greatly and are dependent upon,

among other things, the spatial scale at which the relation-

ship is applied. Eva and Lambin (1998) found almost no

correlation between AVHRR fire counts and burned area in

the Central African Republic at a spatial resolution of 15 km

over a time interval of about one month. Randriambelo et

al. (1998), however, report a good qualitative agreement be-

tween one year of monthly AVHRR fire counts and ground-

based monthly burned area estimates for a study region in

Madagascar. Pereira et al. (1999) report a poor linear cor-

relation (r=0.44) between daytime AVHRR fire counts and

burned area estimates in a 20◦ by 10◦ region encompass-

ing the Central African Republic over a 25-day time period.

Kasischke et al. (2003) examined the relationship between

ATSR fire counts and area burned in Alaska and Canada from

1997 to 2002, and in Russia during 1998. They reported sig-

nificant linear correlations between fire counts and burned

area for Canada and Russia, but in the former region found

that the slope (i.e., the effective area burned per fire pixel) for

different years varied by up to a factor of about two. The au-

thors caution against scaling fire counts to area burned since

rates of fire detection, cloud obscuration, and fire spread are

not constant across years.

Variations of Eq. (2) in which α assumes some spatial de-

pendence have also been explored. Scholes et al. (1996) were

able to relate the area burned in southern Africa to monthly

0.5◦ gridded AVHRR fire counts using ancillary Normal-

ized Difference Vegetation Index (NDVI) data such that

α(i)=f [NDVI(i)], where f is a linearly decreasing function

of the mean annual NDVI in grid cell i. In other words, in-

creasing greenness reduces the effective burned area per fire

pixel. Van der Werf et al. (2003) related burned area to VIRS

active fire counts using fractional tree cover at a spatial res-

olution of 1◦ such that α(i)=f [T (i)], where f is a linearly

decreasing function of the mean fractional tree cover T in

grid cell i. Here, increasing tree cover slows the fire spread

rate and reduces the effective burned area per fire pixel. The

two approaches are closely related since NDVI and tree cover

are positively correlated.

Active fire observations have also been used to spatially

and temporally allocate climatological inventories of com-

busted biomass and pyrogenic trace gas emissions (Schultz,

2002; Duncan et al., 2003; Generoso et al., 2003; Heald et al.,

2003; Streets et al., 2003). These methods are fundamentally

related to Eq. (2) in that they assume the quantity of inter-

est is proportional to counts of fire pixels. While our interest

here is confined to burned area, much of the subsequent dis-

cussion is applicable to allocation-based approaches as well.

In this paper, we present a method for calibrating active

fire observations made with the Terra MODIS sensor to pro-

duce global, coarse resolution estimates of burned area on a

monthly basis. Our approach draws upon two types of infor-

mation: the sensitivity of α to fractional tree and herbaceous

cover (extending the approach used by van der Werf et al.,

2003), and the sensitivity of α to fire-pixel cluster size. These

components were combined using regression trees that were

applied to large geographic regions. In recognizing that pro-

duction of accurate burned area maps suitable for calibration

is problematic in closed canopy tropical forest, particularly

in areas of active deforestation, we implement a subsequent

refinement in which a correction is applied to the burned area

predicted with the regression trees using tree cover data and

a simple measure of fire persistence.
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Fig. 1. Aqua MODIS 500-m false color imagery of northern India (left) on 23 October 2004 (08:20 UTC) and Yakutsk, Russia (right) on

19 August 2002 (03:00 UTC). Outlines of 1-km active fire pixels are shown in red. With this band combination (2.1 µm, near-infrared, red)

dense vegetation appears green, heavy smoke appears light blue, burn scars appear dark brown, water appears black, and non-cirrus clouds

appear white. The scale (approximately 320×320 km) is identical in both images. Note how larger Yakutsk burn scars are accompanied by

large clusters of adjacent fire pixels, while the small (but numerous) agricultural burns in India are characterized by much smaller clusters

of fire pixels and no visible burn scars. Images were produced within the MODIS Rapid Response System and appear courtesy of Jacques

Descloitres.

The uncertainties associated with any calibration approach

are likely to be comparatively large given the sampling issues

mentioned above, but for some applications may still be tol-

erable. Global models of the terrestrial carbon cycle, for ex-

ample, have only recently begun to include explicit treatment

of fire as a disturbance factor (e.g., van der Werf et al., 2003).

We expressly do not claim that an active-fire based method

can provide a universal substitute for burned area maps gen-

erated via direct observation of burn scars. Rather, in agree-

ment with Schultz (2002), we suggest that statistical coarse-

resolution burned area estimates derived from MODIS active

fire observations can serve as a useful interim product un-

til long-term burned area data sets become available. More-

over, it may be possible to use an active-fire calibration ap-

proach with functional sensors pre-dating MODIS, offering

the possibility of generating even longer-term global burned

area data sets.

2 Data

2.1 Active fire data

We used the Collection 4, version 4 Terra MODIS monthly

Climate Modeling Grid (CMG) fire products at 0.5◦ spa-

tial resolution (“MOD14CMH”), from January 2001 through

December 2004. The gridded monthly overpass-corrected

fire pixel counts were summed to a 1◦ working spatial resolu-

tion for this study. The CMG product also contains the mean

percent tree cover (Tf), percent herbaceous vegetation cover

(Hf), and percent bare ground (Bf) from the global MODIS

Vegetation Continuous Fields (VCF) products (Hansen et al.,

2003) for all fire pixels within each grid cell; we averaged

these to 1◦ spatial resolution as well. (We use the subscript

“f” as a reminder that Tf, Hf, and Bf are averages for fire pix-

els only, as opposed to averages over the entire land surface

encompassed by the grid cell.)

Using the locations of individual Collection 4 MODIS

fire pixels at the nominal 1-km MODIS resolution (avail-

able separately), we linked adjacent fire pixels within each

1◦ grid cell into clusters on a monthly basis. For each grid

cell we then computed the monthly mean fire-pixel cluster

size, which we denote as Cf. We hypothesized that cluster-

related information might improve the estimation of burned

area based on the empirical observation that larger clusters

of MODIS fire pixels tend to be associated with larger burn

scars (Fig. 1).

2.2 Burned area data

Burned area maps were produced using a prototype algo-

rithm that uses the 500-m MODIS atmospherically-corrected

Level 2G surface reflectance product (Vermote et al., 2002),

the MODIS Level 3 daily active fire products (Justice et al.,

2002), and the MODIS Level 3 96-day Land Cover Prod-

uct (Friedl et al., 2002). The algorithm, which is described

in the Appendix, identifies the date of burn, to the nearest

day, for pixels within individual MODIS Level 3 tiles (Wolfe

et al., 1998) at 500-m spatial resolution. Since these burn

scar masks were to serve as truth for calibration of active fire

observations, we visually inspected each to ensure that no

obvious omission or commission errors were present. Often
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Fig. 2. Locations of MODIS calibration tiles used in this study. Numbers in each 10◦×10◦ tile indicate the number of months for which

500-m burned area masks were produced for that tile.

this required appealing to higher resolution 250-m MODIS

imagery to verify the existence of smoke plumes and help re-

solve the boundaries of ambiguous burn scars. Manual cor-

rections were required in approximately five tiles, usually to

add a burn scar that was undetected due to persistent cloud

cover. At present, validation of our 500-m burned area maps

has been limited to Russia through comparison with maps

generated manually from high resolution Landsat imagery

(Loboda and Csiszar, 2004). Proper global validation would

require that a similar procedure be applied to representative

sites over the entire globe. This is a very substantial under-

taking that has not yet been completed for any burned area

product.

Selected calendar months were processed for selected

MODIS tiles, yielding a total of 446 “tile-months” of burned

area estimates between January 2001 and December 2004

(Fig. 2). Tile locations were selected to provide a good sam-

pling of worldwide fire activity over multiple fire seasons,

although erratic data availability ultimately produced an un-

even temporal sampling of the different tiles. The resulting

burned area maps were aggregated to 1◦ spatial resolution

and monthly temporal resolution.

While we believe that commission and omission errors in

our 500-m burned area maps are generally negligible com-

pared to the statistical variability inherent in modeling the

relationship between burned area and active fire pixels with

Eq. (2), we recognize that the quality of these maps is sub-

stantially lower in the closed canopy forests of South Amer-

ica and Equatorial Asia. A combination of three factors make

mapping of burned area problematic in this biome. First, sur-

face burns are at least partially obscured by the tree canopy,

which can leave an insufficient post-burn, top-of-atmosphere

radiometric signal with which to detect the burn. Second,

substantial spectral overlap can occur between cleared (but

unburned) forest patches, and patches that have been cleared

and subsequently burned. Finally, persistent cloud cover (∼1

month and longer) is common in rainforest, and this can lead

to significant errors of omission, particularly following veg-

etation regrowth. This issue will be addressed further in

Sect. 3.3.

3 Method

3.1 Preliminary analysis

As part of a preliminary analysis we examined the relation-

ship between monthly corrected Terra fire pixel counts and

area burned within 14 different regions (Fig. 3) using the

model in Eq. (2). Results obtained from least squares fits to

this model are summarized in Table 2. There is clearly strong

regional variation in the effective area per fire pixel (α), from

a minimum of 0.29 km2/pixel in southern-hemisphere (SH)

South America to a maximum of 6.6 km2/pixel in Central

Asia, which is a factor of more than 20. We note that, with

the exception of the SH South America region, the corre-

lation coefficients we obtained are substantially higher than

those reported by Boschetti et al. (2004) between ATSR fire

counts and the GBA2000 and GLOBSCAR burned area data

sets for the year 2000. There are at least five possible rea-

sons for our higher correlation. First, our 1◦ grid cells are

larger than the hexagonal grid cells used by Boschetti et al.

(2004) by about a factor of four at the Equator, and by a

factor of two at boreal latitudes. The correlation between

many spatial quantities tends to improve over larger areas

(Eva and Lambin, 1998). Second, with the exception of Eu-

rope, the six geographic regions defined by Boschetti et al.

(2004) were much larger than the 14 geographic regions used

in our study. Our results show that α can vary by as much as

a factor of nearly seven within these larger regions. Third,

the larger MODIS swath yields a higher temporal sampling

Atmos. Chem. Phys., 6, 957–974, 2006 www.atmos-chem-phys.net/6/957/2006/
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Table 1. Regions used within this study. Abbreviations refer to those used in Fig. 3.

Abbrev. Short Name Comments

BONA Boreal North America Alaska and Canada.

TENA Temperate North America Conterminous United States.

CEAM Central America Mexico and Central America.

NHSA Northern Hemisphere South America Division with SHSA is at the Equator.

SHSA Southern Hemisphere South America Division with NHSA is at the Equator.

EURO Europe Includes the Baltic States but excluding White Russia and the Ukraine.

MIDE Middle East Africa north of the Tropic of Cancer, and the Middle East plus Afghanistan.

NHAF Northern Hemisphere Africa Africa between the Tropic of Cancer and the Equator.

SHAF Southern Hemisphere Africa

BOAS Boreal Asia Russia, excluding area south of 55◦ N between the Ukraine and Kazakhstan.

CEAS Central Asia Mongolia, China, Japan, and former USSR except Russia.

SEAS Southeast Asia Asia east of Afghanistan and south of China.

EQAS Equatorial Asia Malaysia, Indonesia, and Papua New Guinea.

AUST Australia Includes New Zealand.

Fig. 3. Map of the 14 regions used in this study. Abbreviations are explained in Table 1.

rate, making it more likely that MODIS will “fill in” large

burned areas with active fire pixels, and leading to fewer

small burned areas for which no active fire pixels were de-

tected. (We will return to the issue of temporal sampling in

Sect. 7.) Fourth, the “fill-in” effect might become more pro-

nounced in those regions having a strong diurnal fire cycle

since fewer fires are likely to be burning at the time of the

nighttime ATSR overpass. Finally, smaller burns present in

the 500-m MODIS burned area maps might not be identi-

fied in the 1-km GBA2000 and GLOBSCAR data sets. This

last factor contributes because, for pixels of a given size, the

minimum detectable size of an actively burning fire is much

smaller than the minimum detectable size of a burn scar (by

a factor of ∼1000). Mapping burn scars with larger pixels

will therefore yield more cases in which small clusters of

active-fire pixels are not accompanied by an observable burn

scar, and will therefore reduce the correlation between the

two variables (cf. Fig. 1, left panel).

We repeated the above analysis with fire pixel counts hav-

ing an additional correction for cloud cover (data layers with

and without this correction are present in the MODIS CMG

fire products). The resulting correlation coefficients were al-

most uniformly lower, most likely because the cloud correc-

tion relies on assumptions that are frequently not met and

consequently has a tendency to overcorrect. We performed

the remainder of our investigation, therefore, with overpass-

corrected fire pixel counts lacking the additional cloud cor-

rection.

We next examined the effect of tree cover on α. We par-

titioned the observations for each region into 20% tree-cover

intervals and fitted Eq. (2) separately to each of the result-

ing subsets. Results for five regions are shown in Fig. 4. We

found that in savanna regions α decreased with increasing

tree cover, although the slope of the relationship varied sub-

stantially between different savanna regions. A similar anal-

ysis revealed a comparable link between α and herbaceous

cover, but with α increasing with increased herbaceous cover.
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Table 2. Correlation (r) between predicted and observed burned

area within each region for linear regression (Eq. (2)) and regression

tree approaches. The slope of the linear regression (α) and the total

number of non-zero observations (N) are also shown. An observa-

tion consists of the corrected fire pixel counts, 500-m burned area,

mean VCF fraction for all fire pixels, and mean fire-pixel cluster

size within a single 1◦ grid cell for a specific month. Observations

having zero burned area and zero fire pixels (“zero-zero” observa-

tions) were not included in the analysis and are not reflected in the

tabulated values of N . All correlations are highly significant with a

probability p≪0.001.

Linear (Eq. (2)) Tree

Region α (km2/pixel) r N r

Boreal North America 1.4 0.69 1018 0.85

Temperate North America 0.84 0.94 982 0.98

Central America 0.43 0.73 301 0.85

NH South America 1.0 0.78 352 0.85

SH South America 0.29 0.35 4034 0.56

Europe 3.1 0.91 225 0.95

Middle East 0.40 0.34 215 0.78

NH Africa 5.2 0.86 910 0.90

SH Africa 2.9 0.60 1670 0.73

Boreal Asia 1.3 0.90 2104 0.94

Central Asia 6.6 0.85 282 0.92

South Asia 2.9 0.75 531 0.83

Equatorial Asia 0.49 0.71 192 0.78

Australia 3.4 0.82 5563 0.89

This is not surprising given that, in most fire susceptible ar-

eas, woody-herbaceous gradients (rather than, say, woody-

bare gradients) are more often the norm. The variation in α

with respect to bare cover was generally much weaker except

in Australia, where fires are common along gradients of bare

and herbaceous cover. In tropical forests (e.g., South Amer-

ica), there was no significant relationship between α and tree

cover, and in boreal forests α slightly increased with increas-

ing tree cover.

We also examined how α varied with respect to mean fire-

pixel cluster size. We partitioned the observations for each

region into different ranges of mean cluster size and fitted

Eq. (2) to each of the resulting subsets. We found that, in

general, the effective burned area per fire pixel increased very

rapidly as cluster size increased (Fig. 5).

3.2 Regression tree approach

The analysis in the previous section shows that vegetation

fraction (tree [Tf], herbaceous [Hf], bare [Bf]) and fire clus-

ter size (Cf) are important predictive variables that should

potentially appear in an empirical relationship linking active

fire counts to area burned. We may write such a relationship

very generally as

A(i, t) = g[Tf(i, t), Hf(i, t), Bf(i, t), Cf(i, t), Nf(i, t)] (3)
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Fig. 4. Effective burned area per Terra MODIS fire pixel (α) as a

function of mean percent tree cover for six of the 14 regions con-

sidered in this study.
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Fig. 5. Effective burned area per Terra MODIS fire pixel (α) as a

function of mean fire-pixel cluster size for five of the 14 regions

considered in this study.

where g is an unknown function. It is not obvious, how-

ever, what particular functional form one should assume for
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Fig. 6. 2001–2004 mean monthly fire persistence computed from Terra MODIS active fire observations.

g that will be optimal in every region. Based on a separate

exploratory analysis, we believe that a globally optimal func-

tion is likely to require an unreasonably large number of free

parameters. We therefore pursued the conceptually simpler

approach of expressing the relationship in Eq. (3) as a regres-

sion tree for each region.

A regression tree is an alternative model for expressing

a relationship between a continuous dependent variable y

and one or more predictive (or explanatory) variables xi

(Breiman et al., 1984). The tree per se consists of a set

of rules of the form “if x1<1 and x2<2 then y=3” which

supply an appropriate value for y over the range of the xi .

These rules are constructed by partitioning (or splitting) ob-

servations along the xi into two subsets in such a way as to

maximize the reduction in an error metric (or “deviance”).

Following the split, the homogeneity of the resulting pair of

subsets is increased. This procedure is applied recursively to

each subset until certain stopping criteria are met (typically

the number of remaining observations becomes too small,

or the reduction in deviance becomes insignificant). The re-

sulting binary tree consists of splits (e.g., “if x1<1”), and

leaves (or terminal nodes) in which the dependent variable

is assigned a value. Following tree construction, pruning is

usually applied to eliminate overfitting that would otherwise

degrade the predictive ability of the tree. During this process,

terminal nodes having little predictive robustness are elimi-

nated through the use of a cost-complexity function (Breiman

et al., 1984).

For this study we used a more flexible form of regres-

sion tree which models the dependent variable using a lin-

ear regression in each terminal node (Breiman and Meisel,

1976). Trees built in this manner are usually smaller and are

also often easier to interpret. The particular linear model we

used was simply that in Eq. (2). To help ensure the resulting

fit was robust, we required a minimum of 30 observations

within each terminal node. (By “observation” we are refer-

ring to the corrected fire pixel counts, 500-m burned area,

mean fire-pixel VCF fractions (tree, herbaceous, bare), and

mean fire-pixel cluster size within a single 1◦ grid cell for a

single month.)

During tree construction, we permitted splitting on all

five predictive variables appearing in Eq. (3). These vari-

ables are clearly not independent given their constraints

(Tf+Hf+Bf=100%, Cf≤Nf), and that, within the tropics,

larger fire clusters tend to occur in regions having higher

herbaceous cover. This multi-collinearity will have no im-

pact on the predictive ability of the regression trees that we

derive, but it does mean that the final choice of splitting vari-

able will be more or less arbitrary in the event two such vari-

ables yield comparable reductions in deviance following a

trial split. When interpreting the final trees, therefore, one

should not attach too much significance to the fact that, say,

tree cover was selected as the splitting variable rather than

herbaceous cover.

3.3 Tropical closed-canopy forest correction

As mentioned in Sect. 2.2, accurate mapping of burned areas

within tropical closed-canopy forest is extremely challeng-

ing. In brief, obscuration of the surface by persistent cloud

cover and the tree canopy can lead to significant errors of

omission. This problem is not unique to the MODIS instru-

ment. A further complication occurs in tropical areas under-

going deforestation: where fire is used in the deforestation

process (e.g., South America and Equatorial Asia), burning

is usually preceded by mechanical clearing and aggregation

of the resulting slash. Consequently, despite the fact that a

relatively large area of forest has been cleared and burned,

the spatial extent of the burn scar per se is much smaller than

the area cleared. Satellite-based maps of burn scars under

these conditions are therefore likely to systematically under-

estimate the effective area burned and fuel consumed. To

help rectify this in our burned area product, we attempt to use

information about fire persistence and tree cover to specify

www.atmos-chem-phys.net/6/957/2006/ Atmos. Chem. Phys., 6, 957–974, 2006



964 L. Giglio et al.: Global estimation of burned area

C � 2.3

C � 1.9

C � 1.6

1.16 N

368

2.62 N

201

3.82 N

156

H � 73.5

5.07 N

75

6.70 N

110

Fig. 7. Regression tree constructed for Northern Hemisphere Africa

with Terra MODIS active fire data. Terminal nodes (leaves) are

shown in boldface. The left fork is taken when the condition at

a split is met. The numbers adjacent to each branch leading to a

terminal node indicate the total number of observations assigned

to the node during construction. To reduce clutter in the figure,

subscripts have been dropped from the variables Tf (percent tree

cover), Hf (percent herbaceous cover), Bf (percent bare ground), Cf

(mean fire-pixel cluster size), and Nf (corrected fire pixel counts).

Coefficients of Nf in terminal nodes have units of km2/pixel.
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Fig. 8. Same as in Fig. 7 but for Boreal North America.

locations and time periods within the tropics for which a

fixed correction factor, κ , will be applied to the burned area

predicted via the regression trees. It may prove beneficial,

in the future, to vary κ as a function of fire persistence in

these areas, but we lack sufficient data to resolve this issue at

present.

Our method of calculating fire persistence relied on the

same subdivision of individual 1◦ grid cells into a fine grid

of ∼1-km cells with which we identified fire-pixel clusters

(Sect. 2.1). For each 1-km cell, we counted the number

of days on which fires were detected during the particular

T � 18.5

C � 6.2

N � 438.0

B � 1.5

1.73 N

205

4.01 N

3886

5.45 N

32

C � 11.4

3.68 N

269

2.40 N

60

C � 5.9

H � 70.5

H � 63.5

1.15 N

382

2.28 N

249

3.08 N

383

1.59 N

97

Fig. 9. Same as in Fig. 7 but for Australia.

month being processed. By averaging the number of days

for all 1-km cells affected by fire, we computed the mean fire

persistence (in days), denoted Pf, for each 1◦ grid cell on a

monthly basis In Fig. 6 we show the climatological average

of the monthly means (weighted by the number of fire pix-

els each month) from January 2001 through December 2004.

Perhaps most obvious is the high persistence in Boreal North

America, Boreal Asia, and the American Pacific Northwest,

a consequence of the higher fuel loads and lower fire spread

rates in the forested areas of these regions. Smaller patches

of higher persistence are present in the Middle East region as

well, where some residual gas-flare contamination remains

in our MODIS fire data. Of most interest here, however, is

the high persistence evident in areas of SH South America

and Equatorial Asia in which deforestation is actively occur-

ring. In these regions of slash-and-burn conversion, fire is a

critical element of the deforestation process. It is also evi-

dent that high fire persistence does not occur in deforestation

hot spots, such as Central Africa, where “slash-and-rot” con-

version is commonplace (Achard et al., 1998).

Based on the previous discussion, it is relatively straight-

forward to identify grid cells within tropical rainforest for

which application of the correction factor is appropriate; sim-

ple thresholds applied to tree cover and fire persistence, and

restricted to the appropriate tropical regions, will suffice. Se-

lection of an explicit value for κ , however, is more diffi-

cult. Although we lack the necessary data to adjust for cloud

and canopy obscuration, we can at least use rough estimates

to help correct for deforestation bias. Field observations

suggest that forest clearings are typically one to ten times

larger than the slash piles destined for burning, depending on

whether the slashing was performed manually or mechani-

cally (Douglas Morton and Wilfrid Schroeder, personal com-

munication). We chose the geometric mean of these limits,

yielding κ≈3.2. This is probably a more reasonable choice

than the larger arithmetic mean as manual clearing is more

prevalent in the tropics as a whole. In implementing the
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correction, we identified those monthly grid cells within the

tropics for which Tf(i, t)≥50% and Pf(i, t)≥1.2 days. For

tropical grid cells satisfying these conditions, we multiplied

the burned area predicted with the appropriate regression tree

by κ .

4 Results

4.1 Regional regression trees

Regression trees were grown and pruned for each region; rep-

resentative examples of the final result obtained for three of

the fourteen regions are shown in Figs. 7 through 9. The

number of terminal nodes in the final trees ranged from

two (Europe and Equatorial Asia) to nine (Australia and SH

South America). This wide range in size primarily reflects

differences in the quantity of calibration data available for

each region, and secondarily as an indication of the regional

complexity in the burned-area/fire-count relationship.

Taking into consideration our previous discussion of the

interpretation of regression trees grown from correlated vari-

ables (Sect. 3.2), we note that, in agreement with our prelim-

inary analysis, both vegetation cover and fire-pixel cluster

information play an important predictive role in the estima-

tion of burned area. Considering the splits in all 14 regres-

sion trees together, 41 (68%) involved one of the three VCF

variables, while 17 (28%) occurred on the mean fire-pixel

cluster size. A detailed analysis of the final trees revealed

that the reduction in deviance achieved by splitting on Cf

was often much larger than that achieved by splitting on tree

and herbaceous cover, indicating that the predictive utility of

mean cluster size is not simply an artifact of its correlation

with the VCF variables in the tropics. Only two splits (3%)

occurred on Nf, primarily to deal with mild nonlinearities

in the burned-area/fire-count relationship for SH Africa and

Australia.

Figure 10 shows plots of predicted versus observed burned

area for each region; the corresponding correlation coeffi-

cients are listed in Table 2. Regions showing the great-

est agreement between predicted and observed burned area

were Boreal Asia (r=0.94 with N=2104 observations), Cen-

tral Asia (r=0.92, N=282), Europe (r=0.95, N=225), and

Temperate North America (r=0.98, N=982); for these cases

the predictions of area burned are comparatively accurate

and precise. The region having poorest agreement was SH

South America (r=0.56, N=4034), where predicted values

of burned area suffer from large random and systematic er-

rors. This is, at least in part, probably a consequence of the

lower quality in 500-m burned area maps available for this

region (Sect. 2.2). The remaining nine regions lie between

these two extremes, yielding comparatively accurate, but im-

precise, estimates of monthly burned area.

4.2 Uncertainties

Since we ultimately intend to use the regression trees to pro-

duce global monthly burned area estimates for input into

coarse resolution models, it is important that uncertainty esti-

mates be provided. A natural approach for quantifying these

uncertainties would be through prediction confidence inter-

vals computed for the fit of Eq. (2) within each terminal node

of the regression tree. However, this approach is problematic

in practice since the variance in burned area is not constant

but instead increases as one considers larger burned areas.

This behavior is characteristic of many physical variables and

is referred to as heteroskedasticity in the statistical literature.

Heteroskedasticity violates the constant-variance assumption

of ordinary least squares fitting and, if ignored, may lead to

inaccurate statistical error estimates for the fit.

Methods for dealing with heteroskedastic variables

(weighted least squares, nonlinear data transformation) in-

crease the influence of low-variance observations on the

fit, while simultaneously decreasing the influence of high-

variance observations. For our purposes this is undesirable.

While it is true that the observations of very small burned ar-

eas have very low variability in an absolute sense (but very

high variability in a relative sense), it is also true that these

points are usually of less interest to most users. (An im-

portant exception is the burning of aggregated forest slash.

As discussed in Sect. 3.3, such fires can consume prodigious

quantities of biomass yet leave a very small burn scar.) In

terms of emissions and land cover conversion, it is the obser-

vations of larger burns (which have high absolute variability

but low relative variability) that are generally most important.

Compensating for heteroskedasticity will therefore have the

undesirable effect of assigning the greatest importance to the

observations of least interest to us; this will in turn introduce

biases (usually downward) in the predictions of large burned

areas.

Given the above issues, we did not correct for het-

eroskedasticity when fitting Eq. (2) but adopted an alternative

approach for estimating the uncertainties in our burned area

estimates. For the fit of Eq. (2) within each terminal node

of the regression tree, we regressed the square of the resid-

uals (i.e. the variance) against fire pixel counts. The square

root of the variance predicted by this supplementary fit then

provided a one-standard-deviation (“one-sigma”) uncertainty

estimate for all future predictions emanating from the termi-

nal node.

5 Multi-Year burned area estimates

We applied the regional regression trees to the entire archive

of high-quality Terra MODIS data to produce a monthly

global burned area data set spanning November 2000 through

mid-2005. Using these data, we calculated the 2001–2004

mean monthly area burned and the associated uncertainties
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Fig. 10. Scatter plots of burned area predicted by regional regression trees vs. “true” burned area derived from 500-m burned area maps.

Axes show area in km2.

(Fig. 11). In propagating the monthly uncertainties we as-

sumed they were random and independent, and hence added

these in quadrature. (Given the large systematic errors noted

earlier for SH South America, these estimates should be

considered lower bounds in this region. The uncertainties

in mean annual burned area suggested by Fig. 11 therefore

probably underestimate the true error.) In general, the abso-

lute uncertainties for regions characterized by large burned

areas (≥∼1000 km2/year) correspond to relative errors of

10% to 40%. In regions characterized by relatively small

burned areas (≤100 km2/year), the absolute uncertainties

typically correspond to much higher relative errors of 50%

to 100%.

In Table 3 we show the annual area burned within each re-

gion for the years 2001–2004. The most extensive burning

consistently occurred in northern hemisphere (NH) Africa,

with well over 106 km2 burned in this region each year. Over

this four-year period substantial interannual variability – here

arbitrarily defined as having at least one year of burned area

varying by more than 50% of the four-year mean – occurred

in Boreal North America, Boreal Asia, Equatorial Asia, and

Australia. The interannual variability of burned area in NH

Africa exceeded the annual area burned in all other regions,

except SH Africa and Australia, over all four years. Taken

together, the total area burned in northern- and southern-

hemisphere Africa and Australia from 2001–2004 comprised

80% of the total area burned globally.

6 Evaluation

Rigorous validation of our global burned area data set re-

quires independent, ground-truth quality maps of burn scars

from representative locations over the entire globe. At

present there is a paucity of such data, especially data that

encompasses the monthly, 1◦ scale of our estimates. For ex-

ample, global validation using direct estimates of burned area

from Landsat imagery is limited by high data volumes and
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Fig. 11. 2001–2004 mean annual burned area derived from Terra MODIS active fire observations (top), and accompanying one-sigma

uncertainties (bottom), expressed as the fraction of each grid cell that burns each year. One-sigma uncertainties were obtained by adding our

spatially-explicit, monthly uncertainty estimates (assumed to be independent and random) in quadrature (Sect. 5). The estimation of monthly

uncertainties is described in Sect. 4.2.

Table 3. 2001–2004 estimated annual area burned for the regions used in the study, with the mean of the relative errors (MRE) for the

individual years shown in the rightmost column.

Area Burned (×104 km2=Mha)

Region 2001 2002 2003 2004 MRE (%)

Boreal North America 0.4 2.6 2.3 4.0 8

Temperate North America 1.4 1.7 1.5 1.2 4

Central America 1.8 2.2 2.9 1.8 8

NH South America 4.4 3.6 4.8 3.8 6

SH South America 12.4 12.7 10.8 13.4 5

Europe 2.9 1.6 2.6 1.9 4

Middle East 0.6 0.5 0.4 0.4 8

NH Africa 153.2 135.2 125.5 129.8 2

SH Africa 84.0 82.4 79.6 75.3 3

Boreal Asia 6.3 9.3 14.5 4.9 3

Central Asia 16.5 26.7 17.1 18.9 4

Southeast Asia 10.8 10.2 8.4 16.1 7

Equatorial Asia 0.8 3.4 1.4 2.9 9

Australia 78.7 58.9 24.8 44.9 2
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Fig. 12. Burned area predicted by regression tree each year for

individual Canadian provinces during 2001–2004, versus annual

provincial totals compiled by the Canadian Interagency Forest Fire

Centre (http://www.ciffc.ca/). Error bars represent one-sigma un-

certainties in predicted values.

temporal discontinuities. A single Landsat scene provides

coverage over an area approximately 180 km by 180 km in

size, spanning in entirety at most a single 1◦ grid cell. When

combined with the 16-day Landsat repeat cycle, it is difficult

to unambiguously assign burned area to a specific calendar

month. A practical (but more limited) alternative, which we

describe here, is to compare our estimates of burned area to

existing independent inventories. Results are summarized by

region.

6.1 Canada

We compared our burned area estimates to independent es-

timates compiled by the Canadian Interagency Forest Fire

Centre (CIFFC). These data are provided on a yearly ba-

sis from 2001–2004 for nine Canadian provinces (British

Columbia, Alberta, Manitoba, Newfoundland and Labrador,

Northwest Territories, Ontario, Quebec, Saskatchewan, and

the Yukon Territories). A plot of predicted versus CIFFC

burned area (Fig. 12) shows a very strong linear relationship

(slope=0.70, r=0.89, p≪0.001), with some degree of under-

estimation for very large burned areas. This bias might in

part be explained by the fact that ground-based and aerial

surveys often record only the outermost perimeter of burn

scars.
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Fig. 13. Total predicted burned area within the United States for the

years 2001–2004 versus annual totals compiled by the National In-

teragency Fire Center (http://www.nifc.gov/stats/index.html). Error

bars represent one-sigma uncertainties in predicted values.

6.2 United States

We compared annual nationwide burned area statistics (in-

cluding Alaska) compiled by the National Interagency Fire

Center (NIFC) for the years 2001–2004 (Fig. 13). The two

data sets are strongly linearly related (slope=0.83, r=0.91,

p=0.093), although there is again a modest bias towards un-

derestimation in large fire years. As with Canada, this bias

might be partly explained by the manner in which large burns

are surveyed. Considering the NIFC statistics as truth, the

mean absolute percent error (MAPE) of our estimates is 13%.

6.3 Russia

We compared the total area burned in Russia for 2001 and

2002 to estimates produced by Sukhinin et al. (2004) from

satellite data (Table 4). For 2001, a year of somewhat lower

fire activity, our estimates were about 26% larger. For 2002

both totals agree to within a few tenths of a percent.

6.4 World

Our estimates of the total global annual area burned calcu-

lated for the years 2001–2004 range from a low of 2.97 mil-

lion km2 in 2003 to a high of 3.74 million km2 in 2001. Al-

though this does not qualify as an evaluation, we compared

these results to the GBA2000 and GLOBSCAR products

available for the year 2000 (Table 5). Despite the fact that

we are comparing different years, our annual totals are only

0.3% to 27% higher than the total obtained with GBA2000.
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Table 4. Comparison of predicted annual area burned in Russia

with estimates of Sukhinin et al. (2004).

Area Burned (×104 km2=Mha)

Year This study Sukhinin et al. (2004)

2001 9.6 7.56

2002 12.1 12.1

2003 16.0 –

2004 6.9 –

Table 5. Comparison of global annual area burned obtained from

the GBA2000 (Tansey et al., 2004) and GLOBSCAR (Simon et al.,

2004) data sets, and estimated using the calibration approach de-

scribed in this paper.

Area Burned

Source Year (×106 km2)

GBA2000 2000 2.93

GLOBSCAR 2000 1.94

This study 2001 3.74

2002 3.51

2003 2.97

2004 3.19

2001–2004 mean 3.35

GBA2000 Nov–Dec 2000 0.69

GLOBSCAR Nov–Dec 2000 0.37

This study Nov–Dec 2000 0.91

They are, however, substantially above the annual total ob-

tained from GLOBSCAR, by a minimum of 51% and as

much as 92%. Confining the comparison to November and

December 2000, the only time period during which all three

data sets overlap, our total burned area (0.91 million km2) is

about 32% higher than that of GBA2000, and 144% higher

than that of GLOBSCAR. Thus, even if the 2002–2003 pe-

riod corresponding to the weak El-Niño Southern Oscillation

is not considered, the global burnt area estimate derived here

is significantly higher than the GLOBSCAR estimate.

7 Application to other sensors

Clearly any active-fire calibration technique must be tuned

to a specific sensor to compensate for differences in the char-

acteristics of the sensor (e.g., spatial resolution), as well as

the temporal sampling afforded by the platform on which

the sensor resides. The latter issue is especially relevant be-

cause an increase in the rate at which “snapshots” of an active

fire are made will generally increase the correspondence be-

tween a map of cumulative fire pixels and the spatial extent

Table 6. Swath width (w), orbit inclination angle (γ ), and temporal

sampling frequency (relative to that of the MODIS instruments) at

the Equator for three sensors on-board operational satellites.

Sensor w (km) γ (◦) Relative Sampling Frequency

MODIS1 2330 98 1

VIRS2 830 35 0.66

ATSR3 512 99 0.22 (day)

0.11 (night)

1 Values applicable to Terra and Aqua MODIS instruments.
2 Post August 2001 orbit boost.
3 Entries are also applicable to the Advanced ATSR (AATSR).

of the burn scar. It is instructive, therefore, to consider the

effective temporal sampling rate of a particular instrument in

gauging its suitability for providing burned area estimates via

active-fire calibration. For a sensor on board a satellite hav-

ing a polar or precessing orbit, a convenient measure of this

sampling frequency is the daily equatorial coverage, denoted

ceq, which is simply the fraction of the Equator imaged by

the sensor each day, irrespective of exactly where along the

Equator the imaging occurs. For a swath width of w, this

quantity is given by

ceq =
w

πRE sin γ

(

24 h

T

)

, (4)

where RE is the radius of the Earth, γ is the orbit inclina-

tion, and T is the orbital period (in hours). Values of the

daily equatorial coverage for the MODIS, VIRS, and ATSR

instruments (normalized to that of MODIS) are listed in Ta-

ble 6. For the ATSR we explicitly considered the effect of re-

stricting observations to nighttime overpasses, which halves

the coverage predicted by Eq. (4), since the ATSR nighttime

fire product is restricted in this manner.

Comparing the VIRS and MODIS instruments, the former

provides about 34% less equatorial coverage; although the

orbit inclination of the TRMM satellite on which VIRS re-

sides increases the coverage by a factor of about two, the

VIRS swath is narrower by a factor of about three. This

suggests that a calibration-based technique based on VIRS

active fire data is likely to yield lower quality estimates of

burned area than for MODIS. More robust estimates are ex-

pected at higher subtropical latitudes where the VIRS sam-

pling frequency increases by about a factor of three (Giglio

et al., 2003b). However, the coarser VIRS spatial resolution

(2.5 km) will probably degrade the quality of any calibra-

tion relationship involving cluster size, regardless of latitude,

since VIRS fire-pixel clusters, being composed of larger

areal units, provide a narrower range of unique values over

which to discriminate different burned areas.

A comparison between MODIS and ATSR is more

straightforward since these instruments have virtually
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identical spatial resolution. Given the narrower swath, com-

bined with the need to restrict fire observations to nighttime

overpasses, the ATSR provides nearly an order of magni-

tude fewer opportunities to record active fire activity at the

Equator. In the context of our calibration approach, this is

equivalent to discarding nearly 90% of the MODIS active

fire pixels recorded in each grid cell each month and repeat-

ing the calibration procedure. In addition, clusters of cumu-

lative ATSR fire pixels are also likely to be smaller and more

fragmented since the time interval between successive satel-

lite overpasses is about ten times longer, thus reducing the

utility of cluster-related information as a splitting variable.

The combination of these factors is likely to yield larger un-

certainties in estimates of burned area produced by calibrat-

ing ATSR active fire observations. Nevertheless, the ATSR

has been shown to provide very useful estimates of the sea-

sonal and interannual variability in burned area (e.g., Schultz,

2002).

8 Conclusions

We have presented a method for estimating monthly burned

area globally at 1◦ spatial resolution using Terra MODIS ac-

tive fire observations and ancillary vegetation cover informa-

tion. Using regional regression trees, these data were cali-

brated to burned area estimates derived from 500-m MODIS

imagery based on the conventional assumption that burned

area is proportional to counts of fire pixels under specific

conditions. Traditionally, the constant of proportionality (α)

has either been held fixed, or adjusted based on a single

vegetation-related parameter. Neither practice is satisfactory

at a global scale. We propose a more flexible approach in

which α is permitted to vary as a function of both tree and

herbaceous vegetation cover (or alternatively bare ground

fraction), and the mean size of monthly cumulative fire-pixel

clusters within each 1◦ grid cell. Though we found this to be

usually unnecessary, we also allowed α to vary with fire pixel

counts to accommodate slight deviations from the assump-

tion of linearity. The exact form of the functional dependence

of α on these predictive variables was not specified a priori,

but was constructed through recursive partitioning and ex-

pressed in terms of the splits and leaves of a regression tree.

In addition to their considerable flexibility, regression trees

offer the advantage of readily accommodating additional ex-

planatory variables on a trial basis.

Recognizing limits in our ability to measure burned area

in closed canopy tropical forests, we used information about

monthly fire persistence and tree cover to identify locations

and time periods within the tropics requiring the application

of a fixed correction factor to the burned area predictions ob-

tained from the regression trees.

Regions showing good agreement between predicted and

observed burned area included Boreal Asia, Central Asia,

Europe, and Temperate North America, where the estimates

produced by the regression trees were relatively accurate and

precise. Poorest agreement was found for SH South Amer-

ica, where predicted values of burned area are both inaccu-

rate and imprecise. The poor result obtained in this region is

most likely a consequence of multiple factors that include

extremely persistent cloud cover and a degradation in the

quality of the 500-m burned area maps used for calibration.

Agreement in the nine remaining regions fall between these

two extremes, yielding comparatively accurate, but less pre-

cise, estimates of monthly burned area.

We used the regional regression trees to produce multi-

year, global burned area estimates on a monthly basis from

the current archive of Terra MODIS active fire data. An-

nual totals derived from these data showed good agreement

with independent annual estimates available for nine Cana-

dian provinces, the continental United States, and Russia.

Using these data, we estimated the global annual burned

area for the years 2001–2004 to vary between 2.97×106 and

3.74×106 km2, with the maximum occurring in 2001. The

most extensive burning consistently occurred in NH Africa,

with well over 106 km2 burned in this region each year.

Over this four-year period significant interannual variability

occured in Boreal North America, Boreal Asia, Equatorial

Asia, and Australia. Taken together, the total area burned

in northern- and southern-hemisphere Africa and Australia

from 2001–2004 comprised 80% of the total area burned

globally.

We reiterate that we are not promoting our regression-tree

approach (or, indeed, any active-fire calibration approach) as

a substitute for burned area maps generated from direct ob-

servations of burn scars. Rather, for some applications, sta-

tistical coarse-resolution burned area estimates derived from

MODIS active fire observations can serve as a useful interim

product until long-term burned area data sets become avail-

able.

Appendix A Burned area detection algorithm

Burned area maps were produced using a prototype algo-

rithm (Giglio et al., 20061) that uses the 500-m MODIS at-

mospherically-corrected Level 2G surface reflectance prod-

uct (Vermote et al., 2002), the MODIS Level 3 daily active

fire products (Justice et al., 2002), and the MODIS Level 3

96-day Land Cover Product (Friedl et al., 2002). The algo-

rithm, which is a major extension of an earlier method pro-

posed by Roy et al. (1999), detects persistent changes in a

daily vegetation-index (VI) time series derived from MODIS

band 5 (1.2 µm) and band 7 (2.1 µm) surface reflectances,

respectively denoted ρ5 and ρ7, where

VI =
ρ5 − ρ7

ρ5 + ρ7
. (A1)

1Giglio, L., Descloitres, J., Loboda, T., Csiszar, I., and Kendall,

J.: An Active-Fire Based Burned Area Mapping Algorithm for the

MODIS Sensor, in preparation, 2006.
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This index shows a significant decrease following a burn,

and provides somewhat better discrimination of burned ar-

eas than the more commonly used Normalized Burn Ratio

(NBR), an index defined similarly but with Landsat Thematic

Mapper (TM) bands 4 (0.83 µm) and 7 (2.2 µm) (Miller and

Yool, 2002).

The general detection approach is to first derive a sum-

mary map of persistent change from the VI time series, and

then use spatial and temporal active fire information to guide

the statistical characterization of burn-related and non burn-

related change within the scene. This information is used to

estimate probabilistic thresholds suitable for classifying the

scene into burned and unburned pixels. The approach ul-

timately identifies the date of burn, to the nearest day, for

pixels within individual MODIS Level 3 tiles (Wolfe et al.,

1998) at 500-m spatial resolution.

A1. Composite change summary

The algorithm first examines the daily VI time series by con-

sidering observations within two adjacent sliding temporal

windows of duration W=10 days; these windows are re-

ferred to as the candidate pre-burn and candidate post-burn

windows, respectively. Within the k’th candidate pre-burn

window, the trimmed mean [VIpre(k)] and trimmed standard

deviation [σpre(k)] of all observations are computed. Statis-

tics for the k’th candidate post-burn window are similarly

computed and denoted VIpost(k) and σpost(k). The index k

references the position within the daily time series on which

the sliding windows are aligned (incrementing k moves both

windows forward in time by one day). The time series of ac-

tive fire observations for the pixel under consideration is also

examined, and the occurrence of any such pixels in the time

series is flagged.

A measure of temporal separability S(k), defined as

S(k) =
1VI(k)

σpre(k) + σpost(k)
, (A2)

where 1VI(k)=VIpre(k)−VIpost(k), is evaluated for

all k. For each pixel the maximum separability

max(S(k))=S(kmax) is identified. The date associated

with the maximum change is the midpoint of the interval

between the last observation in the pre-burn window and the

first observation in the post-burn window. The time series

for each pixel of the MODIS tile is processed, yielding

composite images of 1VI(kmax) and VIpost(kmax), and a

composite map of active fire pixels detected during the time

period being processed.

A2. Identification of training samples

Having generated the composite imagery just described, a

simple procedure is used to extract representative burned

and unburned samples within each land cover class l present

within the MODIS tile. To identify probable burned pix-

els, the composite active fire map is morphologically eroded.

This eliminates the smallest fire-pixel clusters, which are

less likely to be accompanied by a detectable burn scar

(cf. Fig. 1). Burned training samples of 1VI(kmax) and

VIpost(kmax) are drawn from those pixels remaining in the

eroded fire mask, and are partitioned by land cover class.

In a complementary manner, dilating the composite active

fire map provides a mask of pixels that are unlikely to have

burned during the time period being processed, and training

samples of unburned pixels for each land cover class are thus

identified. Here more care is required since the active fire

map will often greatly under-represent the spatial extent of

large burns, so the radius of the dilation kernel is increased

in proportion to the size of individual fire-pixel clusters. This

is again consistent with the empirical observation that large

burns tend to be accompanied by large clusters of active fire

pixels, and vice versa.

A3. Classification of unambiguous burned and unburned pix-

els

The training samples extracted in the previous step are now

used to derive conservative dynamic thresholds to classify

unambiguous burned and unburned pixels. Pixels with land

cover class l for which 1VI(kmax) is less than the upper quar-

tile of 1VI(kmax) for all unburned training pixels in land

cover class l are immediately labeled as unburned. Pixels

with land cover class l for which 1VI(kmax) is greater than

the upper quartile of 1VI(kmax), and VIpost(kmax) is less

than the lower quartile of VIpost(kmax) for all burned train-

ing pixels in land cover class l are immediately classified as

burned. Prior to performing this step an initial separability

test is performed for each land cover class: if the distributions

of 1VI(kmax) for the burned and unburned training samples

show excessive overlap, all pixels within land cover class l

are immediately classified as unburned and the quartile tests

are not performed.

This step typically provides a final classification for 60%

to 80% of all image pixels, resulting in a large reduction in

the computational effort needed to process pixels in the re-

mainder of the scene.

A4. Classification of remaining pixels

Following the inital labeling of obvious burned and unburned

pixels, one of two different approaches are then used to la-

bel the remaining unclassified pixels depending on the geo-

graphic region and time period being processed.

A4.1. Region growing

In high-latitude regions having shorter MODIS revisit peri-

ods, and at lower latitudes where the majority of the area

burned is dominated by large burn scars (>∼100 km2),

region-growing is used to identify the remaining burned pix-

els within the MODIS tile being processed. Clusters of ac-

tive fire pixels derived from the composite active-fire mask
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Fig. A1. Areas of 39 individual burn scars in Russia during 2001

and 2002 as mapped by 500-m burned area detection algorithm

versus ground truth derived manually from Landsat imagery. The

slope and intercept of the solid black regression line are 0.925 and

5.5 km2, respectively, with a correlation of 0.996.

are used as seeds to iteratively “fill in” the surrounding burn

scar. The values of 1VI(kmax) and VIpost(kmax) for unclassi-

fied candidate pixels adjacent to a seed pixel are compared to

the statistical distributions derived from the burned and un-

burned training samples. Bayes’ rule is applied to estimate

a posteriori probabilities for the candidate pixel and select

the class to which it will be assigned. Additional temporal

constraints are applied based on the burn dates of the parent

seeds. Pixels classified as burned during the current itera-

tion become seeds in the subsequent iteration. The process

continues until no new seeds are found.

A4.2. Contextual classification

In regions where the temporal sampling of active fires is less

frequent, or relatively small burns (<∼10 km2) are abun-

dant, an alternate classification approach is required. Region

growing under these conditions will usually result in large

omission errors since many smaller burns will lack active-

fire seed pixels, and a contextual classifier is employed in-

stead. In addition to using the spectral information avail-

able for the training pixels and the entire scene, the contex-

tual classifier exploits the fact that both burned and unburned

pixels tend to occur near pixels having the same burned or

unburned status. Here, a Markov Random Field (MRF), a

standard approach for modeling such spatial behavior, is em-

ployed. The MRF is defined by a probability density func-

tion that encodes the likelihood that a pixel is burned based

on the state of its eight immediate neighbors. This informa-

tion is incorporated with the spectral information provided

by 1VI(kmax) and VIpost(kmax), and each pixel not classified

during step A.3 is assigned the class (burned or unburned)

having the maximum a posteriori (MAP) probability. Es-

timation of these probabilities is performed using the iter-

ated conditional modes (ICM) method described by Besag

(1986). ICM requires a rough preliminary classification to

initiate the iterative process, and for this a naive Bayes clas-

sifier is used. The preliminary class assigned to each pixel

within land cover class l is that which has the highest a pos-

teriori probability estimated using Bayes’ rule:

pl(burned|1VI, VIpost) =

pl(1VI|burned)pl(VIpost|burned)pl(burned)

pl(VI, 1VIpost)
(A3)

pl(unburned|1VI, VIpost) =

pl(1VI|unburned)pl(VIpost|unburned)pl(unburned)

pl(VI, 1VIpost)
(A4)

(Note that the index kmax has been dropped in the above

equations to reduce clutter.) Again making use of infor-

mation provided by active fire observations, the a priori

probability of a burned pixel pl(burned) in land cover class

l is estimated as the fraction of all pixels of land cover

class l within the scene in which an active fire was de-

tected during the time period being processed. From this

pl(unburned)=1−pl(burned).

A5. Validation

At present, validation of the 500-m burned area maps has

been limited to Russia through comparison with maps gen-

erated manually from high resolution satellite imagery (Lo-

boda and Csiszar, 2004). Using 20 Landsat scenes ac-

quired between 17 August 2001 and 19 August 2002, Lo-

boda and Csiszar found good agreement between the burn

scars mapped by the algorithm with those traced manually

(Fig. A1). Validation efforts are currently being extended to

Australia and South America.
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impact of vegetation fires, detected from NOAA-AVHRR data,

on tropospheric chemistry in tropical Africa, in: Biomass Burn-

ing and its Inter-Relationships with the Climate System, edited

by: Innes, J. L., Beniston, M., and Verstraete, M. M., Dordrecht:

Kluwer Academic Publishers, pp. 193–213, 2000.

Sukhinin, A. I., French, N. H. F., Kasischke, E. S., Hewson, J. H.,

Soja, A. J., Csiszar, I. A., Hyer, E. J., Loboda, T., Conard, S. G.,

Romasko, V. I., Pavlichenko, E. A., Miskiv, S. I., and Slinkina,

O. A.: Satellite-based mapping of fires in Russia: New products

for fire management and carbon cycle studies, Rem. Sens. Envi-

ron., 93, 546–564, 2004.
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