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With nearly every country combating the 2019 novel coronavirus

(COVID-19), there is a need to understand how local environ-

mental conditions may modify transmission. To date, quantifying

seasonality of the disease has been limited by scarce data and the

difficulty of isolating climatological variables from other drivers

of transmission in observational studies. We combine a spatially

resolved dataset of confirmed COVID-19 cases, composed of 3,235

regions across 173 countries, with local environmental conditions

and a statistical approach developed to quantify causal effects of

environmental conditions in observational data settings. We find

that ultraviolet (UV) radiation has a statistically significant effect

on daily COVID-19 growth rates: a SD increase in UV lowers the

daily growth rate of COVID-19 cases by ∼1 percentage point over

the subsequent 2.5 wk, relative to an average in-sample growth

rate of 13.2%. The time pattern of lagged effects peaks 9 to

11 d after UV exposure, consistent with the combined timescale

of incubation, testing, and reporting. Cumulative effects of tem-

perature and humidity are not statistically significant. Simulations

illustrate how seasonal changes in UV have influenced regional

patterns of COVID-19 growth rates from January to June, indi-

cating that UV has a substantially smaller effect on the spread

of the disease than social distancing policies. Furthermore, total

COVID-19 seasonality has indeterminate sign for most regions

during this period due to uncertain effects of other environmental

variables. Our findings indicate UV exposure influences COVID-19

cases, but a comprehensive understanding of seasonality awaits

further analysis.

COVID-19 | ultraviolet radiation | seasonality

In late 2019, a novel virus species from the family Coronaviridae,
referred to as severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), began spreading throughout China (1). Central
among SARS-CoV-2 concerns are its relatively high transmissiv-
ity and case fatality rates (2). In the ensuing months, the virus
spread globally, prompting the World Health Organization to
declare a pandemic on March 11, 2020. At the time of this writ-
ing, cases of COVID-19, the disease caused by SARS-CoV-2,
have been detected in almost every country (Fig. 1A), with the
number of confirmed global cases in the tens of millions.

Much remains unknown about COVID-19. An impor-
tant question concerns how environmental conditions modify
COVID-19 transmission. In particular, sensitivity to environ-
mental conditions that vary seasonally may allow prediction of
transmission characteristics around the globe over the coming
months and have implications for seasonal reemergence of infec-
tions (3). Prior evidence from a few other viruses suggests the
possibility of COVID-19 seasonality. For instance, H3N2, 2009
H1N1, and other strains of influenza exhibit sensitivity to local
temperature and specific humidity (4–8). Furthermore, related
strains of coronavirus and influenza are inactivated by ultra-
violet (UV) radiation (9–11), and a recent laboratory study
suggests a similar role whereby UV of a similar spectral dis-
tribution to sunlight inactivates SARS-CoV-2 on surfaces (12).

The influence of environmental conditions on population-level
COVID-19 transmission, however, remains largely unknown
(13, 14). Importantly, population-level effects capture human
behavioral responses that are typically omitted from laboratory
studies.

To estimate the influence of environmental conditions on
COVID-19 transmission we first assemble a global dataset of
daily confirmed COVID-19 cases. The collated data consist of
1,153,726 COVID-19 cases from 3,235 geospatial units cover-
ing 173 countries and five continents (Fig. 1A and SI Appendix,
section B, Tables S2 and S3, and Fig. S1), span 1 January
2020 to 10 April 2020, and have nearly global coverage since
March 2020 (Fig. 1B). We implement a wide range of data
quality control measures, including corrections to the date of
reported cases and cross-referencing across multiple sources,
to harmonize heterogeneous reporting practices across global
sources (SI Appendix, section B). For purposes of testing for het-
erogeneity in response, these case records are also combined
with data on location-specific containment policies and testing
regimes (15, 16).

We construct our outcome variable as the daily growth rate of
confirmed cases, hereafter “daily COVID-19 growth rate,” cal-
culated as the daily change in the logarithm of confirmed cases.

Significance

There is interest in whether COVID-19 cases respond to

environmental conditions. If an effect is present, seasonal

changes in local environmental conditions could alter the

global spatial pattern of COVID-19 and inform local public

health responses. Using a comprehensive global dataset of

daily COVID-19 cases and local environmental conditions, we

find that increased daily ultraviolet (UV) radiation lowers the

cumulative daily growth rate of COVID-19 cases over the sub-

sequent 2.5 wk. Although statistically significant, the implied

influence of UV seasonality is modest relative to social distanc-

ing policies. Temperature and specific humidity cumulative

effects are not statistically significant, and total COVID-19

seasonality remains to be established because of uncertainty

in the net effects from seasonally varying environmental

variables.
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Fig. 1. Global assemblage of national and subnational COVID-19 records. (A) Total confirmed cases of COVID-19 across 3,235 national and subnational

units covering 173 countries from 2 January to 10 April 2020. Darker colors indicate a higher cumulative number of confirmed cases as of 10 April 2020;

gray indicates that no data are available. Subnational COVID-19 records were obtained for the United States, Brazil, Chile, Iran, China, South Korea, and 10

European countries. Each box shows within-country heterogeneity in COVID-19 cases for countries with subnational records. (B) For the subset of countries

with at least 1,000 reported cumulative cases, the period of available COVID-19 data is shown. Data from countries that are in boldface type are available at

the subnational level, with the number of administrative units indicated by the thickness of the time series line. Circles indicate the date when cumulative

confirmed cases reach specific thresholds, with larger circles indicating higher case counts.
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Confirmed COVID-19 cases are used because data on recover-
ies and deaths are not consistently available globally. Growth
rates are analyzed because they are a well-established measure
for disease spread that reflects changes in transmission char-
acteristics (SI Appendix, section A.1). Daily COVID-19 growth
rates are assessed in relation to local population-weighted daily
temperature, specific humidity, precipitation, and UV from a
0.25◦ latitude by 0.25◦ longitude resolution weather reanalysis
dataset (17, 18).

We leverage methods from the growing “climate economet-
rics” literature, which over the last two decades has advanced
causal inference techniques to quantify potential impacts of
anthropogenic climate change (19–21), including the influence
of rising temperatures on civil conflict (22), mortality (23), agri-
cultural yields (24), and human migration (25). The goal of this
approach is to mimic controlled experiments by nonparametri-
cally accounting for confounding factors such that the variation
in environmental conditions used in the analysis is as good as
randomly assigned. Prior work, for example, has used a simi-
lar approach to isolate the role of environmental conditions on
influenza and provided evidence that low humidity contributes to
influenza mortality (26).

Although a strictly causal interpretation of results is not pos-
sible in any observational study, our research design (detailed
in SI Appendix, section A.2) addresses four key issues associ-
ated with prior observational analyses. First, a location’s pre-
vailing social and economic characteristics, which likely influ-
ence COVID-19 transmission, may also be correlated with its
average environmental conditions. For example, countries that
are cooler on average tend to have higher income per capita
(27), with the latter feature associated with more widespread
access to medical care, testing, and reporting. Indeed, a recent
review by the National Academies of Sciences, Engineering,
and Medicine notes that temperature and humidity effects on
COVID-19 remain inconclusive in part because of these cross-
sectional differences (13). We address this concern through
the use of location-specific “fixed effects,” or dummy variables,
which flexibly control for all differences in time-invariant social
and economic characteristics and data quality across geospa-
tial units (28). Fig. 2A, Left and Center illustrates how this
spatial demeaning affects our data for two sample locations—
Santiago, Chile and Paris, France—where average climatological
conditions differ strongly and where the timing and intensity
of the disease evolved distinctly. Empirical estimation relying
on the data shown in Fig. 2A, Left would conflate differ-
ences in environmental conditions across these two locations
with the many other differences between these cities, such as
baseline population density or health (Fig. 2C, discussed in
Results).

Second, within any given location, there are temporal trends in
both daily environmental conditions and the COVID-19 growth
rate, with the latter due to anticontagion policies and inherent
dynamics of transmission that are unrelated to environmental
conditions (SI Appendix, section A.1). We address the concern
that such trends may bias causal estimates through the inclu-
sion of flexible location-specific temporal controls that remove
low-frequency temporal variation in both COVID-19 and envi-
ronmental conditions. We additionally employ global-scale, day-
of-sample controls to account for any high-frequency common
shocks to the evolution of the disease or its reporting across
the globe. The resulting location-specific, high-frequency fluc-
tuations in environmental conditions after removal of trends
appear to exhibit quasi-random variation (19–21), as illustrated
in Fig. 2A, Right.

Third, a number of different environmental variables have
been postulated to affect transmission, including UV, temper-
ature, humidity, and precipitation (29–33). These atmospheric
variables are dynamically linked (SI Appendix, Fig. S3). For

instance, solar radiation is correlated with relative humidity
and precipitation through cloud formation and convection. Such
associations confound causal estimates if key variables are omit-
ted from the analysis (34). We address this concern by simul-
taneously estimating the effects of UV, temperature, humidity,
and precipitation, such that the effect of any single environmen-
tal variable is estimated after accounting for correlations with
other specified environmental variables.

Fourth, any modification of transmission will appear with
some delay in observations of confirmed COVID-19 cases. The
length of this delay between transmission and case confirma-
tion includes the incubation period as well as time required to
diagnose the disease. Prior case studies have identified the incu-
bation period to range between 4 and 7 d (35–37) and the period
between symptom onset and case confirmation to range between
2 and 7 d (38), implying a combined delay of 6 to 14 d between
transmission and case confirmation. In a population-level study
like ours, where individuals reside in diverse testing and report-
ing regimes, we expect there to be heterogeneity in lag lengths
across different individuals and regions of the world. Because
the distribution of delays across a population is unknown, esti-
mation of a population-level causal response requires a statistical
approach that accounts for the pattern of lagged effects in a data-
driven manner. To this end, we employ a temporal distributed
lag regression model that enables flexible, data-driven estimates
of the effects of environmental conditions on the COVID-19
growth rate up to 2.5 wk later, a period long enough to incor-
porate the range of delays detected by prior studies. To quantify
the total effect of environmental exposure, we sum the estimated
effects across all lags for each variable (21, 39). As is standard in
investigations of dynamic effects of the environment on socioe-
conomic conditions (40–45), we treat this “cumulative effect” as
our main statistic of interest.

Together, inclusion of these four elements in a panel regres-
sion model allows us to quantify the impact of quasi-random
daily variations in environmental conditions on the subsequent
evolution of the COVID-19 caseload (SI Appendix, section A.2
and Eq. S1). We examine the sensitivity of our conclusions to a
range of alternative statistical model formulations that, among
other things, vary the stringency of the spatiotemporal controls
and additionally control for the local timing of COVID-19 out-
breaks, testing regimes, and COVID-19 containment policies.
The ability of our statistical approach to recover the effects of
environmentally driven changes in transmission on the COVID-
19 growth rate is confirmed by applying our statistical model
to synthetic data simulated by a standard susceptible–exposed–
infected–recovered (SEIR) model with an environmentally per-
turbed transmission parameter (46), as detailed in SI Appendix,
section A.1 and Figs. S12 and S13.

Finally, we note that several elements of our statistical
approach also address concerns regarding systematic report-
ing biases with COVID-19 case data. First, our use of the
growth rate of COVID-19 cases as the outcome variable accounts
for location-specific reporting biases in the level of COVID-
19 cases. Second, time-invariant reporting biases in COVID-
19 growth rates are removed by location-specific fixed effects.
Third, inclusion of flexible country-specific time trends accounts
for time-varying differences in reporting bias across countries.
Fourth, we address remaining differences due to testing regimes
by demonstrating that our main result is invariant to control-
ling for country-level testing policy over time. Remaining chal-
lenges associated with identification of environmental effects on
COVID-19 transmission are considered in Discussion.

Results

On average across our sample, confirmed COVID-19 cases grow
at a rate of 13.2%/d (SD of 24.4%), equivalent to a doubling time
of 5.2 d. Growth rates generally decreased over the first months
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Fig. 2. Methodological approach to removing spatial and temporal bias in estimating the impact of environmental conditions on the growth rate of

confirmed COVID-19 cases. (A) Illustration of, for two example locations, how our empirical strategy isolates idiosyncratic variation in local climatological

conditions through the inclusion of semiparametric controls (i.e., “fixed effects”) in a panel regression framework (SI Appendix, Eq. S1). A, Left displays raw

time series data from Paris, France (dark color) and Santiago, Chile (light color) for UV exposure (gold), temperature (maroon), specific humidity (green),

and daily COVID-19 growth rates (gray). A, Center displays these same time series, after location-specific fixed effects have been removed. A, Right shows

the residual variation used in empirical estimation; location-specific averages, day-of-year averages, and country-specific weekly temporal variation are

removed using a suite of fixed effects described in SI Appendix, section A.2. The resulting time series no longer display average differences across space or

trending behavior within a location, thus removing the possibility that unobserved time-constant or trending variables may confound empirical estimates.

(B) Average daily growth rates in confirmed COVID-19 cases for five select countries, indexed against the number of days since the first case was detected.

Values shown are unweighted average growth rates computed across all subnational units within each country (Fig. 1). Note that increased variance in the

United States average growth rate after approximately 30 d since initial outbreak occurs due to a limited sample of counties for which confirmed cases

have been reported for greater than 30 d. (C) Estimates of the cumulative effect of UV exposure on subsequent daily COVID-19 growth rates from three

variations of the regression in SI Appendix, Eq. S1. Lines indicate the effect of changing daily average UV from the sample average of 50 kJ·m−2·h−1 to

a given value; shading shows 95% confidence intervals. In gold is the primary specification used throughout our analysis, which includes the full set of

semiparametric controls described in SI Appendix, section A.2. In teal, all spatial and temporal controls are removed from the estimation (i.e., data shown

in A, Left are used), introducing confounding variation across space and time and leading to substantial bias in the estimated effect of UV on growth rates.

In brown, location-specific fixed effects are included, while temporal controls are omitted (i.e., data shown in A, Center are used), introducing confounding

low-frequency temporal variation and again leading to a biased estimator.

of the outbreak, with the sample average growth rate falling from
15.7% during the first month of a location’s outbreak to 2.3%
in subsequent months (Fig. 2B). These declines are consistent
with the epidemiological dynamics of the virus (SI Appendix, sec-
tion A.1) and with strengthened containment efforts over time,
although they may also reflect other factors.

Applying a panel-regression model to growth rates (Materi-
als and Methods and SI Appendix, section A.2) demonstrates a
statistically significant effect whereby increases in surface UV
intensity lower subsequent COVID-19 growth rates. In our pri-
mary specification, we estimate that a 1 kJ·m

−2
·h

−1 increase in
local UV reduces local COVID-19 growth rates by 0.09 (±0.04,
P =0.01, range indicates ± 1 SD) percentage points over the
ensuing 17 d (Fig. 3A and column (col.) 3 of SI Appendix,
Table S1). The effects associated with UV are consistently neg-
ative across lags and peak in magnitude after 9 to 11 d (Fig. 3B
and SI Appendix, Fig. S5). This delay between UV exposure and
changes in the COVID-19 growth rate is consistent with the
reported time frame between exposure to the virus and its detec-

tion (36, 47, 48). The estimated UV effects imply that a sample
SD increase in UV (10.73 kJ·m

−2
·h

−1, accounting for semi-
parametric controls) reduces growth by 0.97 (±0.38) percentage
points or 7% of the sample average growth rate of 13.2%. This
amounts to an increase in doubling time of COVID-19 cases
from 5.2 d—at the average growth rate—to 5.7 d (±0.2). In
contrast, the effects of higher temperatures and higher levels
of specific humidity are of less consistent sign, with cumulative
effects over the 17-d interval being statistically insignificant and
of opposite sign to that of the lag with the greatest magnitude
(Fig. 3 A and B and SI Appendix, Table S1). A SD increase in
temperature (2.84 ◦C) and specific humidity (0.13%) leads to
small and uncertain estimated effects on the growth rate of 0.49
and 0.29 percentage points, respectively.

The effect of UV radiation on the COVID-19 growth rate
(Fig. 3 A and B) is robust to a range of alternative statistical
models, including controls for days since initial outbreak of the
virus in each location (col. 1 in SI Appendix, Table S1); linear,
country-specific time trends (col. 2 in SI Appendix, Table S1);
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Fig. 3. Empirical estimates of the relationship between COVID-19 and local environmental conditions. (A) The estimated cumulative effect of a change

in daily UV, temperature, or specific humidity on subsequent daily COVID-19 growth rates over the following 17 d. All estimates are standardized, such

that effect sizes represent percentage point changes per SD (σ). Our central estimate (SI Appendix, Eq. S1) is shown by the large circle, along with vertical

lines representing the 95% confidence interval, which is calculated allowing for arbitrary correlation of model errors within administrative units over time.

Smaller circles show estimates of the cumulative effect from alternative plausible statistical model formulations that, among other things, vary the stringency

of the spatiotemporal controls or additionally control for the local timing of COVID-19 outbreaks, testing regimes, or COVID-19 containment policies (SI

Appendix, Table S1, cols. 1–7 and Figs. S5–S7). (B) The temporal dynamics of each estimated lagged effect of UV, temperature, and specific humidity on the

daily COVID-19 growth rate over 17 d for our central estimate (thick lines, one for each coefficient in SI Appendix, Eq. S1) and alternative model formulations

(thin lines, same alternative models as in A). Coefficients have been divided by three to show per-day effects. The displayed curve is a fit to the estimated

lag coefficients from our central estimate (SI Appendix, section A.3). C replicates the cumulative effect of each weather variable on daily COVID-19 growth

rates from the primary specification in A in gold (UV), maroon (temperature), and green (specific humidity). In purple, treatment effects are reported for

the period before an administrative unit imposed any social distancing measures (large purple diamond) and after such measures were put in place (small

purple diamond). Similarly, in light green, treatment effects of each weather variable are reported for the first 30 d of the location-specific outbreak (large

green square) and for all dates after the first 30 d (small green square). Vertical lines indicate 95% confidence intervals. Arrows indicate where confidence

intervals have been truncated for display. Effects of social distancing policies and outbreak duration on individual lag coefficients for all three weather

variables are shown in SI Appendix, Fig. S8.

controls for future weather as a test of reverse causality (col.
4 in SI Appendix, Table S1); controls for temporally and spa-
tially varying policies, such as work-from-home policies, school
closures, and event cancellations (col. 5 in SI Appendix, Table S1
and col. 2 in SI Appendix, Fig. S5); controls for the extent of
COVID-19 testing availability (col. 6 in SI Appendix, Table S1);
semiparametric controls that allow for within-country differen-

tial seasonality, in addition to country-wide seasonal patterns
(col. 7 in SI Appendix, Table S1 and col. 3 in SI Appendix, Fig. S5);
removal of country-level data and addition of semiparametric
controls that allow for country-by-day specific shocks (col. 8 in
SI Appendix, Table S1 and col. 4 in SI Appendix, Fig. S5); anal-
ysis using a Poisson regression model (SI Appendix, Eq. S2) in
place of ordinary least squares (col. 9 in SI Appendix, Table S1
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and col. 5 in SI Appendix, Fig. S5); replacing specific humidity
with relative humidity (SI Appendix, Fig. S6); and changing the
number of lags included in the estimating equation (SI Appendix,
Fig. S7). We further show our estimates are insensitive to out-
liers using a procedure whereby we reestimate our cumulative
effect after systematically dropping each of our 3,235 geospatial
units (SI Appendix, Fig. S9). Finally, we estimate an alternative
model that allows for nonlinearities between weather conditions
and COVID-19 growth rates and find that the UV effect exhibits
strong linearity (SI Appendix, Fig. S10 and Eqs. S3–S4). Whereas
the significance and magnitude of the cumulative UV effect are
stable across the different model specifications, the cumulative
effects of temperature and humidity are insignificant across all
model specifications and have inconsistent sign (Fig. 3A and SI
Appendix, Table S1).

In contrast to UV estimates being insensitive to the addi-
tion or modification of controls, omitting location and time fixed
effects or omitting temporal trends leads to substantially biased
estimates of the environmental determinants of transmission
compared to our primary specification. In Fig. 2C we show three
sets of response functions relating daily average UV exposure
to its cumulative effect on subsequent daily COVID-19 growth
rates, where responses are centered relative to the in-sample
average UV value of 50 kJ·m

−2
·h

−1. When all semiparametric
controls are omitted (teal line in Fig. 2C, corresponding to data
shown in Fig. 2A, Left), the estimated effect of UV is of the oppo-
site sign to that hypothesized in prior literature and estimated
in our primary specification (gold line in Fig. 2C, corresponding
to data shown in Fig. 2A, Right). Similarly, omission of tempo-
ral controls (brown line in Fig. 2C, corresponding to data shown
in Fig. 2A, Center) overestimates the negative effect of UV on
COVID-19 growth rates, as time-trending unobservable factors,
such as changes in reporting and the general progression of the
disease, correlate with gradual changes in UV exposure. These
results highlight the empirical importance of adequately remov-
ing the influence of key confounding factors that have to date
limited the ability to determine whether and how environmental
conditions constrain the evolution of COVID-19 (13, 14).

The cumulative lagged effect of weather conditions on
COVID-19 growth rates reflects the average treatment effect
over all geospatial units and over the course of the observed pan-
demic (Fig. 3A). It can be inferred, however, that effective social
distancing policies will reduce any relationship between UV
exposure and transmission of COVID-19. Transmission must
be nonnegative; thus, any single reduction limits the scope for
further reduction. Consistent with this, we find suggestive evi-
dence that social distancing policies such as school closures,
mandatory work from home orders, and large event cancellation
regulations weaken the link between COVID-19 and weather
conditions. Specifically, using a binary policy variable indicat-
ing whether an administrative unit has any one of a set of
social distancing measures in place (SI Appendix, section B.3),
we find that the cumulative effect of 1 kJ·m

−2
·h

−1 increase
in UV falls from −0.09 (±0.04, P = 0.02) before policies are
introduced to −0.04 (±0.06, P = 0.52) after policies are put in
place (Fig. 3C).

Similarly, the effect of UV exposure on transmission of
COVID-19 is likely to decline over the course of the pandemic,
as social distancing policies are enacted and individuals gain
more awareness of and information about the virus. Indeed,
we find suggestive evidence that the cumulative effect of UV
on the growth rate of COVID-19 cases is stronger during the
first month of a population’s outbreak (−0.14 ± 0.04) than in
subsequent months (−0.08 ± 0.04). The pattern of effect atten-
uation shown in Fig. 3C is also observed for the individual lags
of temperature and specific humidity that have the largest mag-
nitude (SI Appendix, Fig. S8), although cumulative effects of
temperature and specific humidity are statistically indistinguish-

able from zero both with and without public health policies in
place (Fig. 3C).

The estimated effect of UV on the COVID-19 growth rate
has seasonal implications (Fig. 4). To illustrate the role of
changing UV in the evolution of the disease over the year,
we use the cumulative effect of UV recovered in Fig. 3A,
along with the local seasonal climatology of surface UV inten-
sity between January and June, to quantify how seasonality in
UV altered daily COVID-19 growth rates across the world (SI
Appendix, section A.4). This period, besides encompassing our
entire data period, also covers the full range of seasonal UV
exposure experienced in any location, as shown in Fig. 4A.
Between January and June, the increase in seasonal UV expo-
sure (+81.0 kJ·m

−2
·h

−1) lowered extratropical Northern Hemi-
sphere (above 23

◦ north) COVID-19 growth rates by 7.4 (±2.9)
percentage points. Over the same period, the seasonal decline in
UV (−80.7 kJ·m

−2
·h

−1) raised growth rates by 7.3 (±2.9) per-
centage points in the extratropical Southern Hemisphere (below
23

◦ south) (Fig. 4 B and C). This seasonal change amounts to an
increase in the doubling time from an average of 5.2 to 11.8 d
in the extratropical Northern Hemisphere and a correspond-
ing decrease to 3.4 d in the extratropical Southern Hemisphere.
Seasonality in UV in the coming boreal winter reverses this pat-
tern. Between June and December, our estimates imply that
COVID-19 growth rates increase by 7.8 (±3.0) percentage points
in the extratropical Northern Hemisphere and fall by 7.7 (±3.0)
percentage points in the extratropical Southern Hemisphere
from changes in UV (SI Appendix, Fig. S11). These changes in
COVID-19 growth correspond to lowering the average doubling
time to 3.3 d in northern latitudes and raising it to 12.6 d in
southern latitudes.

As a whole, the tropics display moderate seasonal changes
driven by UV, with our simulations generating an increase of
0.57 (±0.22) percentage points between January and June due
to an decrease in UV exposure of 6.3 kJ·m

−2
·h

−1. A notable
regional exception is that the onset of the South Asian monsoon
causes decreased surface UV regionally in June, thus raising
summer COVID-19 risks. We emphasize that these simulations
are merely illustrations of the potential seasonal influence of
UV. Changes in population immunity rates, genetic mutations of
the virus, and public health policies, among many other factors,
could alter the sensitivity of COVID-19 to environmental condi-
tions, causing future seasonal implications to differ from those
derived over our sample period.

Other seasonally varying climate variables may have also influ-
enced COVID-19 cases during the first 6 mo of infection, includ-
ing temperature and specific humidity (Fig. 4A), whose effects on
COVID-19 transmission rates remain uncertain. Indeed, similar
exercises for northern and southern latitudes using only Jan-
uary to June seasonality in temperature or specific humidity do
not yield changes in daily COVID-19 growth rates during these
first 6 mo that are statistically distinguishable from zero because
the cumulative effect of each variable is uncertain (maroon and
green bars in Fig. 4B). The uncertain contribution of these
variables renders the total effect of seasonality across all three
variables uncertain, with 95% confidence intervals for the cumu-
lative effect containing zero for northern and southern latitudes
(black bars in Fig. 4B). In the tropics, seasonality is smaller and
more complex but the total effect is significant between Jan-
uary to June because UV, temperature, and specific humidity
influences align.

Discussion

Using a global, harmonized dataset of daily COVID-19 cases,
we find that the daily growth rate of confirmed COVID-19 cases
responds negatively to increased UV. Importantly, variations
in the COVID-19 growth rate lag variations in UV by up to
2.5 wk, consistent with times required for incubation, testing, and
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Fig. 4. Seasonality in the simulated COVID-19 growth rate. (A) The average seasonal cycle of UV, temperature, and specific humidity for northern (above 23◦

north) and southern (below 23◦ south) latitudes. (B) The individual impacts of seasonal changes in UV (gold), temperature (maroon), and specific humidity

(green), as well as their combined effect (black), from January to June. Points indicate average simulated impacts for northern latitudes, the tropics (23◦

south to 23◦ north), and southern latitudes. Horizontal lines show 95% confidence intervals, which account for uncertainty in statistical parameters. (C)

Map of the influence of expected seasonal changes in UV alone on the COVID-19 growth rate from January to June.

reporting. The UV response is robust to a range of model specifi-
cations and controls. However, the influence of other seasonally
varying environmental conditions is not precisely estimated.
We hope that the distributed-lag, panel-regression framework
employed here may underlie further analyses of the influ-
ence of environmental conditions on COVID-19 transmission,
particularly as COVID-19 data availability improves.

Our findings are consistent with the hypothesis that UV
radiation alters COVID-19 transmission rates by more rapidly
deactivating the SARS-CoV-2 virus residing on surfaces or in
aerosol form, as suggested by recent laboratory studies (12).
We cannot rule out, however, that UV may also influence the
incubation period of SARS-CoV-2, testing rates, behavior such
as time spent indoors or socializing (49), or other disease-
transmission or monitoring properties. Our findings also indicate
that climate has a modest effect on viral transmission relative
to social distancing. Measurements of the effect of social dis-
tancing policies on COVID-19 growth early in the epidemic
(16) are 3 to 6 times larger than the influence of UV sea-
sonality that we estimate for the extratropical Southern and
Northern Hemispheres. Due to minimal seasonality in the trop-
ics, social distancing policy effect sizes are 35 to 85 times larger
than the effect of UV seasonality on COVID-19 growth that
we estimate in this region (SI Appendix, section A.4). Because
factors such as social distancing policies have a larger influ-
ence than seasonal variation in UV, and high susceptibility to
date among the global population permits for rapid transmission,
COVID-19 growth is unlikely to exhibit substantial seasonal-
ity, at least in the near term (50, 51). If COVID-19 becomes
widely established, environmental influences may become more
important for inducing seasonal variations in the growth of
infections (50).

Our study has a number of important limitations. First, as is
true in any empirical study of disease, we can only observe cases
that are confirmed. The fact that confirmed cases of COVID-
19 are likely well below the actual number of infections (52)
would not, of itself, affect estimates of the growth rate if con-
firmed cases were a constant ratio of the actual value. However,
other factors such as variations over time in the rates of test-
ing or testing procedures (53, 54) could alter observed growth
rates. In some settings, the bias in growth rates due to such time-
varying underreporting has been found to be quantitatively small
(16). Moreover, our research design ensures that such imper-
fect reporting does not systematically bias our estimated effects
of environmental conditions, provided that testing procedures
or reporting practices are uncorrelated with climatological vari-
ables (SI Appendix, section A.2). We additionally address this
concern statistically by accounting for location-specific trends
in confirmed COVID-19 cases and by controlling for the avail-
ability of COVID-19 testing at the country level (SI Appendix,
section B and Table S1), although reporting issues could
remain.

Second, it is possible that the behavioral response to ran-
dom day-to-day fluctuations in UV (and other environmental
variables) differs from the behavioral response to expected sea-
sonal changes. For example, an anomalously sunny day in March
may elicit different human behavior than a day in July with the
same UV exposure. It may be possible to estimate such state-
dependent effects after the accrual of multiple seasons of data.
There is also a potential concern that the slow response of the
dynamic system of the disease would damp the amplitude of
the response to high-frequency day-to-day environmental fluctu-
ations. We find using stochastic simulations of the SEIR model,
however, that simulated UV-induced variations in transmission
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are generally insensitive to the frequency of perturbations (SI
Appendix, section A.1 and Fig. S13G).

Third, some studies suggest a relationship between air pol-
lution and COVID-19 transmission and mortality (55–58).
Although it is theoretically possible that the negative effect of
UV that we recover is partially explained by air pollution atten-
uating UV and increasing COVID transmission, this is unlikely
to be the case, given that day-to-day variation in UV is driven
primarily by changes in cloud cover, with much smaller contri-
butions coming from variations in ozone, aerosols, and water
vapor (59).

Finally, although we know of only one publicly available lab-
oratory study of the UV–COVID-19 transmission relationship
(12), we view our approach as complementary. Although lab-
oratory studies isolate the biology of virus transmission, our
statistical approach using observed COVID-19 cases captures
those channels as well as behavioral adjustments individuals
make in response to short-term UV fluctuations, such as deci-
sions to spend time indoors or outside, to exercise, or to attend
social gatherings, and other activities and health investments (49,
60). As public health officials grapple with the costs and ben-
efits of a range of possible responses to the current pandemic,
quantifying the influence of both biologically direct and behav-
iorally induced modification channels is essential to building
appropriate policies.

Materials and Methods

To construct a harmonized global dataset of geolocated daily confirmed

COVID-19 cases, we assemble publicly available data from national gov-

ernments, subnational authorities, and newspapers. Subnational sources

are described in SI Appendix, Table S2; for all countries for which subna-

tional records were not publicly available at the time of writing, we use

national-level records provided by the Johns Hopkins University Center for

Systems Science and Engineering (61). No statistical methods were used to

predetermine sample size.

We link COVID-19 case data to gridded daily weather data from the Euro-

pean Centre for Medium-Range Weather Forecasts Reanalysis 5th (ERA5)

product (17) by calculating the population-weighted average UV, temper-

ature, specific humidity, and precipitation for each day across all grid cells

within each administrative unit (SI Appendix, section B). We additionally

combine case records with data on location-specific containment policies

and testing regimes from refs. (15, 16).

UV radiation is represented as including wavelengths from 200 to

440 nm. Limitations associated with the representation of radiative transfer

associated with ERA5 reanalysis prevent us from distinguishing between

UVa (400 to 315 nm), UVb (315 to 280 nm), and UVc (280 to 100 nm) effects.

Higher-energy UVc and UVb radiation may more rapidly deactivate SARS-

CoV-2 than UVa but is also more readily absorbed in the atmosphere (12,

62). A more detailed analysis of the transmission and reflection of different

types of UV in association with destruction of the SARS-CoV-2 is a fruitful

area for future research.

We statistically estimate the effect of weather on the daily growth rate

of confirmed COVID-19 cases using a longitudinal (i.e., panel) regression

model. Daily COVID-19 growth rates are estimated as a linear function of

UV, temperature, specific humidity, and precipitation exposure over the pre-

ceding 17 d in a model allowing the effect of each environmental variable to

differ across lag intervals of 3 d (SI Appendix, Eq. S1). We include indicator

variables (i.e., fixed effects) for each subnational or national administra-

tive unit, for each day of the sample, and for each country by week in the

sample. We calculate standard errors accounting for serial correlation across

days within each administrative unit. Clustering at the country level, which

further allows for spatial correlation of arbitrary form within administra-

tive units from the same country, does not discernibly change the precision

of our estimates. All P values are calculated using two-sided tests. We

test for heterogeneity in the estimated effect of weather conditions on

COVID-19 growth rates by interacting the lagged weather variables with

binary variables indicating whether containment policies are in place and

whether the observation is in the first month of the outbreak (SI Appendix,

section A.2).

Seasonal simulations (Fig. 4) use the daily seasonal climatology of UV,

temperature, and specific humidity, which we calculate by averaging daily

data from the ERA5 reanalysis product over the years 2015 to 2019 (SI

Appendix, section A.4).

Throughout the analysis daily growth rates of confirmed COVID-19 cases

are shown using units of percent. For example, a growth rate of 0.13 is

approximately equivalent to a growth rate of 13%. Changes in growth rates

are given in units of percentage points. For example, a reduction of the

growth rate by 1 percentage point would change the growth rate from

13% to 12%.

Data Availability. All data used in this analysis are compiled from free,

publicly available sources. Code and data used in the analysis are publicly

accessible in Zenodo (DOI: 10.5281.zenodo.3829621).
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