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GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR TO THE
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Abstract. The global existence and asymptotic behavior of smooth solutions to the
initial-boundary value problem for the 1-D Lyumkis energy transport model in semicon-
ductor science is studied. When the boundary is insulated, the smooth solution of the
problem converges to a stationary solution of the drift diffusion equations, exponentially
fast as t — oc.

1. Introduction. The energy transport models in semiconductor science can be de-
rived directly from the Boltzmann equation in the diffusion limit [1, 2, 8, 13, 12], or
obtained formally from the hydrodynamic equations by neglecting certain terms [13].
The common form of the energy transport model is governed by the system

on

E =+ diVJl = 0
%—f +dive =VV - Sy + W(T) inQ (1.1)

ANAV =n—C(x)
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i (v(5) - 3F) - (- 1),

=t (9() - ) (- 1)

where the unknowns p, T are the chemical potential of the electrons and the electron
temperature, respectively, V is the electrostatic potential, n is the electron density, E
is the density of the internal energy, W(u,T) is the energy relaxation term, satisfying
W, T)(T — Tp) < 0, where the positive constant Ty is the lattice temperature, J; is
the carrier flux density, Js is the energy flux density, or the heat flux, L are the diffusion
matrices, A is the scaled Debye length, and C(z) is the doping profile which represents
the background of the device. The expressions for n, E, L, and W are constitutive
relations. Various forms, corresponding to different models, are found in the literature.

In a parabolic band structure, the relations for n and E derived from the Boltzmann
equation are

with
J1

(1.2)

: 3
n="T? exp{%}, E = §nT. (1.3)

Several authors have recently studied stationary energy transport models {6, 9, 14, 4],
and have obtained useful results. For the transient case, the first results on the existence
of a weak solution and its large time behavior for a more general parabolic system were
obtained by P. Degond, S. Génieys, and A. Jiingel [7]. They employed semidiscretization
of time and used the entropy function under physically motivated Dirichlet-Neumann
boundary conditions and initial conditions. Furthermore, these authors have established
in [11] the regularity and uniqueness when the coefficient matrix L depends solely on x.
Unfortunately, however, in both [7] and [11] it is required that L be uniformly positive
definite, while the more interesting situation in physics arises when the coeflicient matrix
is merely positive definite. L. Chen and L. Hsiao [5] have studied the existence and
uniqueness of solutions in (W21(Q,))2x Le (0, 7; WqQ(Q)), when L is not a priori uniformly
positive definite. In this paper we consider an energy transport model in which L is not
uniformly positive definite.

The Lyumkis model [3] is a typical energy transport model derived by physicists. In
one space dimension we can write it directly as

ne + (]1)1 =0
3 . .
§(nT)t +(J2)e =Vahh + W

A2V, = n — C(x)

= —Q—\j‘;((nT%)z - V) )
J2 = —%7—; ((nT%)z - nT%Vz)
2 n(Ty—-T)

wW=—"— -
™ Tz
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in a parabolic domain @, = (0,1) x (0, 7], where ug is the mobility constant, and g is
the relaxation time. System (1.4) is a special case of (1.1) (1.2), with coefficient matrix

_ 2;1,0 1 1 2T
Without loss of lit ay choose 21 4 A=1to get
enera. (5] —_— = = = O ge
ithout loss of generality, we may T 3/ g

(1.6)
) () - v + D
Ve =n— C(x).

There are other models simulating semiconductor devices, namely hydrodynamic mod-
els (HD) and drift diffusion models (DD). One can find a discussion on how these are
related in [13]. In [10], L. Hsiao and T. Yang have investigated the relation between HD
and DD models by comparing their large time behavior. Since ET and DD models can
be obtained from the HD model under different scaling, one may expect that solutions
derived in the context of the ET model will exhibit similar large time behavior as those
for the HD model.

The main purpose of this paper is to study the global existence and the large time
behavior of solutions to (1.4) in one space dimension when the initial data are close
to a stationary solution of the corresponding solutions for the linear DD model. This
provides, in a certain sense, a description of the relation of these models.

We consider the following initial conditions

n{z,0) = ny(x), T(z,0) = Ty (z), (1.7)
and boundary conditions of insulation,
7100,8) =51(1,4) =0, 52(0,8) = jo(1,8) =0,  Vo(0,8) = Vo(1,¢) =0, (1.8)
which are equivalent to the boundary conditions
n.(0,t) = ny(1,1) =0, T.(0,t) =T,(1,t) =0, Ve(0,8) = Vi(L,t) =0.  (1.9)
When one considers the solutions with n > 0, T > 0, it is required for compatibility that
nrz(0) = np(1) =0, Ti,(0) =Tr,(1) =0. (1.10)

The special stationary problem we consider here is

1 N
NTE), - 2y, =0,
W) T3 (1.11)

Vew =N — C(')(m),

with boundary condition
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Equations (1.11) and (1.12) are equivalent to those governing a linear drift diffusion
model

(T()Nl _NVI)I =0,
with boundary conditions
(ToN: = NV,)(0) = 0,
{ V. (0) = V(1) =0.

The following theorem is similar to one obtained in [10].

THEOREM 1.1. Suppose 0 < C < C(x) < C and let (N.V) be the solution of (1.11)
(1.12). Then

C<N@<C, =zel01] (1.13)
M@l @0, el (114)
IVew (@) < CT‘)JF(S_QW(@—Q). xe[0,1], (1.15)
V()] |V“-(-’F()J| <C-C. z€[0,1]. (1.16)
The main theorem we obtain in this paper is
THEOREM 1.2. Assume V,(x.0) — V,(r) € H*((0,1)), T7(x) € H3*((0,1)), QQTO + f’% <

V6. Then there exists a positive constant dg such that when
(C = C) +IVa(a.0) = V(@) g+ + I T7(x) = Toll s < o,
the problem (1.6)(1.7)(1.9) has a unique solution (n,7T,V) in (0,1) x (0, 00) satisfying
In(8) = NOlas + Ve (1) = Ve(llgs + 1T 1) = Tolls < Cexp(-at),
for some positive constants C' and a.

REMARK 1.1. In the theorem, V,(2.0) is determined by nj(z) and (1.6)3.

=

) Cc T
REMARK 1.2. The ass t —
€ assumption QT() + 3Q

is strongly parabolic. In that case, there exists a positive constant 0 < A < 1, depending
on C, C, and Ty, such that

< /6 in the theorem ensures that the system

C Ty 3
+ — =2/(1 = — —A). 1.1
2T, 3C ( )‘)(2 A (1.17)

C  Tp\2 ,
(— + i) . It is easy to show that there exists

In fact, set H(u) =4(1 — /1,)(§ —u) - 57. V30
0o 30

2

C T
A, 0 < A < 1, such that H(\) = 0, provided T + % < V6. Tt is obvious that the set
o JSC

_ - C T
of C, C, and T, which satisfy T + % < V6 is nonempty. This guarantees that (1.17)
0 C

is well posed. By (1.17), we have

Cc T 3 .
u? — (2—T() + é) ] v] + 51;2 > /\(112 + 1)2).
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REMARK 1.3. In fact, in the problem discussed here, the asymptotic estimate can be
obtained in H'. However, an H? estimate must be proved in order to guarantee local
existence. We will obtain these estimates in Sec. 3.

2. Local existence and uniqueness. In this section, we discuss the local existence
of the solution. Problem (1.6)(1.7)(1.9) can be written explicitly in the following form:

n 1 n 1
—Ting, — —Tpe — —nyTy + —=T2 + —n,V,
ze T opptee T prfete g da T el

n n
— T, V. C)=0,
3 - gmee-o
T2 3 3Tz 5 Tz
Ty — =gy — ST Ty — o Tyny — — T2 + -V,
£ gy e T gt e n e AT3 =t n e (2.1)
3 2 T2 T—-1T,
v, - v moc =0,
ot 37 T3 (n=0) T3
Ver =n — Clx),

nli=o =n1, Tli=o =17,
n.(0,t) =n.(1,t) = T,(0,t) = T, (1,t) = V,(0,t) = V.(1,¢t) = 0.

Local existence is established by

1
THEOREM 2.1. Assume 0 < 2D < n; < DO<2T<T1<2Tadﬁ+3— < V6,
I nr

nr, Ty € H3((0,1)) with ||n, T||g2((0.1)) < Mo. Then there exists a 7 > 0 such that the
problem {2.1) has a unique solution (n,T) which satisfies

N |

Sup (I Tl erso,1y) + llnes Tell ro1yy) € M < oo (2.2)
<t<rt

Proof. We will use the Banach fixed point theorem. We consider the space

X = {(",T) 2 osup (In, Tl aso,1)) + lne, Tl g1 co. 1))) < M, M > M,
0<t<r (2.3)

—
D < <T<T<LT,—+ —
0<D<n<DO0<L<T<T <f}

where (0, 7) is a time interval to be fixed later. It is easy to see that the following metric
is complete in A’

e, D= | sup {llnC O, + ITCHIZ+ [ e O, + 1T 012, Yt |
0<t<r 0

Define a map F(u,v) = (n,T), for (u,v) € X, in the following way. First, for u given
above, solve the Poisson equation for V,

Ver = u — C(x), in (0,1)
Ve (0,8) = V,(1,t) = 0,

(2.4)
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and then solve the following linear system for (n,T'),

1 u 1 V. UV, U
Ng —V2Ngy — 2—1Ta:z - (_1'02 - T)nx + <—3 -
v

s vz v2 V2 4u2 %

v§ 3 1 3v2 S5v 3
T P _T:c:z:_(— x — - - VI)T
b 3 2’02 u 141}% vi £

2 3 2 T — T,
+—Ven, + —(n=C) = V2 + ——= =0,
3 32 V2
n|t=0 =ny, T|t=0 = va
nz(o’t) = le(l,t) = Tx(()’t) = Tr(l»t) = {.
(2.5)

By (u,v) € X and the Sobolev embedding theorem, all the coeflicients in the above
strongly parabolic system belong to Lo, (@) and there exists Ay > 0 such that

%+3—& 2\/(1—>\1)(g‘>\1)- (2.6)

Thus, by the classical theory for linear parabolic systems, (2.5) is solvable.
Now one has to show that F maps X into itself and F' is contractive in X, provided
7 is sufficiently small.
In the sequel, K will denote a generic constant which depends on M, D, T, and A; > 0.
By (2.4), we have

Vel, WVat] < K. 2.7)
Multiplying (2.5); by n, and integrating over [0, 1], we deduce

1 1
/ / vin? o Tz)gs/ (2 +TH+K [ (nP+T?)+ K. (28)
Multiplying (2.5)2 by T, and integrating over [0, 1], yields
th T2 / nIT + v2T2)<6/(”L +T2)+K/ n2+ T+ K. (29)
0
- . : : Th :
Combining (2.8) with (2.9), using (2.6), and choosing € = o we obtain
d [t 1 1
—/ (n2+T2)+I)\1/ P2+ TH<K | n®+T?)+K. (2.10)
0 0 0

dt

Differentiating (2.5); and (2.5)p with respect to xz, multiplying them by n, and T,
respectively, and integrating by parts, whenever necessary, we deduce
d [, 2 by 2 by 2., .2 2
G [ wemenn [ttty <k [oen2ent e LK, QD
where we have used again (2.6).
Adding (2.11) to (2.10), applying Gronwall’s inequality and integrating over [0, 7],

sup/(n + T2+ 0?2 +7?) + // (n2, + T2 +n2 + T2) < TMyKef™.  (2.12)
0<t<r
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Thus if we choose 7 sufficiently small,

T1
sup (In)l3 (o0 + IT 131 0.1y + /0 (UG D201y + 1TC D2 0,1y) < M.

0<t<n
(2.13)
The above inequality shows that both n, and Ty lie in Vo(Q, ), which implies, by the
Sobolev embedding theorem, that both n, and T, are in Lo(Q,), i.e

[nzl, Tz < K. (2.14)

The next step is to estimate n,; and T,. To that end, it is not possible to follow the
earlier procedure by differentiating (2.5) twice with respect to z and multiplying by n.,
or T;,, since we don’t have appropriate boundary conditions to allow for integration by
parts. Fortunately, we can estimate n; and 7T; in the place of ng, and T, with the help
of the equations (2.5); 2 themselves. By the boundary conditions of (2.5), we have

Differentiating (2.5); with respect to ¢, multiplying by n;, and integrating over [0, 1],

we obtain
1
U
th/ / v2 Tll«z tTy — /0 (ETzz>tnt = Gl, (216)
where by (u,v) € X and (2.7),(2.14),

1
o= [ G-l [ - s nl - e o)

1
[t Th v K [ 2T ant e TH K
0 0

IA

On the other hand,
1 1
1 u
_/ (vénm)tnt —/ (——lTxm) T
0 0o “2v2 t

1 1 1 1 1
1 u 1 1 1
= / U2n§t+/ _lTxtnxt+/ (v 2)tnznzt+/ (Uz)xtnznt+/ (V%) gngene
o 0 2v2 ) 0 L o 0
u Uu U
+/ ( ) T. et +/ ( 1 ) Tznt +/ ( T ) Tunt.
0 21)2 0 2uv2/ xt 0 2/

Combining (2.16), (2.17), and (2.18), we deduce

(2.18)

th/ t+/ v?nzt+ 1thnzt) Ss/ (n zt-l- +K/ n I+sz+nf+Tt2)+K.

(2.19)
Similarly, differentiating (2.5); with respect to t, multiplying by n¢, and integrating
over [0,1] yields

1d 2 3
Tt+/ (g—unthmmL—v%Tft)g / (n2,+T72 +K/ nl +T2 Ani+TH)+K
0
(2.20)

24t J, 2
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TA
Again, combining (2.6), (2.19), and (2.20), and choosing ¢ = _Tl’ we obtain

.1

1 1
T+ / (R AT K [+ Th et T K (22)

1d

2.dt

We can find the relation between ng,, T, and ny,T; by direct calculation, with the
help of (2.5); 2,

9 3u 9 3u
Mgy = T éTt_'_ 1H1 §H2
8uz, V2 v2 V2
V2 3 v2 3
Tog = —— — Ty — —H H,,
‘ 4 mE vi L du vt 4v3 °
1 Vo UV
H, = _<_vz - _l)nI + (% - Lavz)Tz + '%(n - ),
V2 V2 4uz 2v2 ) CEN
3 S5, 3 2 2 T-T,
H2=—( ”2u1+ ! V)T+ e+ (- C) - = V2y 0
U dvtr 03 3 vz V2
(2.22)
Thus, (2.21) implies
1 d 1 o1 1
oy (nf + T,2) + /0 (nit + Tﬁ,,) <K ; (nf + Tt2) + K. (2.23)

Differentiating (2.5); o with respect to x, and then with respect to ¢, multiplying by
nge and Ty, respectively, we get with the help of (2.15),

L Lo, u 1
5 1 Ny + V2N + 1 Trptngat ) + (U )tnzznzzt
0 2uz 0

NI~

(2.24)

ol

1d [t 13 v2 13
_ T2 ( 2T2 —Tzz Tx ) / TIITII
2dt/0 m+/0 9V Dozt + gy Tawtttawr ) + | (50%)e ‘

! V2
+ <3_) Mg Loz = GB,
0 w/e

where, by virtue of (u,v) € X, (2.7), and (2.14),

1
uv U
/ [(vz %>nx}tnl t+./o [(41)% 203 ) tn ‘
/ [ T(n-C }nmt (2.25)
0 )2

gs/ m+K/ (2, + T4 +n2, + T2, +n? + T?) + K,
0

1 1 1
vz Svx  3Va vz 2
Gy = _/ [( Up + 2 )Tm] th+/ [mvxnz——lvj’] Tout
0 u 4p32 21)2 t . 0 U Jv2 t
Crve T - T,
+/ [?(TL—C)‘{' T 0] T$1t
0 v2 t

.1 .1
Ss/ T2, +K | 2, +T4+n2, +T2 +n?+T?) + K.
0
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Thus, since (u,v) € X, and by account of (2.22),

d [
E/o (nit+Tx2t)+/0 (n24 + Tort) <K/ (n3, + T2 +ni +T7) + K. (2.27)

Similar to (2.12) and (2.13), by Gronwall’s inequality, we can choose T3 < 71 so that

T2
02113 (||nt||H1 (o1t ||Tt||H1( 0.1))) /0 (||nt('at)||§12((o,1)) + ||Tt('at)“§12((o,1))) < M.
(2.28)

By the estimates (2.14) and (2 27), we have (n,T) € C1 2 (QTZ) Notice that the initial
1 T
data satisfy 0 < 2D < n; < D 0<2T <T; < =T, — + =L < /6. Hence there
2 2T1 3ny

exists 73 < 79 such that

0<D<n<DO0<T<T<T, < V6, Vtelo,T).

Thus we have obtained that (n,T) € X.
Now we show that the map F is contractive on a sufficiently small time interval (0, 74)
with 74 < 73. For the difference

(0n,0T) = (n1,T1) — (na, Tz) = Fuy,v1) — F(ua,vs), (2.29)

we obtain the following initial boundary problem:

Uy vig Viz w1y u1Vig
(8m)e = VB (Bn)a — 5= (T = (2 = ) Gmla + (| o5 " 27e5) 0T

Uy Noz U Tog noy |, w1l Toea
+\/—v_1(6n)+(\/a—2\/_) V)e+ (- ”1+4\f) V) = g6

Nogr U2T2xz ., v) =
"<\/a+¢v—2“ 2m(ﬁ+ﬁ))<év)+méu>+ma ) =0,
(6T — \?)/E(én)m — 3\gﬁ(éT)m + @E(én)w
1
57.)11 3
( 4\/— 2./01 lz)(‘ST)
\/E 3112, 015y
Y On) + (0T + o(8V): - o=
1 (%] T2za:
(5 (V7 e p T 0

3
+%nzm(5u) + fa(6u) + f5(dv) =0

(0n)]e=0 = (0T)t=0 = 0,  (6n)(0,¢) = (6n)2(1,1) = (6T)x(0,t) = (6T)x(1,t) = 0,
(2.30)
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where (8V)ze = (6u), (6V)2(0,t) = (6V).(1,t) = 0, Vige = u; — C(z), Vir(0,t) =
Vie(1,t) =0, i = 1,2, and

vacTor Voo Tzz 1

fi= - —(n2 — C(z)),
4/v3  2/3 \/_
fo = U2e N2z ( 1 1 )
VU2 (/U1 + /02) vivz (Vo1 +y2)  udue v /03
<u2v2zT22 _ U2V'2:::T2z)
4 2
_ V2zn2z _ Uz C(x))
VUiuz(Vur +2)  /urvz( \/_+\/_ ’
f _ \/Enu + 3T, _ 2Viz _ 2Vo,
ST Ty 201 3o 3o
f _ 3\/@’“'2:5’112:5 _ \/U_QVZanz
4 U Uz UiU2 ’
fo = 3uze T2z N 52z 125 Vaznag B 3VaeTos
P (Ve + \/_) 4/102 (/01 + EF)) w (VoL +v02)  2y/0102(\U1 + /)
ny — C(zx T, - T

+ -~ :
3\/v1v2(\/_+ V2) o 3(V1 +v2) vz (/U1 + /v2)
To deal with (2.30), we need some preparation. We first note that
|fll1|f2|»,f3|»|f4|a|f5| SK(M,Q,I) (231)

since (u,v), (n,p) € X. Notice that (6V), = (du), (6V)(0,t) = (6V).(1,t) = 0. Hence
we have [|(6V)zllL,(q.) < K[(6w)liLo(q,)-
Multiplying (2.30); by (6n) and integrating over [0, 1] yields

2 / (6n)? + / V()2 + 0T (o). )

! T29:
+ /0 2 /o; (W=(0n) + (Fu)(dn)2)

Nog u2To,
b (- e (on) + ()0

1 1 5 )

. /0 (s n)2 + (6T)2) + K(M, &) / (6 + 0T

+E/ ((5u)§ + ((5v)i) + K(M,e)/ ((cSu)2 + ((51})2 + (5V)i)
0 0

IA

It then follows

s [n e [ (vartomz + g D))

d
dt J,
/ ((6n)2 + (67)%) + K( Ale/(&n + (67)%) (2.32)

/ ((Bu)2 + (60)2) + K (M, ) / ((6u)? + (50)2).
0 4]

IA
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Multiplying (2. 30) by (6T) and integrating over [0, 1], we obtain

1d vJod 301
(6T>2+ | (2 @myatom)s + 22 6712)

2 dt U1

+f [%(\/m\/_%m) # =] (B0)0T) + (0)6T).)

1 'U3
_ /O 3[ 122 ((6)2(6T) + (5u)(6T)z)

IA

1
: / ((n)2 + (OT)2) + K (M, ¢) / ((6n)? + (6T)?)
0 0
+e/l((5u)§+(5v)§)+K(M,e)/1((5u)2+(5v)2+(5V)§).
1] 0

Similar to (2.32), we have

: / o0+ [ (L omutom. + 2 me)

1
2dt 1
/ ((6n)2 + (0T)2) + K(M,€) / ((6n)? + (6T)?) (2.33)
Y 0

+e /01((5U)i +(0v)7) + K(M,¢) /01((5714)2 + (6v)?).

IA

Since (u1,v1) € X, and — + L < 2\/(1 - Al)(g - A1),

2’01 3’U,1
VIO + ATl + Yk (o), + L a2
= w—l[(én)m (E+3—M)(5n)z(5:r)w+3_\éa(mg] (2.34)

v

VT ((6n)2 + (5T)2).
Combining (2.34) with (2.32) and (2.33) yields
d 1 1
%/ (@nf"+ (T + / (6n)2 + 6T )2) |
< K(M) / ((n)? + (6T)?) + ¢ / ((8u)2 + (6)2) + K(M,e) / ((u)? + (60)2).
(2.35)
By Gronwall’s inequality,

/O 1(((5n)2+(6T)2) < (s /O 701(5u)§+(5v)§+K(M,5) /0 T/Ol(éu)2+(6v)2>eK(M)T. (2.36)

Thus

d 1
& [ nr 6+ [ oz + om)

< sK // (6u)2 4 (6v)2 +KM5// (6u)? K<M>T (2.37)

/ (6w + (5v)2) + K (M, <) / (6w + (60)?).

0 0
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Integrating with respect to ¢, over [0, 7], and choosing ¢ and 74 < 73 sufficiently small,
we conclude

I(8n, 6T < 3118w, ). (235)

Thus there exists precisely one fixed point (n*,T*) with (n*,T*) = F(n*,T*) in X. This
fixed point is the unique solution to (2.1). |

3. Asymptotic behavior. In this section we obtain the asymptotic estimate that
proves Theorem 1.2. Set v =V, -V, o=n-N, f=T - Ty,.

LEMMA 3.1. There exist positive constants 6 > 0 and 3 > 0 such that, if

sup ([, gz + /¢ O)lla) <6 (3.1)
0<t<r
for all 7 > 0, then
€, Ol + 1FC O < CUE 0l m= + [ £(, 0)|| 1) exp(—Bt), (3.2)

for any t € [0, 7].

Proof. From (1.9) and (1.12) we get

P(0,t) = ¢(1,t) =0, (3.3)
Yrz(0,8) = ¥ (1,8) =0, (3.4)
f2(0,8) = fo(1,8) = 0. (3.5)
With the help of (1.14) (1.15) (1.16) and (3.1), we deduce
Wzl Nazl Vel Vaal, 01, [9z], [f] < O(). (3.6)
By using (1.6) and (1.11), we arrive at the following equations for ¢ and f:
- Y + N V,
- 1 Tz x T
(f+ToWVTo +VI+Tohy"  Vi+To ’
(f + To)? 3 3T+ Th
ft - W(d}zrz +er) - §V f + T()fzz wz—+N fz(?ﬁm +Ng,)
_ 5 9 vVIi+To ' 3
_#(1/}_{_])_)2_‘_____”](—}_%(1/)‘4_]) )_{_#:0
3 /_f‘f‘To x 3 z xx /—f-}—T()

(3.8)
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Multiplying (3.7) by v, integrating over [0,1] and integrating by parts, we obtain,
with the help of (3 3),

/ bath — / VI +TovToNy + NV, o
\/f+T * (f + To)VTo +VF +ToTy
+/ ¢I+Nw _

o Vf+To

By using (3.6), one can show that

th/d’ +\/?°/ Ui /¢ <O0(5 / W2y + 2402 (3.9)

Differentiating (3.7) with respect to z, multiplying by ., and integrating by parts, we
obtain, with the help of (3.4), (3.5) and (1.12),

1
m/ e /\/f+T01P / Vot N et

Ve

0o 2V/f+To
! ac fw2—/1 Vf+T0\/TENz+NV:c fl/f
Vf+T0 0 2y/(f+Tp)? o (FHToVTo VT Tl

/ ( \/TONxfz 4 vV (f+T0)TONIx + NV, +./V-sz)f¢
0o “2(V(f+To)*To + (f + T0)To) (f+ToVTo +Vi+ToTy *

't 2/(f + To)To fo + Tofe
+/0 WU+ T TN+ N e (T TovTs 7 VT E 1T V-

e+ N 2, Y g + N /1 Ye + N
T — T x=0
0 \/f+To¢ Jo VI+Th o 0 2\/(f+T0)3wfw

By (3.6) and C < N < C, we get

P+ N 'y
M/wﬁﬁ)/ Vaet | 5 e fete + TO/sz

(3.10)
< 0(8) / (W2, + 62 + 2+ f2).

Multiplying (3.8) by f, integrating over [0, 1], and using (3.5), (3.4) and (1.12), we deduce

2 V{f +To)? VI+To(Wee + Na)
2dt/f / B(s T ) Ve TN f”/ 2e + ) '1.f
/ V f+T0 wxx+N

3 2
S f+/ S UFET f+/04r+T0fxf

3VIi+T,
/OZZI AU AR /owarT 2
f+T0 ! 3
/0 . wm+m>(w+vz)f+/o T+ VIS
2 f+ 0 Y
/ V) f+/ v <wx+vm>f+/0 A0
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By (3.6), the above equation reduces to

%%/ £+ /ij';f/ Yoofo + / ST+ /ﬂ%

<0() / (24 £+ 42).

It follows from (3.6) and C < N < C that

F+To)? 3,1 [t I 1
so [ e [T dn [ et [P <00 [[wiaren,
(3.11)

Since the strong parabolicity condition (1.17) is satisfied, we have

To% /01 [ e — (3Tg ¢ )Ifzwul+f ] > TO%/\/Ol(z/ziﬁff). (3.12)

Combining (3.10) with (3.11) and using (3.12), we conclude

o [wremeomis [(waer +—/ R —/ I

(3.13)
<06) [+ 12 u 4 ul)
Now we can estimate the first derivatives with the help of (3.9) and (3.13),
d 2 2, 2 Lo 2., 2. 2 g2
ai (1/) +Y + ) tar | (g +¥z+9° + f2 + ) <0, (3.14)
0

—1
where a; = mln{T0 A T0 +CTy : T0 ,CT, *}.
Next we proceed to estimate the higher order derivatives.




ON 1-D LYUMKIS ENERGY TRANSPORT MODEL 351

Differentiating (3.7) twice with respect to z, multiplying by %.., using (3.4) and

integrating by parts, we obtain

1d [ 2 ! / 2 ! fz ¢x+/\/
___/0 $$+/ f+T0wzxx+/0 2\/f+—T'l/}zmwzxz+ 0 2\/f+—T_

2dt
wu+/\/ [ ¢Z+N 2

Y Ve
+/1 \/f+T\/T‘0Nz+NV o
o (f+To)VTo+VFf+ToTy =
/1( VTN fz
0 2(4/(

fzzwzmﬁ

" T+ To)°Ts + (f + To)Th)
\/ f+T0 TONxz +NV +szm)f’l/)
(f +To)VTo + VI +ToTo e
2 V (f +T0)T0f:c +T0fx
— To)ToN, Ve zzx
|, /TN A )2\/——f+T((f+To)\/T_o+\/—f+ToTo)2fw
1

2/ (f +Tp)?

_ 1¢I+N¢¢ _
o VI+T T Jo vf+To

By (3.6),
wm +N

d 1

1
24t
SO( )/ (2 49, + m>+|111+|12|,

1L =[ / lﬁfﬁpmwm / fe@a)a
/ Feat?,| < / ffz 5 / o, (3.16)

<61/ fzz+€2/ wzzz+K1 €1,€2 / 1[’11,

<< ‘ / b

where

— 1
2

<€2/ d)x:m: / f4
8T0 E2

Vg + N,
/————(f+T) Pboes| <

|12

<€2/ ¢2z1+81/ f12z+K251362 / f2
(3.17)

In the above calculation, we have used the Gagliardo-Nirenberg inequality to control I;

and I,. The constants £; and €5 are to be determined.
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Combining (3.15) with (3.16) and (3.17),

2 +/ VT Tou? /1 Vit N gy
2dt rT 0%z o 2\/f+—T zxWrrx

1
O )/ (f2+ 2 + 92 +42) + 26 / 1111”4-251/ f2 (3.18)

0

+Ki(e1, 62 / Y2, + Ko(er,e2 / f2.

IN

Differentiating (3.8) with respect to z, multiplying by f., using (3.5) and integrating
by parts yields

2dt/f“” /\/m%m+wam / 3 SFTTf

WIET :
+£ djz N f‘rxf'l(l/}aL1+NL)_|.‘/0

-

4\/'f.—+——Tf ffI

1

Voo + No) W + Vi) fuo — / (6 + Vi) fae fo

0 2vf+T0

(W + V3)? fre — V“T“(wrwm)fm

+/ 2
Jo, 3Vi+ T

1
; r+T0ff” =

Again by (3.6), we get

2dt/f2 / L/i:]}\’, Yre fru + / ST+ Tof2

<6>/ (2an + 20+ 02 + [2) + Ts] + |Lal,

0

where
Wi+ T 6\/T_o 3Ty
|I3| = /\()/_1/)7+N fafraWez| < \/fifzwwzr = C /(fx) (2
3 Ty 3 ik
Sgl/ fmm+52/ szI+K-5 é‘1*82) f12
0 0 JO
(3.19)
1 =4
Ll = o < — 2 fra| < o ,
Hl /0 4\/f+szf 2T2 A & 61/ & 8To 61/ = (3.20)

3251/ 2w Ko [ 2
0 JO
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are derived by the techniques used in obtaining (3.16) and (3.17). Thus we obtain

2dt/f2 / s

< 0<5>/0< 2t 2k + ) +351/ fm+52/ 2, (321)
1

+K3(€1,52)/ 2+ Ky(er) / f2

3 1 ! 5
wxzzf:cz'i‘_Toz/ fxz

Combining (3.18) with (3.21), using the strong parabolicity condition, we obtain

d PO
dt (wzx + f2) T02 )‘/ (wgmc + fx2x)
0

1 1 1 1
< 0(6)/O (w2z+f§)+1051/0 ffz+652/0 wfmﬂrK/O (f2 +92,),

(3.22)
4
where K = Z 2K;.
i=1
Choosing ¢, = Tg())\ and g9 = Tf—;, we have
T2\
8 [+ B2 [ 2
(3.23)

< 0(6)/ (W2, + £2) /f2+w

Multiplying (3.23) by “—;( and adding to (3.14) yields

1
(e St ) v [ 20k P 24 S i) <O
0

(3.24)
%
where ay = mln{% TO g ——1
Thus, by Gronwall’s inequality,
(Ol + 1FC O F, < CUBE 05z + 1F (5 0)l|5) - exp(=5t).
O
In order to prove Theorem 1.2, we need the following higher order estimate:
LEMMA 3.2. There exist positive constants d; > 0 and B2 > 0 such that if
sup ([|9(, e)llas + £ (5 E)llms) < b2 (3.25)
o<t<r

for any 7 > 0, then

WG Olas + 117G Dlas < CUlBE0) s + (0l ms) exp(—Bat), (3.26)
for any ¢ € [0, 7].
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Proof. By Lemma 3.1, we need to estimate ||z (-, t)llg2 + || fax(-, )|l gr. First we
estimate [|9:(-,¢)|| g2 + || fe(,t)|| 51, and then we obtain the desired estimate with the
help of (3.7) and (3.8).

From (3.3), (3.4}, and (3.5), it follows that

$2(0,8) = aae(1,) = 0, (3.28)
fxt(ov t) = fzt(lﬂt) = 0. (329)

By virtue of (1.14) (1.15) (1.16) and (3.25), we obtain

|N1:|a |N1::E|a |Vz|7 ]sz|7 W)Iv |d)zl7 I"px:c'» |'¢)xzz|a |"/)t|» |wzt|a |f|7 |fz|1 |f:cx|7 Ift| S 0(62)
(3.30)
Differentiating (3.7) with respect to z,

T Y + N Y + N
d)zt - f + T0¢zzz - 2\/f+—sz:c \/fTT—wz +]1 +.72 +.73 - 0 (331)

where
S SN ) L S 2 p Yzt N
n 2\/—{/)+T?A/ N TN TS DL JI+To
e+
— s,
2 (f+TO)3 (3.32)

T T V
j2 = cz + T xS,
R/ B M o AN = Yk

.:_( VI +ToVToNz: + NV, ) VT FToVToNz + NV, f
I3 (f+T0)\/jTo+ VI+ToTy/ « (f+T0)\/T0+ V+ 1Ty =

Differentiating (3.31) with respect to t,

Yaore—V f + ToVeant — Ve £ N ———frat+ e £ N e Y+ Ja+(J1)e + (J2) e+ (d3)e = 0, (3.33)

2v/f+ 1o VIi+To
where
e Yaifee wz +N Yetle Vet N

(3.34)
Multiplying (3.33) by 1y, integrating over [0, 1], integrating by parts, and using (3.28)
and (3.29), we obtain

T Yz + N wz+/\/
2dt/ th‘}'/ f+T01l)mt+2\/f+—szt¢mt) \/f-i-—T :ct ZJU 335
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where, by virtue of (3.30),
1= / (J1)e¥ze = O(62) / Voo + F2 + V%
Jo = / J2)t¥zt = O(82) / ot + for + V2,
Js = /o (J3)t¥ut = 52)/ F2+ 92,

1
Jy = —/ Jathet = (52)/ Vet
0 0

I s + Na et N
J5 = —/0 2m¢zt¢zxt 0 2\/f+—szt¢xt /0 4 (f T To)sf:cfxtd}xt
= 0(52 /0 wxwt + faft + wﬁt
(3.36)
Hence
T wm +N Yr N,

= 0(52)/0 PYlgt + fz2t + P2

Differentiating (3.8) with respect ¢,

VI +To)? 1 2 _
fet — —\/ [+ Tofrat — W)—wmzt + ﬁft + ;]i =0, (3.38)

where

Vi+To
2(%-1?;/\/)

(f +To)®
3(he + N)?

S T ey
3\/f+T0 3Vf+T0fxt(’(/)zx —+—Nz)

j7 = wz_{_N fz@bzzt ’(/} TN f
3Vf+Ty
fefe + mfac?/}xt(¢xx + Nz),

 3(Yas +N)
2(¢z +N)\/f+T0
j8 P 10fz.fzt i 5fx2ft
N ER TN 550
Vi+T VF+To .
6 W;ﬂ )+(¢Nr>$t)+ . /},w;u(ww .)
zz TNz + Vi vVI+
2\/fTTO('l/1z +N) ft - (¢I+N)2¢zt(1/)m +Nx)('l,b+vx),
J1o 2/—f+T0 2,—f+T0 4\/W ty
11 ENET \/W t

V T ferd rr
f+ ¢zt+w ) ft-

j6 = - ('(/)zz:v +wa)ft + (wx:cz +Nxz)"pzt

Jo =

Jiz =

6vf+T1o
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Multiplying (3.38) by f;, integrating over [0, 1], and integrating by parts,

VI +To)3 ! 1 2 2 .
i 0 | GVITT s e i) + [ e o
(3.40)
where, by account of (3.30), we have
1 1
Jo+ Ji1 + Jiz2 = —/ (Jo + 11 +J12)fe = 0(52)/ 12,
1 0 1 0
Jr= [ nhi= 0) [ (ft vkt 1),
0 1 0 1
Jo+ o == [ s+ dulf =062 [ (7 + 1)
V0 1 0
do== [ gati=008) [ Whait 1) (3.41)
On 0 1
_ 3 \/f + To
Jiz = A 4mfzfztft / (d’l‘ +N) fl"(/)xa:tft
V{(f+To)? o
+/{) 3g¢)a_ +N)2 (wlx +Nz)¢zztft
=06 [ (fh+ 0+ 1)
We have thus obtained
\/ f+T()) ! 1 9
2dt/ fo+ / VI Tofe 0 N wmf”>+/o Viin (3.42)
=00 [ (F2+ Vi + 5D
Combining (3 37) with (3.42), and with the help of (1.17), we deduce
d 1
dt (wzt + ft ) + 21102/\/ (’d]xzt + f;rt / wa:t + - / ft
(3.43)
=06 [ (e v + f3>.
We have thus completed the first step by establishing the estimate
d 1
7 / (W2 + f7) + a /0 (Wowe + for + 05+ £7) SO, (3.44)

1 1 1
where a3 = min{T?,C/T¢,1/17 }.

Differentiating (3.33) with respect to x, multiplying by ¥.¢, integrating over [0, 1],
and integrating by parts, we obtain, with the help of (3.28),

1d ! 2 Yy + N Yy +N
th/ d}th +/ (V f+T0wrxzt + fxrtd’zxrt) / \/7+_T x:vt ZHH
(3 45)

2V f+ Ty
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where, by virtue of (3.30),
H, = / (1)t ¥zzzt = O(2) / WZ oot + Voge + f200
Ha = [ Galobuou = 0062 / Vo + V2t + 2

1

Hy = / (s ) azat = O(62) wmt+f§t, (3.46)
1

H4 :/ \74wxzzt "0(62)/ ngxtv

0 0
Yo + NG /1 Ve + N /1 )
H: = 2t Wz = Jx V2t Vax =0(6 zxt’
5 0 \/H—thw t+ o 9 (f+T0)3fthw t (2) 01/) t

In the above process, it is not necessary to use high order derivatives such as Vyrzt, fozt,
as we can use difference quotients instead.

Differentiating (3.38) with respect to z, multiplying by f.:, integrating over [0,1],
integrating by parts, and recalling (3.29), we get

[F+ T, \/ (f +To)®
2 dt / / f+ TO xxt mwmztfmt

/ \/f+T ZH“
(3 47)

where we have, by virtue of (3.30),

1
H6+H8+H10+H11+H12=/(J6+J8+J10+]11+J12 fazt = O(82) / foets
0
1

1
Hy + Hoy = /0 Ui + Jo) fant = O(62) /0 (2o + 0200).

1
_ (1 _ 2
Hio= [ s e = 00 [z

(3.48)
Combining (3.45) with (3.47) and (1.17), we obtain our second estimate
d
dt / (wzz‘t + fxt) + a‘3/ (wizzt + fz2zt + wizt + fa?t) < 0. (349)

We can calculate ¥izzq, feze directly by (3.7) and (3.8), in terms of ¥, fze and
their lower order derivatives. Thus, combining the above results with Lemma 3.1 we
complete the proof of Theorem 1.2. ]
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