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Global Existence and Blow-up
for a Shallow Water Equation

ADRIAN CONSTANTIN - JOACHIM ESCHER

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998),

1. - Introduction

An interesting phenomenon in water channels is the appearance of waves
with length much greater than the depth of the water. In 1895 D. J. Korteweg
and G. de Vries started the mathematical theory of this phenomenon and derived
a model describing unidirectional propagation of waves of the free surface of
a shallow layer of water. This is the well-known KdV equation:

where u describes the free surface of the water; for a presentation of the physical
derivation of the equation, see [27]. The beautiful structure behind the KdV

equation initiated a lot of mathematical investigations, see [5], [20], [21], [22].
Recently, R. Camassa and D. Holm [9] proposed a new model for the same

phenomenon:

The variable u (t, x ) in ( 1.1 ) represents the fluid velocity at time t in the x

direction in appropriate nondimensional units (or, equivalently, the height of the
water’s free surface above a flat bottom). Unlike KdV, which is derived by
asymptotic expansions in the equation of motion, (1.1) is obtained by using an
asymptotic expansion directly in the Hamiltonian for Euler’s equations in the
shallow water regime, cf. [9], [11]. Equation (1.1) was derived 15 years ago
by Fuchssteiner and Fokas (see [16], [17]) as a bi-Hamiltonian generalization
of KdV. The novelty of Camassa and Holm’s work, cf. [25], was the physical
derivation of (1.1) and the discovery that the equation has solitary waves that
retain their individuality under interaction and eventually emerge with their

original shapes and speeds. Such solitary waves are called solitons.

Pervenuto alla Redazione il 9 maggio 1997.
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After Camassa and Holm established that equation ( 1.1 ) has also physical
meaning, numerous papers were devoted to its study, cf. [1], [2], [6], [7],
[8], [10], [14], [17], [25] and the citations therein. Despite this abundant
literature on the Camassa-Holm equation, the problem of well-posedness (and the
related question of existence of global solutions) seems not yet to have been
treated.

The aim of this paper is to prove local well-posedness of strong solutions
to ( 1.1 ) for a large class of initial data, and to analyze global existence and
blow-up phenomena. In addition, we introduce the notion of weak solutions
to ( 1.1 ) suitable for soliton interaction.

Our results bring to light an interesting feature of the Camassa-Holm model.
Whereas some initial data produce global solutions, others yield solutions having
finite life-span. More surprisingly, it is neither the smoothness nor the size of
the initial data that influence the life-span but the shape of the initial data.
In particular, there are smooth initial data with arbitrary small support and
arbitrary small for which the resulting solution does not
exist globally. It is also worthwhile to note how these solutions exit the phase
space, namely their magnitude remains bounded but the slope becomes infinite,
which can be understood as a breaking of waves, cf. [27].

MAIN RESULT (a) Well-posedness. Given Uo E H3(JR), there exists a maximal
T = T (uo) &#x3E; 0 and a unique solution

to problem ( 1.1 ). Moreover, the solution depends continuously on the initial data,
i.e., u (., uo) : H3(R) ~ C ([0, T); T) ; 
is continuous.

(b) Global existence. Assume Uo E H3 (R) is such that the associated potential
yo = uo - Uo belongs to L 1 (R) and does not change sign. Then the solution u (., uo)
exists globally.

(c) Blow-up. Assume Uo E is odd and with u(0)  0. Then the
maximal interval of existence is finite, i.e., T = T (uo)  00.

To compare the hypotheses for global existence and blow-up, note that the
potential yo = uo - Uo is odd, provided uo is odd, so that the potential yo
changes sign if  0.

As an alternative model to KdV, Benjamin, Bona, and Mahoney [3] pro-
posed the so-called BBM-equation

Numerical work of Bona, Pritchard, and Scott [4] shows that the solitary waves
of the BBM-equation are not solitons.

As noted by Whitham [27], it is intriguing to find mathematical equations
including the phenomena of breaking and peaking, as well as criteria for the
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occurence of each. He observed that solutions of the KdV-equation do not break
as physical water waves do (recently, Bourgain [5] proved that even for initial
data in L2(R) the solutions of KdV exist globally in time). Whitham suggested
to replace the KdV-model by the nonlocal equation

for which he conjectured that breaking solutions would exist. Here K is a Fourier
operator with symbol k (~ ) = (tanh ~ ) /~ . Whitham’s conjecture was proved
recently in [23]. The numerical calculations carried out for the Whitham

equation do not support any strong claim that soliton interaction can be ex-
pected, cf. [15].

On the other hand, Camassa, Holm and Hyman [10] show that the solitary
waves have a discontinuity in the first derivative at their peak and that soliton
interactions occur for (1.1). In Sections 5 and 6 we introduce the notion of
weak solutions to (1.1) as a suitable frame for soliton interaction.

The advantage of the new equation in comparison with the well-established
models KdV, BBM and the Whitham equation is clear: The Camassa-Holm

equation has peaked solitons, breaking waves, and permanent waves.
Some recent results from harmonic analysis depending heavily on the fa-

mous "T( 1 )" theorem [26] will enable us to apply Kato’s theory for abstract
quasi-linear evolution equations of hyperbolic type to prove well-posedness
of ( 1.1 ) in H 3(R).

To obtain global existence from local results is a matter of a priori estimates.
Although the bi-Hamiltonian structure of ( 1.1 ) provides an infinite number of
conservation laws that are functionally independent (see [9], [11]), in striking
contrast to the KdV-equation where the conservation laws immediately yield a
priori estimates for the solution in any H’(R)-space with r &#x3E; 0, in our case
the of a solution to (1.1) is a conservation law - but there is
no way to find conservation laws controlling the To guarantee
global existence for the class of initial data described in part b) of the Main
Result, we will have to develop a more refined method than simply seeking
conservation laws.

The spatial anti-symmetry of (1.1) allows us to specify a large class of
smooth initial data with arbitrary support for which the corresponding solution
does not exist globally.

Finally, let us mention that it is also interesting (see [9]) to look for spatially
periodic solutions of (1.1). For results in that direction we refer to [12], [13].

Acknowledgement. The authors thank G. Da Prato, P. Deift, J. K. Hale,
Th. Kappeler, P. Lax, H. P. McKean, L. Nirenberg, P. Olver, and D. Sattinger
for discussions and comments.
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2. - Well-posedness

In this section we introduce the potential associated to the solution of (1.1)
and we reformulate (1.1) as a quasi-linear evolution equation for this potential.
The new form is suitable to be analyzed with Kato’s method for abstract quasi-
linear evolution equations of hyperbolic type.

For convenience we state here Kato’s theorem in the form appropriate for
our purposes.

Consider the abstract quasi-linear evolution equation in the Hilbert space X:

Let Y be a second Hilbert space such that Y is continuously and densely injected
into X and let Q : Y - X be a topological isomorphism. Assume that

(i) A (y) E ,C (Y, X) for y E Y with

and A (y) is quasi-m-accretive, uniformly on bounded sets in Y.
(ii) 1 

= A(y) + B(y), where B(y) E ,C(X) is bounded, uniformly on
bounded sets in Y. Moreover,

Here I1A and I1B depend only on lzlyl.

THEOREM 2.1 (Kato [19], [20]). Assume that (i) and (ii) hold. Given vo E Y,
there is a maximal T &#x3E; 0, depending on vo, and a unique solution v to (2.1 ) such
that

Moreover, the map vo ’- v ( , vo) is continuous from Y to C ( [o, T) ; 1 ( [o, T ) ; 

We provide now the framework in which we shall reformulate problem (1.1).
All spaces of functions are over R and for simplicity we drop R in our

notation of function spaces if there is no ambiguity. Additionally, we denote
the norm in the Sobolev spaces Hr, r g 0.

Set X = L2, Y = and Q - (I - 9~. With y = u - uxx as the

potential, we rewrite ( 1.1 ) in the equivalent form

which is of type (2.1 ) with

where domi
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THEOREM 2.2. Given yo E there is a maximal T &#x3E; 0, depending on yo,
and a unique solution y to (2.2) such that

Moreover, the map yo « y (., yo) is continuous from H 1 to C ([0, T); n

Cl ([0, T); L2).
The remainder of this se.ction is devoted to the proof of Theorem 2.2. In

the following, K stands for a generic constant.
We first study the linear operator A(y), where y E H 1 is fixed. In order

to do so, let m E H 3 be given and define the linear operator in L2:

To explain the connection between the linear operators D and A(y), ob-
serve that the usual pointwise multiplication H 1 x H 1 -~ H 1 has a unique
continuous extension to a map H 

1 
x H -1 -~ which we will not distin-

guish notationally. Therefore, given v E L2, we obtain by approximation the
generalized Leibniz formula

Suppose now v E dom(D). Then (m v )x and m x v belong to L2, and therefore
we find

Choose now m = Q -2 y E H 3 . Then D is the principal part of A(y). Since

( Q-2 y)x clearly belongs to Loo, we see that A(y) is a well-defined operator
in L 2 .

We assume only mild regularity properties of m in the definition of D.
Thus m may vanish on an arbitrary subset of R. In this sense, D : v H m vx
should be regarded as a (possibly) degenerate linear differential operator.

PROPOSITION 2.3. D is quasi-m-accretive in L2.

PROOF. a) We first prove that f1 L2 is a core for D in L2.
For this, choose p E with p a 0, 1, and let np (nx),
n &#x3E; 1, be the usual mollifiers on R. We denote by * the convolution.
Fix V E dom(D). It suffices to show that

Note that
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and therefore it is enough to prove that

We define the operators

and we will prove that 1 can be extended to a family of uniformly
bounded linear operators on L2.

For x E R we have

Thus, given n &#x3E; 1, the operator Pn can be extended to the whole of L 2 .
Observe that

where supp (p ) c [-À, À] I and therefore

If C = we deduce by Schwarz’s inequality and
Fubini’s theorem that

Combining this with Young’s inequality
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we deduce that Pn E ,C (L 2 ) with

For v E relation (2.4) is obvious and, in view of the uniform
boundedness of the operators Pn, we deduce that

Thus (2.4) holds for all V E dom(D) and the proof of (2.3) is complete.
b) We show now that the operator Do := D + im,ld with dom(Do) =

dom(D) is skew-adjoint in L 2 .
Fix W E dom(D~). The functional

is continuous with respect to the norm in L 2. We deduce that m w E H 1 and

Thus W E dom(Do) and Dow This proves that D* C - Do .
Conversely, choose v E dom(Do) and let 1. Using the

approximation result proved in step a), we get for any z E dom(Do) the idenity

which proves that - Do c D*
c) Since i Do is self-adjoint in L2, Stone’s theorem implies that Do is

the infinitesimal generator of a strongly continuous contraction semigroup on
L2. In addition, Do - D is a bounded operator on L2. Hence D generates a
strongly continuous semigroup on L2 with IU(s)I£(L2) bounded by

for s ~ 0, cf. Theorem 3.1.1 in [24]. This implies the assertion. D

One more delicate point we have to clear is the analysis of the operator
B (y) = for y E Using methods from harmonic analysis
we will derive a representation and estimates for this operator on L2.

Let be the Schwartz space of all rapidly decreasing functions and
let .~’ be the Fourier transform. Given y E we introduce the multiplication
operators M(y) and Mx(y) on L2 defined by M(y)v = (Q-2y)v and Mx(y)v =
(Q-2y)xv, respectively. We also denote by [., .] the usual commutator.
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LEMMA 2.4. Assume that y E Then

on functions in S(R).

PROOF. By direct computation we obtain

It suffices to prove that [ax, Q] - 0. But this follows from the representations

PROPOSITION 2.5. Given y E HI, the operator B(y) can be extended to an
operator in £(L2) which is uniformly bounded for Iyll 1 bounded.

PROOF. It is obvious that and extend to bounded
linear operators on L2 which are uniformly bounded for 1 bounded.

Clearly, Q-2y E H3 and Q is a first order pseudo-differential operator.
Therefore the arguments in [26], Section VII.3.5 show that [Q, M(y)] extends
to a bounded linear operator on L2 whose norm in £(L2) is estimated by

and hence by where is a universal constant. 0

REMARK 2.6. a) The crucial commutator property used before is well-
known for multiplication operators induced by C°°-functions, cf. Chapter VI
in [26]. We actually need much weaker smoothness properties of the multiplier.
The remarkable fact that the C°’°-smoothness can be brought down to 
is the result of a recent theory based on the famous "T( 1 )" theorem (see [26],
Chapter VII]). Note that the commutator results in [19] and [20] are not sharp
enough for our purposes.

b) Given y E the operator B(y) extends also to an operator E

,C(H 1 ), which is uniformly bounded on bounded sets in To see this,
note first that Q -2 y E H3. Therefore obviously extends to

a bounded linear operator on To prove that this also holds true for the

operator [ Q, it is enough to estimate the operator ax [ Q , 
in £(L2). Since

this follows again by the arguments of Stein [26], Section VII.3.5. D

PROOF OF THEOREM 2.2. Recall that K stands for a generic constant.
(i) It is clear that A(y) E £(H1, L2). Moreover, Proposition 2.3 shows that

the principal part P (y) of A(y) is quasi-m-accretive, uniformly on bounded
sets in H’. Since A(y) - P(y) is a bounded linear operator on L2 which is

uniformly bounded on bounded sets in H’, A (y) is uniformly quasi-m-accretive.
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Let y, z, w E H 1 be given. We have

(ii) As noted before, B(y) = [Q, Mx (y)] Q-1 for y E Y,
and the first assertion was already proved in Proposition 2.5. To conclude,
observe that B(y) - B(z) = B ( y - z).

The result now follows from Theorem 2.1. D

PROPOSITION 2.7. Assume that yo E H2. Then the solution y to equation (2.2)
posseses the additional regularity y E C([O, T) ; H2) n T) ; 

PROOF. Given yo E H 2, let y E C ( [o, T ) ; H 1 ) f1 C 1 ( [o, T ) ; L 2 ) be the
solution of (2.2) constructed in Theorem 2.2.

Fix To E (0, T). Given t E [0, To], let denote the part of A (y (t ) ) in
From Propositions 2.3 and 2.5 and Lemma 5.4.4 in [6] we know that the

family E [0, To]} is stable in H 1.
Clearly Q : H2 --* H 1 is a topological isomorphism and Remark 2.6 b)

shows that

defines a norm-continuous family of operators in ,C(H1). Additionally, it is not
difficult to see that

Hence H2 c for t E [0, To], since H2 is a Banach algebra.
Consequently, Corollary 5.4.7 in [6] guarantees that the linear evolution

problem in H 1

has a unique solution v E C([0, To]; H2) n C~([0, To]; 
Obviously, v is also a classical solution (in the sense of [6]) of the following

linear evolution problem in L2:

where Ao(t) := A(y(t)).
Finally, the proof of Theorem 2.2 and again Corollary 5.4.7 from [6] show

that problem (2.5) is well-posed in L2. But y is also a solution of problem (2.5)
and therefore we conclude that V = y E C([0, To] ; H2) n C  ([0, To]; im-

plying the assertion. D
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3. - Global Existence

In this section we are going to prove that if the intial data yo E H 
1 for

equation (2.2) belongs to L 1 and does not change sign, then the Hl-norm
of the corresponding solution y (t) cannot blow-up in finite time. In view of
Theorem 2.2, this proves global existence of the solution.

We will denote by y - u - uxx the potential associated to ( 1.1 ) . Obvi-

ously, u is a solution to ( 1.1 ) if and only if y is a solution to (2.2).
The bi-Hamiltonian structure of ( 1.1 ) yields an infinite number of conser-

vation laws which are functionally independent, cf. [9]. Among these, we have
the conserved quantity

This conservation law (the physical interpretation of which is energy) does not
provide an L 2 a priori estimate for y, nor do the others available by the method
described in [9]. To realize our goal, we would like to control the Hl-norm
of the solution y. The situation described above is in striking contrast to the
KdV-equation where the conservation laws yield immediate a priori estimates
of the solution in any HT space, r &#x3E; 0. Actually, the blow-up result of the next
section will show that there is no way to find conservation laws controlling the
norm of u in 7~. ,

. 

We do not want to make use of the theory of infinite-dimensional Hamil-
tonian systems to obtain the conservation law (3.1). Therefore, we provide an
alternative derivation. In addition, we will find two other conserved quantities:

where y+ and y- stand for the positive and the negative part of y, respectively.
Note that the conservation laws (3.2) are not among those found in [9].

LEMMA 3.1. If yo E H 1 and u = Q-2 y then, as long as the solution y(t) exists,
we have

PROOF. Integration by parts yields

and therefore
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On the other hand

Hence

and using equation (2.2), we find

LEMMA 3. 2. If yo E Hl then, as long as the solution y (t) exists, we have

PROOF. Let E &#x3E; 0. It is known, cf. [ 18] Section 7.4, that if S2 is a bounded
domain in and V E then E -~- V+, IE -~- V- E with

where x stands for the characteristic function.
Fix to &#x3E; 0 in the maximal interval of existence of the solution y (t) of (2.2)

with initial data yo. Note that the restriction of y to [0, to] x [-n, n] belongs
to H 1 ([0, to] x [-n, n]) for every n &#x3E; 1. Therefore, the above mentioned result

implies

Performing in the first integral an integration by parts, we get
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where R (n, t, 8) comes from the evaluation of 18-u at the interior points of
[-n, n] delimiting intervals where y &#x3E; 0. By the fundamental theorem of
calculus we have

Using Schwarz’s inequality, we get from the previous inequalities that

where C(n, s, 8) := p (s, + y+-(s, n) - u (s, + y+-(s, - n) 1, n &#x3E; 1,

Taking into account the continuous dependence of the solution with respect
to time, given by Theorem 2.3, note the inequalities

Define C (n, s) := u (s, -n) y+ (s, -n) ~, n &#x3E; 1, s E [0, to].
Let 8 ~ 0 to find

For fixed t E [0, to] we have that u(t), y(t) E H’ C CO(R) and therefore

pointwise on [0, to].
On the other hand

By (3.3) we obtain that 2[M(to)]3/2 for all s E [0, to] and n &#x3E; 1.
Therefore relation (3.4) proves, in view of Lebesgue’s dominated convergence
theorem, that

Letting n --~ oo in (3.5) the monotone convergence theorem implies that

The arbitraryness of to proves the assertion for y+. There is no difference
in dealing with the negative part of y. D
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From Lemma 3.2 we obtain the following nice sign-preserving property of
solutions to the equation (2.2):

COROLLARY 3.3. If the initial data yo E H 1 does not change sign, neither does
the corresponding solution y(t) as long as it exists.

LEMMA 3.4. Assume that yo E Hl does not change sign. Then

as long as the solution y (t) of (2.2) with initial data yo exists.

PROOF. Pick to &#x3E; 0 in the maximal interval of existence of the solution

y(t) of (2.2) with initial data yo and, to fix ideas, assume that yo &#x3E; 0.

By Corollary 3.3 we know that y (t) &#x3E; 0 for t E [0, to]. Since x(-n,n] y E

C~([0, to]; L 1 (JR)) we find that

where we used equation (2.2).
Integration by parts yields for t E [0, to] and n &#x3E; 1:

Since H is a Banach algebra contained in Co(R), we find that C(n, t ) ~~ 0
as n ~ oo for every t E [0, to]. On the other hand, using the continuity of the
solution with respect to time, we get

for a universal constant K.
These two facts, the monotone convergence theorem, and Lebesgue’s dom-

inated convergence theorem enable us to obtain the assertion of the lemma from
the relation 

--- - 4-

by letting n ~ oo.

We shall now prove the main result of this section.
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THEOREM 3.5.. Assume that yo E H 1 n L 1 does not change sign. Then the

solution y (t) to (2.2) with initial data yo exists globally.

PROOF. a) We consider first the case when yo &#x3E; 0. Corollary 3.3 then
ensures that the solution y (t ) remains non-negative as long as it exists. By the
maximum principle, this is also true for u = Q-2y. Note in addition that by
the montone convergence theorem and the fact that Ux E Co(R), we get

a relation which by Lemma 3.4 and the hypothesis yo E L I yields

as long as the solution exists.
We have that

since ux E Combining this with (3.6) we get

for any t in the maximal interval of existence of the solution.
Let us now consider the case when yo  0. Then, as above, y (t) and u (t)

are both non-positive as long as they exist and

In this case we have

and we deduce from (3.7) that

for any t in the maximal interval of existence of the solution.

Summing up, we have
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provided yo E Li I does not change sign. In (3.8) and henceforth, we denote
by [0, T) the maximal interval of existence of the solution of (2.2) with initial
data yo.

b) We are now going to provide an L2 a priori bound for the solution y.
Using (2.2), integration by parts yields

Hence (3.8) implies that proving that

c) To obtain an L2 bound for y, one can formally differentiate and
mimic the arguments used in b). However, the justification of this formal
derivation is not trivial. We therefore approximate yo in H 1 by functions

Y" E H2 having the same sign as yo. More precisely, let 1, be the
mollifiers used in the proof of Proposition 2.3, and define Yô := yo for

n &#x3E; 1. Then yn E H2 n L I and y" has the same sign as yo. In addition, we
have by Young’s inequality that

Let us write yn = yn (., y~) for the solution of problem (2.2) with initial data y"
By Proposition 2.7 we know that

Hence t H ~ is continuously differentiable on [0, Tn ) and we obtain with
un :- Q-2yn the identity

Recalling that = un - yn, we get

since - 0. Consequently, we find the estimate
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where we used (3.8), (3.10), and Lemma 3.1, respectively. Finally, we get

Invoking the L2-estimate (3.9) proved in part b) and Gronwall’s lemma, we
find that each yn exists globally in H 1 with

Since y (-, yo) E C([0, T) ; H 1 ) depends continuously on yo E we find that
for every To E (0, T) an N ( To ) E N such that

We now obtain

and the proof is complete. D

REMARK 3.6. As an inspection of the proof of Theorem 3.5 shows, the sign-
preserving property of the solution y allows us to work with initial conditions
yo E L I without assuming faster decay at infinity.

4. - Blow-up

In this section we prove that there are smooth initial data for which the

corresponding solution to (1.1) does not exist globally, as indicated in [9].
Let us first derive a useful identity satisfied by a solution to (1.1).
For this, recall that

Therefore the operator Q -2 can be represented as the following convolution
operator: 

- 

’

Given Uo E H3, let

be the solution of ( 1.1 ) with initial data uo (as constructed in Section 2). Using
equation ( 1.1 ) it is not difficult to verify that
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Hence

where * stands for the convolution with respect to the spatial variable.
Differentiating (4.1) with respect to x we get

and therefore

Note that (4.2) holds true in the space C([0, T); 
We are now going to prove the main result of this section:

THEOREM 4.1. Assume that uo e odd and  0. Then the corre-

sponding solution does not exist globally The maximal time of existence is
estimated above by l/(2~o(0)D.

PROOF. Let [0, T ) be the maximal interval of existence of the corresponding
solution u e C([0, T ) ; H 3 ) n C~[0, T ) ; H 2 ) of ( 1.1 ) . Note that

is also a solution of ( 1.1 ) in C([0, T) ; 7~) n C~([0, T) ; H2) with initial data
uo. By uniqueness we conclude that v = u and therefore u (t, .) is odd for any
t E [0, T). In particular, by continuity with respect to the spatial variable of u
and l,cxx, we get

Define g (t) : := for t E [0, T) and note that g E C 1 ([o, T), R).
From (4.2) and (4.3) we get

Consequently,

and therefore T  -2/go. In particular, the solution does not exist globally. D
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REMARK 4.2. a) Due to the invariance of ( 1.1 ) with respect to the trans-
formation (t, x) H (t, x + K), where K E R, the result of Theorem 4.1 holds
true for all initial data uo E H3 which are point-symmetric.

b) From the conservation law (3.1) we immediately see that the magnitude
of the solution u remains bounded as long as the solution exists. Moreover the
proof of Theorem 3.5 shows that the solution exists globally, provided we can
bound ux pointwise from below (uniformly in x and t). Therefore, in order
to have blow-up, the slope of the solution must become infinite, which can be
understood as a breaking of waves.

COROLLARY 4.3. The only equilibrium point of (1. 1) in H3 is the trivial solution.
It is unstable.

PROOF. Note that ( 1.1 ) can be written in the form

An equilibrium solution u E H3 therefore satisfies

Integration over R yields u - 0.
Since in every neighborhood of zero in H3 there are odd functions uo with

u’(0)  0, Theorem 4.1 implies that zero is unstable. D

5. - Weak Solutions

Observe that the class

is optimal in order to solve problem (1.1) in the space C([0, T) ; ~2). In the

following, we mean by a strong solution to the Camassa-Holm equation ( 1.1 )
a function in (5.1), satisfying (1.1) in C([0, T) ; Z~).

A particular feature of the Camassa-Holm equation is the soliton interaction
of solitary waves with comers at their peaks, discovered in [9], [10]. Clearly,
such solutions do not belong to the space (5.1). To provide a mathematical
framework for the study of soliton interaction we shall introduce the notion of
weak solutions to ·problem (5.1 ).

To do this, let us first rewrite equation (1) as a conservation law. More
precisely, let p(x) := (1 /2) exp(-[x[) be the Fourier transform of the Poisson
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kernel on R. As seen in the previous section, the resolvent (120139~)~ can be
represented as the following convolution operator:

Assume now that uo E H3 and let

be the corresponding strong solution of ( 1.1 ). We have

see (4.1 ). Introducing the nonlinear operator

equation ( 1.1 ) can formally be rewritten as the conservation law

Let now uo E H 1 be given. A function u : [0, T) x R is called a weak solution
to (1.1), if u belongs to T) ; and satisfies the identity

for all 4) E C l,c ([0, T ) x R), where q5 E C~~([0, T ) x R) if it is the restriction to
[0, T) x R of a continuously differentiable function on R 2 with compact support
contained in (-T, T) x R. A weak solution is called global, if it is a weak
solution on [0, T) for every T &#x3E; 0. Our definition is justified by

PROPOSITION 5.1. a) Every strong solution is a weak solution.
b) If u is a weak solution and u belongs to the class (5 .1 ) then it is a strong

solution.

PROOF. a) Let u E C([0, T) ; H 3 ) n C ([0, T); H 2 ) be a strong solution on
[0, T) of equation (1.1). Then u belongs clearly to T) ; satisfies
the initial data pointwise and we have that F(u(t)) E H2 for t E [0, T). Hence
the equation u + F(u)x = 0 holds true in C([0, T) ; Z.2). Integration by parts
now implies that u is a weak solution of ( 1.1 ).

b) Let u be a weak solution belonging to the class (5.1). Then uo :=

u (o, ~ ) E H 3 . Hence there exists a unique strong solution v with initial data uo.
By a) the function v is a weak solution to (1.1). Thus integration by parts yields
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Since Cl,’([O, T ) x R) is dense in LZ ([0, T ) x R) we find that

But the regularity assumption on u implies that (5.3) actually holds true in

C([0, T) ; 7~). Applying the operator ( 1 - ax ) to this equation and using (4.1)
and the fact that v is a strong solution to ( 1.1 ), we deduce that

Thus u is in fact a strong solution. D

EXAMPLE 5.2 (Solitary Wave). By computation one can check that the
travelling wave 

. I

is for any c &#x3E; 0 a global weak solution to (l.1) with initial data uo(x) = 
x E R. Note that vc has a comer at its peak and that the speed of the wave
equals its amplitude.

Suprisingly, there are no travelling waves for ( 1.1 ) which are strong solu-
tions. To see this, pick wo E H3 and assume that w(t, x) := wo(t - cx) is a

strong solution of (1.1). Then we get

We find that

and therefore

since wo E H3 C C2(R). Multiplying this identity with 2wo, a further integration
shows that

Since wo belongs to H3, this is impossible.
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6. - Soliton Interaction

In this section we use the framework of weak solutions to describe the
soliton interaction for ( 1.1 ): we present below with some additions the findings
of Camassa and Holm [9].

Motivated by the form of the solitary waves, let us make the following
Ansatz for two interacting solitary waves:

(6.1) u (t, x) = + E R,

where 
Tedious computations (fix x E R and split the spatial integration over R

in F(u) according to the order of magnitude of x, and q2(t)) show
that the Ansatz (6.1 ) is a weak solution of ( 1.1 ) if and only if the variables

p2 (t), ql (t) and q2 (t) satisfy the following system of ordinary differential
equations with discontinuous right-hand side:

Observe that (6.2) is a Hamiltonian system with Hamiltonian

It is useful to note that the system (6.2) admits also the conserved quantity

We assume that the two solitary waves are initially well-separated, with
asymptotic speeds (and amplitudes) c 1 and respectively c2 with c 1 &#x3E; c2 &#x3E; 0,
so that a collision between them occurs if the faster wave is to the left of the
slower.

For the Ansatz (6.1) we therefore assume that

If we change the variables in (6.2) to the new canonical variables

we obtain the equivalent system
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with the Hamiltonian

Since P is constant, we find 2H = (c2 -~ p2) -~ (c2 _ p2)e-iql , where c := Cl +C2,
and therefore 

- -

Assume that at some instant t the peaks overlap, i.e. we have q (t) = 0. Then
we would get

which is impossible since cl &#x3E; c2 &#x3E; 0. Hence, q does not vanish and, since
the faster wave starts to the left of the slower, we have q  0. In particular
we see that solutions to system (6.3) are unique and smooth.

The equation for p becomes p’ - 2 ( p2 - (Cl - C2)2) , and by integration
we obtain

where L=cl -C2 Iwhere L = Cl - C2 and k = n p(0)+L ’
Since

we deduce

and, in view of dq = p ( 1 - eq)dt, we find

and we obtain  2013 ! = 0 for some constant kl &#x3E; 0. Sincep 1-e

cl - c2 we conclude that always c2 &#x3E; p2(t) and therefore
the differential equation p’ _ - 2 (C2 - p2)eq  0 shows that p(t) decreases
from the value L as t increases.

From (6.4) we find now

since p 2 (t)  c2 for all time; here y = ek . We obtain



325

From here we deduce the asymptotic behaviour

and since (q(t) - Lt) = 0, we find y = Therefore

Integrating the differential equation Q’ - c(l + eq ) (we have an exact
formula for q), we find

and therefore

Using the relation ( Q (t) - ct) = 0, we can compute Q(0) =
deducing that2 + , g that"

Combining (6.5)-(6.7) with the fact that P is constant, we conclude that
as 

To summarize,
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We see from these formulas that

i) if ci &#x3E; 2c2, both waves experience a forward shift;
ii) if cl - 2c2, no shift occurs for the shorter while the taller is shifted

forward;
iii) if 1  ci  2c2, the taller wave is shifted forward while the shorter is

shifted backward.

These conclusions explain why the Ansatz (6.1) is called a two-soliton
solution of equation (1.1). Namely, the solution is formed initially of two
waves (which are almost solitary) with the taller one to the left of the shorter.
The taller wave catches the shorter and they collide but no overlapping of the
peaks occurs. After the collision the taller wave reappears to the right of the
shorter one and moves away as time goes by. The interaction is a purely
nonlinear process and it is the appearance of phase shifts which is the hallmark
of this type of nonlinear interaction: the taller wave has moved forward, and
the shorter backward, forward or not at all (depending on the ratio of the initial
speeds), relative to the positions they would have reached if the interaction were
linear.

The interaction phenomena described before is sketched below for times
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