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Abstract

This paper is concerned with quasilinear systems of partial differential equations
consisting of two hyperbolic operators interacting dissipatively. Its main theorem es-
tablishes global-in-time existence and asymptotic stability of strong solutions to the
Cauchy problem close to homogeneous reference states. Notably, the operators are not
required to be symmetric hyperbolic, instead merely the existence of symbolic sym-
metrizers is assumed. The dissipation is characterized by conditions equivalent to the
uniform decay of all Fourier modes at the reference state. On a technical level, the
theory developed herein uses para-differential operators as its main tool. Apparently
being the first to apply such operators in the context of global-in-time existence for
quasi-linear hyperbolic systems, the present work contains new results in the field of
para-differential calculus. In the context of theoretical physics, the theorem applies
to recent formulations for the relativistic dynamics of viscous, heat-conductive fluids
notably such as that of Bemfica, Disconzi and Noronha [1] (Phys. Rev. D, 98:104064,
2018.).
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1 Introduction and main result

In this paper, we study systems of partial differential equations that are given by the su-
perposition of two hyperbolic operators and show that homogeneous states are nonlinearly
stable in the sense that small perturbations thereof lead to global-in-time decaying solutions.
Concretely, we consider the Cauchy problem for quasi-linear systems of the form

d
∑

j=0

Aj(u(t, x))uxj
(t, x) =

d
∑

j,k=0

(Bjk(u(t, x))uxj
(t, x))xk

, x0 = t ≥ 0, x = (x1, . . . , xd) ∈ R
d,

(1.1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R
d, (1.2)

where both the operator on the right hand side and the operator on the left hand side are
hyperbolic and each of them acts dissipatively on the trajectories generated by the other one.
Such systems occur in theroretical physics as recent formulations for the (special-)relativistic
dynamics of viscous, heat conductive fluids [15, 16, 17, 1, 12, 2]. Our results apply to these
formulations. The main theorem is the following.

1.1 Theorem. Consider d ≥ 3, s > d/2 + 1, ū ∈ Rn and let (1.1) satisfy conditions
(HA), (HB) and (D) from Section 3. Then there exist constants δ > 0 and C = C(δ) > 0
such that the following holds: For all u0, u1 with u0 − ū ∈ Hs+1(Rd,Rn) ∩ L1(Rd,Rn), u1 ∈
Hs(Rd,Rn)∩L1(Rd,Rn) as well as ‖u0− ū‖Hs+1 , ‖u1‖Hs, ‖u− ū‖L1 , ‖u1‖L1 < δ there exists a
unique global solution u of (1.1), (1.2) satisfying u− ū ∈ C([0,∞), Hs+1) ∩ C1([0,∞), Hs),
l = 0, . . . , s+ 1 and, for all t ∈ [0,∞),

‖u(t)− ū‖Hs + ‖ut(t)‖Hs−1 ≤ C(1 + t)−
d
4 (‖u0 − ū‖Hs + ‖u1‖Hs−1 + ‖u0 − ū‖L1 + ‖u1‖L1),

(1.3)

‖u(t)− ū‖2Hs+1 + ‖ut(t)‖
2
Hs +

∫ t

0

‖u(τ)− ū‖2Hs+1 + ‖ut(τ)‖
2
Hs dτ (1.4)

≤ C(‖u0 − ū‖2Hs+1 + ‖u1‖
2
Hs + ‖u0 − ū‖2L1 + ‖u1‖

2
L1)

While conditions (HA) and (HB) specify the assumed hyperbolicity, condition (D), essentially
obtained in [14], characterizes the needed decay behaviour for the Fourier modes of the
associated linearized system.

Based on the famous Kawashima-Shizuta condition [24, 34], analogous results are well-known
for symmetric hyperbolic-parabolic systems and first-order hyperbolic systems with relax-
ation, cf. [9, 33, 41, 19, 26, 42, 5] among others.1 Regarding dissipative second-order hyper-
bolic systems there are fewer results available, cf. notably [11, 27, 32] and references therein,
all of those treat systems whose structure is different form the one we consider here. The

1Note that the often available reformulations of (1.1) as first-order hyperbolic systems do typically not
satisfy the assumptions of these works.
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most prominent example for equations satisfying condition (D) are probably damped wave
equations with a non-linear convection term, which alternatively can be viewed as conserva-
tion laws with hyperbolic artificial viscosity. In this case, (D) reduces to Whitham’s famous
sub-characteristic condition [40] and various in-depth results on the asymptotic behaviour
of solutions have been achieved in this context, cf. [31, 25, 39, 20, 10, 23]. Closest related
to the present work are [35, 36, 37], there a predecessor of Theorem 1.1 was shown for the
systems proposed in [16, 17].

The theory developed in the present work requires novel techniques in the use of para-
differential operators. Developed by Bony [6] and Meyer [30, 29], such operators have been
used in the context of hyperbolic equations by Gérard and Rauch [18], Taylor [38] and
Métivier [28]. However, quite different from these works, we will in particular need to
precisely understand how the norms of para-differential operators depending on the functions
inducing their symbols.

The paper is organized as follows. In the crucial Section 2 general results on para-differential
operators needed for the argumentation in Section 3 and 4 will be established. The present
work apparently being the first that uses such operators to treat global-in-time solutions to
quasi-linear hyperbolic systems, we prove corresponding new results on that dependence. The
technical highlight in this regard will be a modified version of the strong G̊arding inequality.
In Section 3 we construct a para-differential operator which is specifically associated with the
system’s dissipativity. Section 4 is dedicated to the proof of Theorem 1.1. The challenging
part is the treatment of the highest derivatives. Here we have to use the sophisticated
estimates of Section 2 and the construction of Section 3. Finally, Section 5 shows that models
of equations of dissipative relativistic fluid dynamics satisfy the assumptions of Theorem 1.1.

2 Results on para-differential operators

A tour through the theory of para-differential operators from scratch to fine properties, this
section relies on Appendix C of Benzoni-Gavage and Serre [4] and Section 9 of Hörmander
[22], however with strong attention to symbols induced by what later will be the solution to
the PDE system considered. In its initial part interpolating between brevity and legibility,
the section culminates in the aforementioned novel version of the strong G̊arding inequality.

2.1 Notation, definitions and basics

For topological vector-spaces V,W we write L(V,W ) for the space of continuous linear oper-
ators form V to W (or L(V ) if W = V ). Throughout this section consider fixed dimensions
n, d ∈ N and let m denote some real number. For x, ξ ∈ Rd we just write xξ for their
Euclidian scalar product.
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Let E be a finite-dimensional C-Banach space. We denote the E-valued Schwartz space by
S(Rd, E), and by S ′(Rd, E) := L(S(Rd), E) the space of continuous linear mappings from
S(Rd) to E, i.e. the space of E-valued temperate distributions, both equipped with the
standard locally convex topologies. For f ∈ S(Rd, E) the Fourier transform is

(Ff)(ξ) = f̂(ξ) = (2π)−d/2

∫

Rd

f(x)e−ixξdx

with inverse

(F−1f̂)(x) = (2π)−d/2

∫

Rd

f̂(ξ)eixξdξ.

We write F1 and F2 for the Fourier transform with respect to the first and the second variable
for functions f ∈ S(Rd × Rd, E), i.e.

(F1f)(η, y) = F(f(·, y))(η) = (2π)−d/2

∫

Rd

f(x, y)e−ixηdx,

(F2f)(x, ξ) = F(f(x, ·))(ξ) = (2π)−d/2

∫

Rd

f(x, y)e−iyξdy.

As usual we extend F ,F1,F2 to continuous operators on S ′(Rd, E), S ′(Rd × R
d, E) and

unitary operators on L2(Rd, E), L2(Rd × Rd, E) also denoted by F ,F1,F2.

We will use 〈ξ〉 := (1 + |ξ|2)
1

2 , ξ ∈ Rd, Λm := F−1〈·〉mF . As usual

Hm(Rd, E) := {u ∈ L2(Rd, E) : Λmu ∈ L2(Rd, E)},

are the L2-based E-valued Sobolev spaces with norm

‖u‖Hm(Rd,E) := ‖Λmu‖L2(Rd,E).

If E is a Hilbert space we consider the scalar product on Hm(Rd, E)

〈u, v〉Hm(Rd,E) := 〈Λmu,Λmv〉L2(Rd,E).

We also use L∞-based Sobolev spaces

W k,∞(Rd, E) := {u ∈ L∞(Rd, E) : ∂αxu ∈ L∞(Rd, E), |α| ≤ k}

with norm
‖u‖W k,∞(Rd,E) = max

|α|≤k
‖∂αxu‖L∞(Rd,E).

We often just writeHm, ‖u‖m, 〈u, v〉m,W k,∞ instead ofHm(Rd, E), ‖u‖Hm(Rd,E), 〈u, v〉Hm(Rd,E),
W k,∞(Rd, E) if there is no concern for confusion, and ‖u‖ for ‖u‖0.

For A ∈ C
n×n we denote the adjoint matrix by A∗ = Āt and for T ∈ L(S(Rd,Cn)) we write

T ∗ for the adjoint operator with respect to the L2(Rd,Cn) inner product. As usual we call T

4



self-adjoint if T = T ∗ and positive (strictly positive) if 〈Tf, f〉0 ≥ 0 (〈Tf, f〉 > 0), in which
case we also write T ≥ 0 (T > 0).

Next, we turn to the basic definitions concerning pseudo-differential operators which will be
used in the present paper. We consider the following symbol classes.

2.1 Definition. (i) Sm := Sm(Rd,Cn×n) is the set of all functions a ∈ C∞(Rd×R
d,Cn×n)

for which for any α, β ∈ N0 there exists Cαβ > 0 such that

|∂βx∂
α
ξ a(x, ξ)| ≤ Cαβ〈ξ〉

m−|α|. (2.1)

With semi-norms being the optimal constants in (2.1), Sm is a Fréchet space.

(ii) Sm
1,1 := Sm

1,1(R
d,Cn×n) is the set of functions a ∈ C∞(Rd × Rd) for which for any

α, β ∈ Nd
0 there exist Cαβ > 0 such that

|∂βx∂
α
ξ a(x, ξ)| ≤ Cαβ〈ξ〉

m−|α|+|β (2.2)

for all (x, ξ) ∈ Rd ×Rd. With semi-norms being the optimal constants in (2.2), Sm
1,1 is

a Fréchet space.

(iii) For a ∈ Sm
1,1 the mapping op[a] ∈ L(S(Rd,Cn)) defined by

(op[a]f)(x) := (2π)−
d
2

∫

eixξa(x, ξ)Ff(ξ) dξ. (2.3)

is called the pseudo-differential operator with symbol a. We also write a := Sym[op[a]].

As first shown in [7, 8] for a ∈ Sm
1,1 the operator op[a] extends to a bounded operator from

H l+m to H l only if op[a]∗ also has a symbol in S1,1
m . But the operator norm of op[a] can

in general not be controlled by semi-norms of a uniformly over this subspace. As for our
applications to dissipative hyperbolic systems it is essential that the norm of op[a] is small
if the semi-norms of a are small we have to make sure that the symbols occurring in the
present work belong to the following smaller subspaces.

2.2 Definition. For L ∈ (0, 1], Sm,L
1,1 is the subspace of all a ∈ Sm

1,1 such that F1a vanishes
on NL := {(η, ξ) ∈ Rd × Rd : |η + ξ|+ 1 < L|ξ|} in the sense of distributions, i.e.

a(F1φ) = 0 for all φ ∈ S(Rd × R
d) with supp φ ⊂ NL. (2.4)

2.3 Proposition. Let L ∈ (0, 1]. For all l ∈ R and a ∈ Sm,L
1,1 op[a] extends to a continuous

operator form H l+m to H l and op is itself continuous from Sm,L
1,1 to L(H l+m, H l).

Proof. Cf. [22], Proposition 9.3.1.

The symbols in Sections 2 and 3 will be induced by functions (x, ξ) 7→ F (u(x), ξ) where
F ∈ C∞(Rn × R

d), u ∈ W k,∞(Rd,Rn) for some k ∈ R, i.e. they belong to the following
symbol class.
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2.4 Definition. For any k ∈ N0 the set Γm
k of symbols of order m with regularity k is the

set of functions A : Rd × Rd 7→ Cn×n such that,

(i) for almost all x ∈ R
d the mapping ξ 7→ A(x, ξ) is in C∞(Rd,Cn×n)

(ii) for any α ∈ Nd
0 and ξ ∈ Rd the mapping x 7→ ∂αξ A(x, ξ) belongs to W k,∞(Rd,Cn×n)

and there exists Cα > 0 not depending on ξ such that

‖∂αξ A(·, ξ)‖W k,∞ ≤ Cα〈ξ〉
m−|α|. (2.5)

With the semi-norms being the optimal constants in (2.5), Γm
k is a Fréchet space.

Para-differential operators associated with symbols in Γm
k are defined as follows.

2.5 Definition. For ǫ = (ǫ1, ǫ2) with 0 < ǫ1 < ǫ2 < 1 we call a function χ ∈ C∞(Rd × Rd)
an admissible ǫ-cut-off if χ is even with respect to each variable, χ(Rd × R

d) ⊂ [0, 1],

χ(η, ξ) =

{

1, |η| ≤ ǫ1|ξ| and |ξ| ≥ 1

0, |η| ≥ ǫ2〈ξ〉 or |ξ| ≤ ǫ2
(2.6)

for all η, ξ ∈ Rd and for all α, β ∈ Nd there exists Cα,β > 0 such that for all ξ, η ∈ Rd

|∂βη ∂
α
ξ χ(η, ξ)| ≤ Cα,β〈ξ〉

−|α|−|β|.

2.6 Proposition. Let χ be an admissible ǫ-cut-off. Set Kχ := F−1
1 (χ) and consider the

function Rχ : Γm
k → C∞(Rd × Rd) given by

Rχ(A) := Kχ ∗1 A, A ∈ Γm
k .

Then Rχ defines a bounded linear operator from Γm
k to Sm,1−ǫ2

1,1 ∩ Γm
k . Here

(Kχ ∗1 A)(x, ξ) =

∫

Rd

Kχ(x− y, ξ)A(y, ξ) dy.

Proof. Apart from the aspect that a is not only in Sm
1,1 but even in Sm,1−ǫ2

1,1 the proof can
be found in [4], Proposition C.16. But that aspect follows in a straightforward manner as
|η+ ξ|+1 ≤ (1− ǫ2)|ξ| implies |ξ| − |η|+1 ≤ (1− ǫ2)|ξ| and thus |η| ≥ ǫ2〈ξ〉 and χ vanishes
for such η, ξ.

2.7 Definition. Let χ be an admissible ǫ-cut-off. For A ∈ Γm
k the (χ-)para-differential

operator with symbol A is defined by

Opχ[A] := op[Rχ(A)].

As Rχ ∈ L(Γm
k , S

m,1−ǫ2
1,1 ), Opχ = op ◦Rχ defines a continuous linear operator from Γm

k to
L(H l+m, H l) (l ∈ R). In particular the L(H l+m, H l)-norm of Opχ[A] can be estimated by a
constant depending on l, χ and a finite sum of Γk

m-semi-norms of A.
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The following shows that, regarding its dependence on χ, opχ[A] is determined by A up to
a lower order operator, if k ≥ 1.

2.8 Lemma. Let χ be an admissible ǫ-cut-off and k ≥ 1. Then the following holds:

(i) The mapping Rχ − Id is a continuous operator from Γm
k to Γm−1

k−1 .

(ii) If χ̃ is an admissible ǫ̃-cut-off, then Rχ − Rχ̃ is a continuous operator from Γm
k to

Sm−1,1−τ
1,1 ∩ Γm−1

k−1 with τ = max{ǫ2, ǫ̃2}.

Proof. Cf. [4], Proposition C.13, Corollary C.5.

We end this subsection by stating two additional results on para-differential operators for
later usage. The proofs are contained in [4], Appendix C. To simplify notation we fix an
admissible ǫ-cut-off χ and suppress the dependence of Rχ and Opχ on χ in the following.
We call an operator K infinitely smoothing if K ∈ L(Hs, H l) for all s, l ∈ R.

2.9 Lemma. Let b ∈ Sm be constant with respect to the first variable. Then the following
holds:

(i) op(b)−Op[b] is infinitely smoothing.

(ii) Op[b] = Op[b∗]

(iii) Op[Ab] = Op[A]F−1bF for any A ∈ Γµ
k .

2.10 Lemma. For each k > 0 there exists C > 0 such that for all f ∈ L∞ ∩ Hk, A ∈
W 1,∞ ∩Hk

‖A−Op[A]f‖k ≤ C(‖A‖Hk‖f‖L∞ + ‖A‖W 1,∞‖f‖Hk−1).

2.2 Adjoints and products

For the argumentation in Section 3 it will be essential to control the norms of operators
Op[A∗] − Op[A]∗, Op[BA] − Op[B] Op[A], A ∈ Γm

1 , B ∈ Γµ
1 , µ ∈ R, in terms of the semi-

norms of A and B. While for a ∈ Sm,L
1,1 , b ∈ Sm,L

1,1 there exist symbols g ∈ Sm
1,1, h ∈ Sm+µ

1,1

such that op[a]∗ = op[g], op[b] op[a] = op[h] and that, provided ∂xj
a ∈ Sm

1,1(j = 1, . . . , d),
op[a∗] − op[a]∗ ∈ L(H l+m−1, H l), op[b] op[a] − op[ba] ∈ L(H l+m+µ−1, H l), l ∈ R, it is not
true in general that g, h are again in some class Sm,L

1,1 , Sm+µ,L
1,1 which would allow to control

their operator norms. However, for our purposes it is sufficient to consider symbols of the
particular form a = R(A), b = R(B) for A ∈ Γm

1 , B ∈ Γµ
1 and we will show that in this case

the symbols of op[a]∗ = Op[A]∗, op[b] op[a] = Op[B] Op[A] are in fact again in Sm,L
1,1 , Sm+µ,L

1,1

for some L ∈ (0, 1].

As a first step note that for symbols in S(Rd × R
d,Cn×n) there exist neat formulas for the

symbols of adjoint and product operators, which also can be found in [22].
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2.11 Lemma. If a ∈ S(Rd × R
d), then op[a]∗ = op[g] with F1g(η, ξ) = (F1a(−η, η + ξ))∗.

2.12 Lemma. If a, b ∈ S(Rd × R
d,Cn×n), then op[b] op[a] = op[h] with

F1h(η, ξ) =

∫

Rd

F1b(η − θ + ξ, θ)F1a(θ − ξ, ξ)dθ.

The significance of this result lies in the following observation.

2.13 Lemma. Let A ∈ Γm
0 . Then there exists a sequence (aν)ν≥1 ⊂ S(Rd × Rd,Cn×n)

such that op[aν ]u → Op[A]u, ν → ∞ in S(Rd,Cn) for all u ∈ S(Rd,Cn). Furthermore
for all δ ∈ (ǫ2, 1), ǫ2 being the constant of the ǫ-cut-off, there exists ν0 > 0 such that
suppF1aν ⊂ {(η, ξ) ∈ Rd × Rd : |η| ≤ δ〈ξ〉} for all ν ≥ ν0.

Proof. The first part of the statement is shown as in [21], proof of Theorem 18.1.8. However,
we have to slightly modify the construction to also obtain the second part. Set a := R(A).
Choose φ̂ ∈ S(Rd) with supp φ̂ ⊂ B0(1), F−1φ̂(0) = 1 and define φ := F−1φ̂,

aν(x, ξ) := φ(x/ν)φ(ξ/ν)a(x, ξ), x, ξ ∈ R
d.

The asserted convergence then follows as ibid.

It remains to show the statement concerning the supports. Set ψν(x, ξ) := φ(x/ν)φ(ξ/ν)
(ξ, η ∈ Rd, ν ≥ 1). As F1(aν) = (2π)−d/2(F1ψν) ∗1 (F1a) and F1a = χF1A, it is sufficient
to show that for given δ ∈ (ǫ2, 1) and ν sufficiently large χ(η − θ, ξ)F1ψν(θ, ξ) = 0 for all
θ, η, ξ ∈ R

d |η| ≥ δ〈ξ〉. Clearly

F1ψν(θ, ξ) = νdφ̂(θν)φ(ξ/ν).

As by construction φ̂(θν) = 0 for |θ| ≥ ν−1 we can assume |θ| ≤ ν−1. Then |η| ≥ δ〈ξ〉 yields

|η − θ| ≥ |η| − |θ| ≥ δ〈ξ〉 − ν−1.

Hence choosing ν so large that ν−1 ≤ δ − ǫ2 gives (note 〈ξ〉 ≥ 1)

|η − θ| ≥ δ〈ξ〉 − (δ − ǫ2)〈ξ〉 = ǫ2〈ξ〉.

But this implies χ(η − θ, ξ) = 0, which finishes the proof.

2.14 Proposition. Let A ∈ Γm
0 . Then there exists b = b(A) ∈ Sm,1−ǫ2

1,1 such that Op[A]∗ =
op[b(A)]. Furthermore if A ∈ Γ1 the operator

T : Γm
1 → Sm−1,1−ǫ2

1,1 , a 7→ b(A)− R(A)∗

is continuous. In particular the mapping

A 7→ Op[A∗]−Op[A]∗ = op[R(A)∗ − b(A)]

is continuous from Γm
1 to L(H l+m−1, H l) for any l ∈ R.
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Proof. Set a := R(A). As A ∈ Sm,1−ǫ2
1,1 , the existence of b := b(A) ∈ Sm

1,1 with op[b] = Op[A]∗

follows by [22], Lemma 9.4.1.

Next we prove that F1b vanishes onN1−ǫ2. If A ∈ S(Rd×Rd,Cn×n) also a ∈ S(Rd×Rd,Cn×n)
and Lemma 2.11 gives

F1b(η, ξ) = (F1a(−η, η + ξ))∗.

If now |η + ξ|+ 1 ≤ (1− ǫ2)|ξ| then ǫ2|ξ| ≤ |η| and thus

ǫ2〈η + ξ〉 ≤ ǫ2(1 + |η + ξ|) ≤ (1− ǫ2)ǫ2|ξ| ≤ (1− ǫ2)|η| ≤ |η|,

which implies F1a(−η, η + ξ) = (χF1A)(−η, η + ξ) = 0.

For general A choose a sequence (aν)ν≥1 ⊂ S(Rd × Rd,Cn×n) with op[aν ]u → Op[A]u in
S(Rd,Cn) for all u ∈ S(Rd,Cn). This implies op[aν ]

∗ → Op[a]∗ = op[b] in S ′(Rd ×Rd,Cn×n)
and it is straightforward to show that this yields bν → b ∈ S ′(Rd × Rd,Cn×n), where
F1bν(η, ξ) = F1aν(−η, η+ξ). By Lemma 2.13 F1aν(η, ξ) vanishes for |η| ≥ δ〈ξ〉, if δ ∈ (ǫ2, 1).
As seen above this yields bν ∈ Sm,1−δ

1,1 . In conclusion b = limν→∞ bν ∈ Sm,1−δ
1,1 for all δ > ǫ2,

i.e. b ∈ Sm,1−ǫ2
1,1 .

Lastly A ∈ Γm
1 directly gives ∂δxA ∈ Γm

0 and hence ∂δxR(A) = R(∂δxA) ∈ Sm
1,1 (|δ| = 1) . By

[22], Lemma 9.6.1 (applied to N = 1, mN = m− 1) we now obtain b−R(A) ∈ Sm−1
1,1 and its

Sm
1,1-semi-norms are bounded by a constant times a sum of finitely many Sm

1,1-semi-norms of
∂δxR(A) (|δ| = 1). As also b−R(A) ∈ Sm−1,1−ǫ2 , the assertion follows by the continuity of R
and op.

Concerning the analysis of product operators we first consider the difference Rχ(AB) −
Rχ(A)Rχ(B).

2.15 Lemma. For A ∈ Γm
1 , B ∈ Γµ

1 and an ǫ-cut-off χ with ǫ2 < 1/2 we have Rχ(B)Rχ(A) ∈
Sm+µ,1−2ǫ2
1,1 . Furthermore the bilinear operator

T : Γm
1 × Γm

1 → Sm+µ−1,1−2ǫ2
1,1 , (A,B) 7→ Rχ(AB)− Rχ(A)Rχ(B)

is continuous.

Proof. We suppress the superscript χ in the following. As R(A) ∈ Sm
1,1, R(B) ∈ Sµ

1,1, it

is clear that R(B)R(A) ∈ Sm+µ
1,1 . Thus regarding the first assertion we need to show that

R(B)R(A) vanishes on N1−2ǫ2. Since F1(R(B)R(A)) = (2π)−d/2F1R(B) ∗1 F1R(B) and
F1R(A) = χF1A, F1R(B) = χF1B, it is sufficient to prove that χ(η− θ, ξ)χ(θ, ξ) vanish for
all θ, η, ξ ∈ Rd with |η+ ξ|+1 ≤ (1−2ǫ2)|ξ|. Take such θ, η, ξ. If χ(θ, ξ) 6= 0 then |θ| ≤ ǫ2〈ξ〉
and |η + ξ|+ 1 ≤ (1− 2ǫ2)|ξ| implies |η| ≥ 2ǫ2|ξ|+ 1. Together this yields

|η − θ| ≥ |η| − |θ| ≥ 2ǫ2|ξ|+ 1− ǫ2ξ ≥ ǫ2〈ξ〉.

Now χ(η − θ, ξ) vanishes for such η, θ, ξ, wich completes the argument.
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In regard to the continuity we write

R(BA)−R(B)R(A) = R(BA)− BA+B(A− R(A))− (R(B)− B)R(A).

Hence it follows from Lemma 2.8 (i) and the continuity of R that T is continuous as an
operator to Γm+µ−1

0 . Thus the proof is finished if we show that each Sm+µ−1
1,1 -semi-norm can

be bounded by a constant times a finite sum of Γm+µ−1
0 -semi-norms of T (A,B). We show

that even the following holds: For all α, β ∈ N0 there exists Cβ > 0 such that

|∂βx∂
α
ξ T (A,B)(x, ξ)| ≤ Cαβ |∂

α
ξ T (A,B)(x, ξ)|〈ξ〉|β|, x, ξ ∈ R

d. (2.7)

By Bernstein’s Lemma applied to ∂αξ T (a, b)(·, ξ) (cf. e.g. [4], Lemma C.3) this can be

deduced from the fact that for all ξ ∈ R
d

supp
(

(FT (A,B))(·, ξ)
)

⊂ B(0, 2ǫ2〈ξ〉).

In fact,
supp(F(R(ba)(·, ξ)) ⊂ supp(χ(·, ξ)) ⊂ B(0, 2ǫ2〈ξ〉)

holds by definition of χ and that F1(R(b)R(a)) vanishes for all η, ξ with |η| > 2ǫ2〈ξ〉 follows
by the same argumentation as in the first part of the proof.

We can now prove our main proposition concerning products of para-differential operators.

2.16 Proposition. Let A ∈ Γm
0 , B ∈ Γµ

0 . Then for L := (1 − ǫ2)
2 there exists h(B,A) ∈

Sµ+m,L
1,1 such that Op[B] Op[A] = op[h(B,A)]. Furthermore the operator

Γm
1 × Γm

1 → L(H l+µ+m−1, H l), (B,A) 7→ Opχ[B] Op[A]−Op[BA]

is continuous for all l ∈ R.

Proof. The existence of a h = h(B,A) ∈ Sm+µ
1,1 such that

op[h(B,A)] = op[R(B)] op[R(A)] = Op[B] Op[A]

follows direclty from [22], Lemma 9.5.1 as R(A) ∈ Sm,1−ǫ2
1,1 . We now prove that h satisfies

(2.4) for L = (1− ǫ2)
2. First assume a := R(A), b := R(B) ∈ S(Rd × R

d). By Lemma 2.12

F1h(η, ξ) =

∫

Rd

F1b(η − θ + ξ, θ)F1a(θ − ξ, ξ)dθ. (2.8)

Let η, ξ ∈ Rd with |η+ ξ|+1 ≤ (1− ǫ2)
2|ξ|. If F1a(θ− ξ, ξ) = F1R(A)(θ− ξ, ξ) 6= 0 we have

|θ − ξ| ≤ ǫ2〈ξ〉 ≤ ǫ2 + ǫ2|ξ|, which gives (1− ǫ2)|ξ| ≤ |θ|+ ǫ2. We arrive at

|η + ξ − θ| ≥ |θ| − |η + ξ| ≥ |θ| − (1− ǫ2)
2|ξ|+ 1 ≥ |θ| − (1− ǫ2)|θ| − (1− ǫ2)ǫ2 + 1

= ǫ2θ + ǫ2 + (1− ǫ2)
2 ≥ ǫ2〈θ〉.
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But this implies F1b(η + ξ − θ, θ) = F1R(B)(η + ξ − θ, θ) = 0, which finishes the argument.

For general A,B choose sequences (aν)ν≥1, (bν)ν≥1,⊂ S(Rd × Rd) with op[aν ]u → Op[A]u,
op[bν ]u → Op[B]u in S(Rd × Rd,Cn) for all u ∈ S(Rd × Rd,Cn) as constructed im Lemma
2.13. Then clearly

op[hν ]u = op[bν ] op[aν ]u→ Op[B] Op[A]u = op[h]u

in S(Rd,Cn), where hν is defined by (2.8) with a, b replaced by aν , bν . This implies hν → h
in S ′(Rd × Rd,Cn×n). As for all 1 > δ > ǫ2 suppF1aν , suppF1bν ⊂ {(η, ξ) ∈ Rd × Rd : |η| ≤
δ〈ξ〉} for ν sufficiently large we get by the same reasoning as above that for all 1 > δ > ǫ2
hν vanishes on N(1−δ)2 for ν sufficiently large, which proves that h vanishes on N(1−ǫ2)2 .

To prove the second assertion note that by Lemma 2.8 (ii), the mapping G 7→ Opχ[G] −
Opχ̃[G] is continuous from Γk

1 to L(H l+k−1, H l), k, l ∈ R, for any admissible cut-offs χ, χ̃.
Hence we can assume w.l.o.g ǫ2 <

1
2
. By Lemma 2.15 and the continuity of op

(B,A) 7→ Op[BA]− op[R(B)R(A)] = op[R(BA)− R(B)R(A)]

is also continuous as mapping from Γm
1 × Γm

1 to L(H l+µ+m−1, H l). What is left to show ist
the continuity of

(B,A) 7→ Op[B] Op[A]− op[R(B)R(A)] = op[h(B,A)− R(B)R(A)].

As R(A) ∈ Sm,1−ǫ2
1,1 and

∂xj
Rχ̃(A) = R(∂xj

A) ∈ Sm
1,1, ∂xj

Rχ̃(B) = R(∂xj
B) ∈ Sm

1,1, j = 1, . . . , d.

all semi-norms of h(B,A) − R(B)R(A) can be estimated by a constant times a finite sum
of products of semi norms of ∂xj

R(A), ∂xk
R(B). Thus as h(B,A)−R(B)R(A) ∈ Sm−1,L

1,1 for
l = min{1− 2ǫ2, (1− ǫ2)

2} the assertion follows from the continuity of op and R.

2.3 Estimates for operators with symbols induced by Sobolev func-

tions

In Section 3 the results of Sections 2.1, 2.2 are applied to symbols of the form (x, ξ) 7→
F (u(x), ξ), where F ∈ C∞(U × Rd,Cn×n) (U ⊂ Rn some 0-neighbourhood) and u ∈
Hs(Rd,Rn) for s sufficiently large. For this purpose we prove the results below.

In the following let U ⊂ RN be a 0-neighbourhood.

2.17 Definition. We denote by Sm(U) := Sm(U ,Cn×n) the set of all functions F ∈ C∞(U×
Rd,Cn×n) for which for any α, β ∈ Nd

0 there exists Cαβ > 0 such that for all (u, ξ) ∈ U × Rd

|∂βx∂
α
ξ F (u, ξ)| ≤ Cαβ〈ξ〉

m−|α|. (2.9)
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For functions F : U × R
d → C

n×n and u : Rd → U we consider the composition

Fu : Rd × R
d → C

n×n, (x, ξ) 7→ F (u(x), ξ).

2.18 Lemma. Let F ∈ Sm(U) and u ∈ Hs with s > d/2. Then Fu ∈ Γm
k for k = [s − d/2]

and for all α ∈ Nd
0 and each Γm

k -semi-norm pα(Fu) it holds

pα(Fu) ≤ Cα(‖u‖s, F ),

and if additionally F (0, ξ) = 0, then

pα(Fu) ≤ C̃α(‖u‖s, F )‖u‖s,

where Cα, C̃α depend on α, F and continuously on ‖u‖s.

Proof. By Sobolev embedding Hs →֒ W k,∞. Thus we have Fu(·, ξ) ∈ W k,∞ and

‖∂αξ Fu(·, ξ)‖W k,∞ ≤ C(‖u‖W k,∞)‖∂αξ F (·, ξ)‖W k,∞(U) ≤ C(‖u‖s)Cα(F )〈ξ〉
m−|α.

all ξ ∈ Rd. If F (0, ξ) = 0, we even get, for all ξ ∈ Rd,

‖∂αξ Fu(·, ξ)‖W k,∞ ≤ C(‖u‖W k,∞)‖u‖W k,∞‖∂αξ Fu(·, ξ)‖W k,∞(U) ≤ C(‖u‖s, F )‖u‖s〈ξ〉
m−|α|.

The following proposition will be central for the energy estimates in Section 3. It follows
directly by the continuity of Op : Γm

k → L(H l+m, H l) and Lemma 2.18 as well as Propositions
2.14, 2.16 and the facts that Op[F0]

∗ = op[F ∗
0 ] and op[G0F0] − op[G0] op[F0] is infinitely

smoothing by Lemma 2.9.

2.19 Proposition. Let F ∈ Sm(U), l ∈ R. Then for all u ∈ Hs with s > d/2 there exists
Cl = Cl(F, ‖u‖) > 0 depending on l, F and monotonically increasingly on ‖u‖s such that:

(i) ‖Op[Fu]‖L(Hl+m,Hl) ≤ Cl(‖u‖s) and for F (0, ·) = 0 ‖Op[Fu]‖L(Hl+m,Hl) ≤ Cl‖u‖s,

(ii) for s > d/2 + 1, Op[Fu]
∗ −Op[F ∗

u ] ∈ L(H l−1+m, Hm) and

‖Op[Fu]
∗ −Op[F ∗

u ]‖L(Hl−1+m,Hm) ≤ Cl‖u‖s

(iii) for G ∈ Sµ(U) and s > d/2 + 1 there exist Cl,2 = Cl,2(G, ‖u‖s) depending on G and
monotonically increasingly on ‖u‖s such that

‖Op[Gu] Op[Fu]−Op[GuFu]‖L(Hl+µ−1+m,Hm) ≤ Cl,2Cl‖u‖s

up to an infinitely smoothing operator, which is determined by F (0, ·), G(0, ·).
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2.20 Proposition. Let F ∈ Sm(U) and u ∈ C1([0, T ], Hs) (T > 0) for s > d/2. Then for
each l ∈ R the mapping

[0, T ] → L(H l+m, H l), t 7→ Op[Fu(t)]

is continuously differentiable and there exists Cl depending on l and F but not on u such
that for all t ∈ [0, T ]

‖
d

dt
Op[Fu(t)]‖L(Hl+m,Hl) ≤ Cl‖∂tu(t)‖s0 (2.10)

Proof. If d
dt
Fu(t) ∈ Γm

0 we get by continuity and linearity of Op

d

dt
Op[Fu(t)] = Op[∂tFu(t)]

To prove this and (2.10) it is sufficient to show that for any α ∈ Nd
0 there exists Cα = Cα(F )

auch that for all ξ ∈ Rd

‖∂αξ ∂tFu(t)(·, ξ)‖L∞ ≤ Cα‖∂tu(t)‖s〈ξ〉
m−|α|.

Let α ∈ Nd
0 and set F α

u(t) := ∂αξ Fu(t). We have for all x, ξ ∈ Rd

∂tF
α
u(t)(x, ξ) =

n
∑

j=1

∂tu
j∂ujF α(u(t, x), ξ)

Due to F ∈ Sm(U) this yields

‖∂tF
α
u(t)(x, ξ)‖L∞ ≤ ‖∂tu(t)‖L∞

∑

|β|=1

‖∂βuF
α(·, ξ)‖L∞ ≤ Cα(F )‖∂tu‖s〈ξ〉

m−|α|.

Lastly we prove a version of the strict G̊arding inequality for F ∈ Sm(U). First consider the
following lemma which is a modification of a construction in [21], proof of Thm. 18.1.6.

2.21 Lemma. There exists an even function ψ ∈ S(Rd × Rd) with unit integral, Op[ψ] =
Op[ψ]∗, 〈op[ψ]v, v〉 ≥ 0 (v ∈ S(Rd)) and F1ψ compactly supported.

Proof. Choose an even function φ̂ ∈ C∞
0 (Rd ×Rd) with L2-norm one and set φ = F−1

1 φ̂. By
definition F1φ is compactly supported and clearly φ is even and has L2-norm one. Next, let
ψ ∈ S(Rd) be the symbol of op[ψ]∗ op[ψ]. As ibid. it follows that ψ is even and has unit
integral. op[ψ] = op[ψ]∗, 〈op[ψ]v, v〉L2 ≥ 0 (u ∈ S(Rd)) holds by definition. Now, let ρ be
the symbol of op[φ]∗. By Lemma 2.11 we get

F1ρ(η, ξ) = (F1φ)
∗(−η, η + ξ), η, ξ ∈ R

d
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and thus by Lemma 2.12

F1ψ(η, ξ) =

∫

Rd

F1ρ(η − θ, θ + ξ)F1φ(θ, ξ)dθ =

∫

Rd

F1φ(θ − η, η + ξ)F1φ(θ, ξ)dθ.

As F1φ is compactly supported, we can choose C > 0 such that F1φ(θ, ξ) = 0 if |θ| ≥ C
or |ξ| ≥ C. Then by definition F1ψ(η, ξ) = 0 if |ξ| ≥ C. Given |η| ≥ 2C and |θ| ≤ C we
conclude |θ − η| ≥ |η| − |θ| ≥ C, i.e. F1φ(θ − η, η + ξ) = 0. In conclusion we have proven
that F1ψ is in fact compactly supported. In particular ψ ∈ S(Rd × Rd).

Next we introduce a method to decompose symbols in Sm
1,1 into an infinite sum of infinitely

smoothing symbols; cf. [22].

First, choose a function ρ ∈ D(Rd) even and monotonically decaying along rays such that
ρ(Rd) ⊂ [0, 1] and

ρ(ξ) =

{

1, |ξ| ≤ 1
2

0, |ξ| ≥ 1
.

For ν ∈ N0 define ρν , ζν ∈ D(Rd) by

ρν(ξ) := ρ(ξ/2ν), ζν(ξ) = ρν+1(ξ)− ρν(ξ), ξ ∈ R
d

Additionally set ζ−1 := ρ.

2.22 Definition. For a function a : Rd × R
d → C

n×n and ν ≥ −1 define

aν(x, ξ) := a(x, ξ)ζν(ξ).

Note that a =
∑

ν≥−1 aν.

It is straightforward to show the following.

2.23 Lemma. Let a ∈ Sm
1,1. Then aν ∈ S−r for all r ∈ R and for any α, β ∈ N0 x, ξ ∈ Rd

|∂βx∂
α
ξ aν(x, ξ)|〈ξ〉

r ≤ C2ν(r+m−|α|+|β|)
∑

γ≤α

Cγβ(a),

where Cγβ(a) are semi-norms of a.

2.24 Proposition. Let s > d/2, u ∈ Hs+2 and F ∈ Sm(U) such that there exists an R > 0
with F (y, ξ) + F (y, ξ)∗ ≥ 0 for all y ∈ U and ξ ∈ R

d with |ξ| > R. Then there exists
C = C(‖u‖s+2, F ) > 0 and for all q ∈ R there exists c = c(‖u‖s+2, F, q) > 0, both increasing
functions of ‖u‖s+2, such that for all v ∈ S(Rd,Cn)

〈(Op[Fu] + Op[Fu]
∗)v, v〉L2 ≥ −C‖u‖

1

2

s+2‖v‖
2
(m−1)/2 − c‖v‖2−q.
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Proof. In the following it is straightforward to see that all constants can be chosen to be
increasing functions of ‖u‖s+2. First note that by Proposition 2.19 for all l ∈ R

‖Op[Fu] + Op[Fu]
∗ −Op[Fu + F ∗

u ]‖L(Hl+m−1,Hl )
≤ Cl‖u‖s+1.

Thus

〈(Op[Fu] + Op[Fu]
∗)v, v〉L2 ≥ 〈Op[Fu + F ∗

u ]v, v〉L2 − C‖u‖s+1‖v‖
2
(m−1)/2, v ∈ S(Rd).

Hence it is sufficent to prove the result for Op[Fu] + Op[Fu]
∗ replaced by Op[Fu + F ∗

u ], i.e.
we can assume w.l.o.g F (u, ξ) = F (u, ξ)∗ ≥ 0.

It holds R(Fu) = R(F ∗
u ) = R(Fu)

∗. By assumption this gives pointwise in Rd × {|ξ| ≥ R}
for all v ∈ Cn

〈(R(Fu))v, v〉Cn ≥ 〈(R(Fu)− Fu)v, v〉Cn ≥ −|R(Fu)− Fu||v|
2

≥ −(|R(Fu − F0)− (Fu − F0)|+ |R(F0)− F0|)|v|
2.

By Lemma 2.18 Fu−F0 ∈ Γm
2 with all semi-norms bounded by a positive constant depending

on F times ‖u‖s+2. By Lemma 2.8 (i) this yields R(Fu −F0)− (Fu −F0) ∈ Γm−1
1 with semi-

norms bounded in the same way. Thus

|R(Fu − F0)− (Fu − F0)| ≤ C0‖u‖s+2〈ξ〉
m−1.

Using also that R(F0)− F0 has compact support we conclude that for all q ∈ R

|R(Fu − F0)− (Fu − F0)|+ |R(F0)− F0| ≤ C0‖u‖s+2〈ξ〉
m−1 + c0q〈ξ〉

−q.

Therefore on Rd × {|ξ| ≥ R}

a := R(Fu) + C0‖u‖s+2〈ξ〉
m−1 + c0〈ξ〉

−r ≥ 0

and a = a∗, a ∈ Sm,1−ǫ2
1,1 . As

Op[Fu] = op[R(Fu)] = op[a]− C0‖u‖s+2 op[〈ξ〉
m−1]− c0 op[〈ξ〉

−r]

it is now sufficient to show

〈op[a]v, v〉L2 ≥ −C‖u‖1/2s+2‖v‖
2
(m−1)/2 − c‖v‖−q

for all q ∈ R.

To this end we proceed similarly as in the proof of Theorem 9.7.1 in [22] but with a crucial
modification. First, decompose a =

∑

ν≥−1 aν according to Definition 2.22. As for all ν0
āν0 :=

∑ν0
ν=−1 aν ∈ S−q for any q ∈ R with norm depending on µ, ν0 according to Lemma 2.23,

i.e. ‖ op[āν0 ]v‖ ≤ cν0,µ‖v‖−r, we only need to consider
∑

ν≥ν0
aν for some ν0 ∈ N. Naturally,

in a first step we choose ν0 large enough to obtain 2ν0−2 > R and thus by assumption
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aν(x, ξ) ≥ 0 for all x, ξ ∈ R
d, ν ≥ ν0. But we will later see that we may have to choose ν0

even larger.

W.l.o.g. assume u 6= 0. Otherwise the result readily follows as F0 ≥ 0 is constant with
respect to x and Op[F0]− op[F0] is infinitely smoothing.

Choose an even function ψ ∈ S(Rd × Rd) with unit integral such that op[ψ] = op[ψ]∗,
〈op[ψ]v, v〉 ≥ 0 (v ∈ S(Rd)) and F1ψ compactly supported as constructed in Lemma 2.21.
For ν ∈ N0 set qν := 2ν/2 and write aν = bν + hν with

bν(x, ξ) :=

∫

Rd

∫

Rd

ψ((x− y)qνµ, (ξ − θ)/(qνµ))aν(y, θ) dy dθ (2.11)

=

∫

Rd

∫

Rd

ψ(y, θ)aν(x− y/(qνµ), ξ − θqνµ) dy dθ, (2.12)

where µ := ‖u‖s+2. As aν ≥ 0 and op[ψ] is a positive operator it is straightforward to obtain
the positivity of bν . Hence the theorem is proven provided

〈op[h]v, v〉L2 ≥ −Cµ‖u‖
1

2

k+1‖v‖(m−1)/2, v ∈ S(Rd). (2.13)

To this end we show h ∈ Sm−1,L
1,1 for some L ∈ (0, 1) and that all semi-norms of h are bounded

by a constant times ‖u‖
1

2

s+2. Then (2.13) follows from Proposition 2.3.

First we verify h ∈ Sm−1
1,1 and the estimate on the semi-norms, i.e.

|
∑

ν≥ν0

∂βx∂
α
ξ hν(x, ξ)| ≤ Cαβ‖u‖

1

2

s+2〈ξ〉
m−1−|α|+|β|. (2.14)

Let α = β = 0. Fix ξ ∈ Rd and consider ν ∈ N0 with |ξ| < 2ν−2 or |ξ| > 2ν+2. As aν(y, θ) = 0
for 2ν−1 ≤ |θ| ≤ 2ν+1 we then have hν(x, ξ) = −bν(x, ξ) and it follows by basic estimates (cf.
[22]) that in the support of the first integrand in (2.11)

|ξ − θ| ≥
1

5
(2ν + |ξ|)

and thus

|ξ − θ|/qν = 2−ν/2|ξ − θ| ≥
1

5
(2ν + |ξ|)

1

2 . (2.15)

As a ∈ Sm
1,1 and supp aν ⊂ {(x, θ) ∈ Rd × Rd : 2ν−1 ≤ |θ| ≤ 2ν}

|aν(y, θ)| ≤ C〈θ〉m ≤ C(1 + 2ν)m.

Hence ψ ∈ S(Rd × Rd) and (2.15) yield

|hν | ≤ Cm(1 + 2ν)m
∫ ∫

(|ξ − θ|/(qνµ))
−2(|m|+1)(1 + |ξ − θ|/(qνµ))

−n−1(1 + |(x− y)|qνµ)
−n−1dy dθ

≤ Cm,nµ
2(|m|+1)(1 + 2ν)m(2ν + |ξ|)−2|m|−2

≤ Cm,nµ
2(|m|+1)(1 + |ξ|)m−12−ν .

(2.16)
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Thus
∑

{ν:|ξ|<2ν−2 or |ξ|>2ν+2}

|hν | ≤ C‖u‖
1

2

s+2〈ξ〉
m−1. (2.17)

Now consider ν ∈ N0 with 2ν−2 ≤ |ξ| ≤ 2ν+2. As ψ is an even function with unit integral we
get from (2.12)

hν = aν − bν =

∫ ∫

ψ(y, θ)
(

aν(x, ξ)− aν(x− y/(qνµ), ξ − θqνµ)
)

dy dθ

=

∫ ∫

ψ(y, θ)
(

∑

|α+β|<2

∂βx∂
α
ξ aν(x, ξ)(−y)

β(−θ)α − aν(x− y/(qνµ), ξ − θqνµ)
)

dy dθ.

(2.18)

By Taylor’s fomula we can estimate (w.l.o.g. assume |θ| ≤ |ξ|)
∣

∣

∑

|α+|β|<2

∂βx∂
α
ξ aν(x, ξ)(−y)

β(−θ)α − aν(x− y/(qνµ), ξ − θqνµ)
∣

∣

≤ C
∑

|α|+|β|=2

sup
x,ξ∈Rd

|∂βx∂
α
ξ aν(x, ξ)||y

βθα|(qνµ)
|α|−|β|.

(2.19)

Note that a = R(Fu). By Lemma 2.18 Fu ∈ Γm
2 and thus ∂βxFu ∈ Γm

2−|β| for |β| ≤ 2. Hence

for each γ ∈ Nd
0, ξ ∈ Rd

‖∂γξ ∂
β
xFu(·, ξ)‖W 2−|β|,∞ ≤ Cγ〈ξ〉

m−|γ|

and for |β| ≥ 1 we also have ∂βxFu|u=0 = 0. Thus again by Lemma 2.18

‖∂γξ ∂
β
xFu(·, ξ)‖W 2−|β|,∞ ≤ Cγ‖u‖s+2〈ξ〉

m−|γ|.

Clearly
∂βxa = ∂βxR(Fu) = R

(

∂βxFu).

and we conclude from Proposition 2.6 that ∂βxa ∈ Sm
1,1 and for all x, ξ ∈ Rd

|∂βx∂
γ
ξ a(x, ξ)| ≤ Cγ〈ξ〉

m−|γ|

{

1, |β| = 0,

‖u‖s+2, 1 ≤ |β| ≤ 2
.

Then by Lemma 2.23

sup
x,ξ∈Rd

|∂βx∂
γ
ξ aν | ≤ Cγ2

ν(m−|α|) ≤ Cγ

{

1, |β| = 0,

‖u‖s+2, 1 ≤ |β| ≤ 2
(2.20)

From (2.18), (2.19), (2.20) and µ = ‖u‖
1

4

s+2, qν = 2ν/2 we now get for 2ν−2 ≤ |ξ| ≤ 2ν+2

|hν | ≤ C

∫

ψ(y, θ)(|θ|2 + |θ||y|+ |y|2) dy dθ

(

2ν(m−2)2ν‖u‖
1

2

s+2 + 2ν(m−1)‖u‖s+2 + 2νm‖u‖s+22
−ν‖u‖

− 1

2

s+2

)

≤ Cµ2
ν(m−1)‖u‖

1

2

s+2 ≤ C‖u‖
1

2

s+2〈ξ〉
m−1,
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where we used ψ ∈ S(Rd × R
d) and 2ν−2 ≤ |ξ| ≤ 2ν+2 in the last line. Together with (2.17)

this shows (2.14) for α = β = 0.

Now note that ∂βx∂
α
ξ bν is given by (2.12) with aν replaced by ∂βx∂

α
ξ aν . Hence we obtain

(2.14) for α, β 6= 0 by applying the argumentation above with aν replaced by ∂βx∂
α
ξ aν and m

replaced by m− |α|+ |β|.

To finish the proof we show that F1h vanishes on NL = {(η, ξ) ∈ R
d × R

d : |η + ξ| < L|ξ|}
with L := min{1− ǫ2,

1
2
}. Then the estimate on the operator norm follows by the continuity

of op. As a = R(Fu) ∈ Sm,1−ǫ2
1,1 , it suffices to prove that F1b vanishes on N 1

2

.

By standard arguments on convolution and Fourier transform we have for all g ∈ S(Rd×Rd)

bν(F1g) = (µqν)
−d/2

∫

Rd

∫

Rd

aν(y, θ)F1f(y, θ) dθ dy,

where

f(η, θ) =

∫

Rd

F1ψ(η/(qνµ), (ξ − θ)/qνµ)g(η, ξ)dη. (2.21)

Let supp g ⊂ N1/2. By construction we have suppF1ψ ⊂ {(ξ, η) ∈ Rd × Rd : |η|, |ξ| ≤ D, }
for some D > 0. Next choose ν0 ∈ N so large that 3Dµ ≤ qν0/2. Then for ν ≥ ν0 on the
support of the integrand of (2.21) we have |η|, |ξ − θ| ≤ Dqνµ and |ξ + η| + 1 < 1

2
|ξ|. The

first and third inequality yield
|ξ| < 2|η| ≤ 2Dqνµ

and thus the second one gives

|θ| ≤ Dqνµ+ |ξ| < 3Dqνµ ≤ qνqν0/2 ≤ 2ν/22ν0/2−1 ≤ 2ν−1.

But this implies bν(y, θ) = 0 for all y ∈ Rd. Therefore we have proven bν(F1g) = 0 for
all ν ≥ ν0 and supp g ⊂ {(ξ, η) ∈ Rd × Rd : |ξ + η| < 1

2
|ξ|}. Hence this also holds for

b =
∑

ν≥ν0
bν .

3 Dissipativity

Throughout this section we consider (1.1), (1.2) with smooth matrix families Aj , Bjk : U →
Rn×n, u0, u1 : R

d → U and u : [0, T ]× Rd → U for some domain U ⊂ Rn. Carrying out the
differentiation with respect to xk on the right-hand side and distinguishing between space
and time derivatives we write (1.1) as

−B00(u)utt =
d
∑

j,k=1

Bjk(u)uxjxk
+

d
∑

j=1

(B0j(u)+Bj0(u)ut)xj
−A0(u)ut−

d
∑

j=1

Aj(u)uxj
+Q(u,Dt,xu),
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where Q is of the form

Q(u,Dt,xu) =

n
∑

l=1

d
∑

j,k=0

Qljk(u)ulxk
uxj

.

We will see in the proofs that the specific form of the matrices Qljk(u) does not play any role.
Hence multiplying (1.1) by (−B00)−1, we can assume −B00 = In without loss of generality,
which we will always do in the following.

Next, denote by

B(u, ξ) :=

d
∑

j,k=1

Bjk(u)ξjξk, C(u, ξ) :=

d
∑

j=1

(B0j(u) +Bj0(u))ξj,

A(u, ξ) :=
d
∑

j=1

Aj(u)ξj, ξ = (ξ1, . . . , ξn) ∈ R
d.

the symbols of the second and first order parts, respectively. Then the hyperbolicity of both
sides of (1.1) is expressed by the following conditions:

(HA) (a) there exists a smooth bounded family of hermitian uniformly positive definite ma-
trices Σ : U → Rn×n such that Σ(u)A0(u) is symmetric and uniformly positive on U ,
(b) the matrix family A0(u)

−1A(u, ξ) permits a symbolic symmetrizer H(u, ξ),

(HB) with

B(u, ξ) =

(

0 |ξ|In
−|ξ|−1B(u, ξ) iC(u, ξ)

)

, ξ = (ξ1, ..., ξd) ∈ R
d,

the matrix family iB(u, ξ) permits a symbolic symmetrizer H(u, ξ).

Above we use the following notion of a symbolic symmetrizer (cf. e.g. [38]).

3.1 Definition. Let K ∈ C∞(U × Rd \ {0},Cn×n). A symbolic symmetrizer for K is a
smooth mapping S ∈ C∞(U × Rd \ {0},Cn×n) positive homogeneous of degree 0 with respect
to the second argument, bounded as well as all its derivatives on U ×Sd−1 such that for some
c > 0 and all (u, ξ) ∈ U × Rd \ {0}

S(u, ξ) = S(u, ξ)∗ ≥ cIn,

and S(u, ξ)K(u, ξ) = (S(u, ξ)K(u, ξ))∗.

3.2 Remark. K admits a symbolic symmetrizer if K is positive homogeneous of degree 1,
for all (u,ω) ∈ U ×Sd−1 all eigenvalues of K(u, ξ) are real, semi-simple (i.e. their geometric
and algebraic multiplicities coincide) and their multiplicities do not depend on (u,ω) (cf.
[38], Proposition 5.2 C). If this holds for A0(u)−1A(u, ξ) or B(u, ξ) the respective operator
is often called constantly hyperbolic.
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We now fix a homogeneous state ū ∈ U and assume the following dissipativity conditions on
the coefficient matrices.

Condition (D). Matrices Aj(ū), Bjk(ū) have three properties:

(D1) For every ω ∈ Sd−1, all restrictions, as a quadratic form, of

W1 = H(ū,ω)(A0(ū))−1
(

−B(ū,ω) + (A0(ū))−1(A(ū,ω))(A0(ū))−1A(ū,ω)

+ C(ū,ω)(A0(ū))−1A(ū,ω)
)

,

on the eigenspaces E = J−1
E (Cn) of

W0 = (A0(ū))−1A(ū,ω)

are uniformly negative in the sense that

J∗
E (W1 +W ∗

1 )JE ≤ −c̄ J∗
EJE with one c̄ > 0.

(D2) For every ω ∈ Sd−1, all restrictions, as a quadratic form, of

W1 = H(ū,ω)A(ū,ω), A(ū,ω) =

(

0 0
−iA(ū,ω) −A0(ū)

)

(3.1)

on the eigenspaces E = J −1
E (C2n) of

W0 = B(ū,ω) (3.2)

are uniformly negative in the sense that

J ∗
E (W1 +W∗

1 )JE ≤ −c̄ IE with one c̄ > 0..

(D3) All solutions (λ, ξ) ∈ C × (Rd \ {0}) of the dispersion relation of (1.1) at ū = 0 have
Re(λ) < 0.

3.3 Remark. Note that as (D) is an open condition there exists a neighbourhood of ū such
that Bjk(u), Aj(u) satisfy (D) with ū replaced by u for all u ∈ U0 with c̄ independent of u.

The following remark is useful in the proofs below.

3.4 Remark. It is straightforward to show that (D1) and (D2) are equivalent to the same
conditions with W0, W1 replaced by

W̄0 := H(ū,ω)
1

2A(ū)−1A(0,ω)H(ū,ω)−
1

2 , W̄1 := H(ū,ω)−
1

2W1H(ū,ω)−
1

2

and W0, W1 replaced by

W̄0 := H(ū,ω)
1

2B(ū,ω)H(ū,ω)−
1

2 , W̄1 := H(ū,ω)
1

2A(ū,ω)H(ū,ω)−
1

2 .
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From now on we always assume (HA), (HB) and (D). As we could also consider (1.1), (1.2)
in the variable u− ū, we can w.l.o.g. restrict our argumentation to the case ū = 0.

We write (1.1) as the first-order in time system

ut = v

vt =
d
∑

j=1

(Bj0 +B0j)(u)vxj
+

d
∑

j,k=1

Bjk(u)uxjxk
− A0(u)v −

d
∑

j=1

Aj(u)uxj
+Q(u,Dt,xu)

(3.3)

and denote by

M̄(u, ξ) :=

(

0 In
M(u, ξ) N(u, ξ)

)

, (3.4)

with
M(u, ξ) = −iA(u, ξ)− B(u, ξ), N(u, ξ) = iC(u, ξ)−A0(u),

the Fourier symbol of (3.3). We also define

M(u, ξ) := Z(ξ)M̃(u, ξ)Z(ξ)−1

Z(ξ) =

(

〈ξ〉In 0
0 In

)

.

First we treat the linearization of (1.1) at the reference state u = 0, i.e.

d
∑

j=0

Aj(0)uxj
=

d
∑

j,k=0

Bij(0)uxixj
. (3.5)

Such linear systems were studied in [14], however under the stronger assumptions, that the
coefficient matrices are symmetric and A0 is positive definite. Then (HA) is clearly satisfied
with FA = In and H = A0. Also, condition (HB) (b) ibid. requires the existence of a
matrix family S : Sd−1 → Cn×n such that iS(ω)B(0,ω)S(ω)−1 is real symmetric. But one
can easily check that this can be relaxed to the assumption that iS(ω)B(0,ω)S(ω)−1 is

hermitian, which is satisfied in the present context for S(ω) := H(0,ω)
1

2 . Lastly, we want
to point out that (D1), (D2) ibid. were stated in the equivalent form mentioned in Remark
3.4.

We will make plausible below that the weaker conditions in the present work are still sufficient
to retrieve the main result of [14], namely:

3.5 Proposition. There exist a c > 0 and a family ξ 7→ T (ξ),Rd → C2n×2n of linear
transformations of C2n which, together with their inverses T (ξ)−1, are uniformly bounded,
such that

T (ξ)M(0, ξ)T −1(ξ) + (T (ξ)M(0, ξ)T −1(ξ))∗ ≤ −cρ(ξ)I2n, ξ ∈ R
d, (3.6)

where ρ(ξ) = |ξ|2/(1 + |ξ|2).
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As outlined in [14] this brings about the pointwise decay of solutions in Fourier space and
thus the following decay estimate for the inhomogeneous linear Cauchy problem.

3.6 Corollary. For any s ∈ N0 there exists C > 0 such that the following holds: For all
u0 ∈ Hs+1 ∩ L1, u1 ∈ Hs ∩ L1 and f ∈ C([0, T ], Hs ∩ L1) the solution u of

f +
d
∑

j=0

Aj(0)uxj
=

d
∑

j,k=0

Bij(0)uxixj

with u(0) = u0, ut(0) = u1 satisfies

‖u(t)‖s+1 + ‖ut(t)‖s ≤ C(1 + t)−
d
4 (‖u0‖s+1 + ‖u0‖L1 + ‖u1‖s + ‖u1‖L1)

C

∫ t

0

(1 + t− τ)−
d
4 (‖f(τ)‖s + ‖f(τ)‖L1) dτ

for all t ∈ [0, T ].

Proof of Proposition 3.5. As stated above the proof can be found essentially in [14]. We just
illustrate at which points it has to be slightly modified.

The existence of a bounded family T (ξ) ⊂ Gl2n
2 satisfying (3.6) is proven separately for the

three different regimes |ξ| ≤ r0, r0 ≤ |ξ| ≤ r∞ and |ξ| ≥ r∞ for suitable r0, r∞ > 0. In
the latter two cases only ((H)B) and conditions (D2), (D3) are used. The symmetry of the
matrices plays no role whatsoever.

For small values of |ξ| writting ξ = ξω for ξ > 0, ω ∈ Sd−1 one finds a bounded family of
invertible R(ξ,ω) with R(ξ,ω)−1 also bounded and (supressing the argument u = 0)

R(ξ,ω)M̄(ξω)R(ξ,ω)−1 =

(

X(ξ,ω) 0
0 Y (ξ,ω)

)

,

where

X(ξ,ω) = iξ(A0)−1A(ω)

+ ξ2(A0)−1
(

−B(ω) + (A0)−1(A(ω))(A0)−1A(ω) + C(ω)(A0)−1A(ω)
)

+O(ξ3)

Y (ξ,ω) = −A0 +O(ξ3).

This is due to the fact that A0(0) is invertible and again makes no use of the symmetry.
Hence for

Ř(ξ,ω) =

(

H(ω)
1

2 0

0 F
1

2

A

)

Ř(ξ,ω)

we get

Ř(ξ,ω)M(ξω)Ř(ξ,ω)−1 =

(

iξW̄0 + ξ2W̄1 +O(ξ3)

0 −F
1

2

AA
0F

− 1

2

A .

)

.

2For m ∈ N Glm denotes the space of invertible m×m-matrices.
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with W̄0, W̄1 as in Remark 3.4. Since F
1

2

AA
0F

− 1

2

A is positive definite the existence of the
family T (ξ) now follows for sufficiently small ξ by condition (D1) and [14], Lemma 5.3

In Section 4 we will see that, given d ≥ 3, s > d/2 + 1, Corollary 3.6 directly implies the
decay of a solution to the quasi-linear problem (1.1) in Hs−1 but only provided that its
Hs-norm is a-priori known to be small. To close this gap we need to show that the Hs-norm
of a small solution can be bounded by the initial conditions and L2-norms of lower order
derivatives. The rest of this section is devoted to a construction preparing such a result.

In the following for ξ ∈ Rd we write ξ = ξω with ξ = |ξ| ∈ [0,∞),ω = ξ/|ξ| ∈ Sd−1.
For r > 0, u ∈ Rn, ξ ∈ Rd and ω ∈ Sd−1 by Bn(u, r), Bd(ξ, r), BS(ω, r) we denote the balls
with radius r and center u, ξ,ω with respect to the metrices on Rn,Rd, Sd−1. For some
ω∗ ∈ Sd−1 and δ > 0 we use

P (ω∗, δ) = Bn(0, δ)× [0, δ)×BS(ω∗, δ)

.

3.7 Proposition. There exist r > 0, c∞ > 0 and a mapping D∞ ∈ C∞(Ω∞,C
2n×2n), Ω∞ :=

Ū0 × {ξ ∈ Rd : |ξ| ≥ r−1}, Ū0 := Bn(0, r) ⊂ U , such that:

(i) For all (u, ξ) ∈ Ω∞

D∞(u, ξ) = D∞(u, ξ)∗ ≥ c∞In,

and
D∞(u, ξ)M(u, ξ) + (D∞(u, ξ)M(u, ξ))∗ ≤ −c∞I2n.

(ii) For any α, β ∈ Nd
0 there exist Cαβ > 0 with

|∂βu∂
α
ξ D∞(u, ξ)| ≤ Cαβ〈ξ〉

−|α|, (u, ξ) ∈ Ω∞. (3.7)

Proof. Consider the mapping K : U × (0,∞)× Sd−1 → C2n×2n defined by

K(u, η,ω) =

(

0 In
−iηA(u,ω)− B(u,ω) −iC(u,ω)− ηA0(u)

)

, ω ∈ S
d−1. (3.8)

and H(u,ω) denote the symmetrizer of B(u,ω) as in condition (HB) (b). Set

W(u, η,ω) := H(u,ω)
1

2K(u, η,ω)H(u,ω)−
1

2 .

Since

K(0, 0,ω) =

(

0 In
−B(0,ω) iC(0,ω)

)

= B(0,ω)

3Note that in said Lemma it is sufficient to assume that iM(0,ω) is selfadjoint instead of requiring
iM(0,ω) to be real symmetric.
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and
∂K

∂η
(0, 0,ω) =

(

0 0
−iA(0,ω) −A0(0)

)

= A(0,ω)

W satisfies

W(0, 0,ω) = W̄0,
∂W(0, 0,ω)

∂η
= W̄1,

with W̄0, W̄1 as in Remark 3.4. Now fix ω0 ∈ Sd−1. By virtue of condition (D2) it follows
from Lemma 5 in [14] that there exists δ0 > 0, c0 > 0 and T0 ∈ C∞(P (ω∗, δ0),Gl2n) with
T −1
0 also bounded such that pointwise on P (ω0, δ0)

T0WT −1
0 + (T0WT −1

0 )∗ ≤ −c̃ηI2n

for some c̃ > 0. Hence D̃0 := H
1

2T ∗
0 T0H

1

2 ∈ C∞(P (δ0,ω0),C
2n×2n) satisfies

D̃0(u, ξ,ω) = D̃0(u, ξ,ω)
∗ ≥ cI2n, (u, ξ,ω) ∈ P (δ0,ω0)

for some c > 0 and thus
D̃0K + (D̃0K)∗ ≤ −cc̃ηI.

In conclusion we have shown the following: For each ω ∈ Sd−1 there exist δω > 0, cω > 0
and Dω ∈ C∞(P (ω, δω),C

2n×2n) such that for all (u, ξ, ω̄) ∈ P (ω, δω)

Dω(u, η, ω̄) = Dω(u, η, ω̄)
∗ ≥ cωI

Dω(u, η, ω̄)K(u, η, ω̄) + (Dω(u, η, ω̄)K(u, η, ω̄))∗ ≤ −cωξ
2I.

(3.9)

As Sd−1 is compact we may choose ω1, . . . ,ωr such that

l̄
⋃

l=1

BS(ωl, δl/2) = S
d−1 (δl := δωl

).

Set r0 = min{δ1, . . . , δr}, c0 = min{cω1
, . . . , cωr

}. Then for l = 1, . . . , l̄ and Pl := Bn(0, r0)×
[0, r0) × BS(ωl, δl) choose functions φl ∈ C∞(Sd−1, [0, 1]) with suppφl ⊂ BS(ωj , δl), φl = 1
on BS(ωj , δj/2) and extend Dl := Dωl

trivially by 0 to a function defined on Bn(0, r0) ×
[0, r0)× Sd−1 =: Ω0. Define

D0 : Ω0 → C
2n×2n : (u, η,ω) 7→

l̄
∑

l=1

φl(ω)Dl(u, η,ω).

Then D0 ∈ C∞(Ω0,C
2n×2n), and D0(u, η,ω) is hermitian for all (u, η,ω) ∈ Ω0. Furthermore

for (u, η,ω) ∈ Ω0 we have ω ∈ BS(ωk, δ/2) for some k ∈ {1, . . . , l̄} and thus asDl(u, η,ω) ≥ 0

D0(u, η,ω) =
l̄
∑

l=1

φl(ω)Dl(u, η,ω) ≥ Dk(u, η,ω) ≥ c0I.

with the same reasoning we see

D0(u, η,ω)K(u, η,ω) + (D0(u, η,ω)K(u, η,ω))∗ ≤ −c0ηI2n, (u, η,ω) ∈ Ω0.
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Now note that for all u, ξ,ω

ξK(u, 1/ξ,ω) =

(

0 ξIn
−iA(u,ω)− ξB(u,ω) −iξC(u,ω)−A0(U)

)

= Z̃(ξ)M(u, ξω)Z̃(ξ)−1,

where

Z̃(ξ) =

( 〈ξ〉
ξ
In 0

0 In

)

.

As clearly Z̃, Z̃−1 ∈ C∞((r−1
0 ,∞),C2n×2n) are symmetric and positive definite on (r−1

0 ,∞),
for r := r0/2, Ω∞ := Bn(0, r)× {ξ ∈ Rd : |ξ| ≥ r−1} the mapping

D∞ : Ω∞ → C
2n×2n, (u, ξ) 7→ Z̃(|ξ|)D0(u, 1/|ξ|, ξ/|ξ|)Z̃(|ξ|)

is in C∞(Ω∞,C
2n×2n) and for all (u, ξ) ∈ Ω∞

D∞(u, ξ) = D∞(u, ξ)∗ ≥ c∞I2n

for some c∞ > 0. Since for ξ = ξω ∈ U0

D∞(u, ξ)M(u, ξ) = ξZ̃(ξ)D0(u, 1/ξ,ω)Z̃(ξ)K(u, 1ξ,ω) = ξZ̃(ξ)D̃0(u, 1/ξ,ω)K(u, 1/ξ)Z̃(ξ),

we also have

D∞(u, ξ)M(u, ξ) + (D∞(u, ξ)M(u, ξ))∗ ≤ −c∞I2n

for some c∞ > 0.

It remains to verify (3.7). First note that the functions ξ 7→ 〈|ξ|〉/|ξ|, ξ 7→ ξk/|ξ|, k = 1, . . . , d
and ξ 7→ 1/|ξ| are positive homogeneous of degree 0 and −1, respectively. Thus for any
α ∈ N

d
0 there exists Cα > 0 such that for all ξ ∈ R

d with |ξ| > 2r−1
0

|DαZ(ξ)|+ |Dα(ξk/|ξ|)|+ |Dα(1/|ξ|)| ≤ Cα〈ξ〉
−|α|.

Since D0 as well as all of its derivatives are bounded on Bn(0, r0/2) × [0, r0/2] × S
d−1 the

estimate (3.7) follows by product and chain rule.
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4 Proof of Theorem 1.1

To begin with, we remark that local well-posednes sof (1.1), (1.2) follows from the existing
theory for hyperbolic systems of any order [38].4 Our task thus consists in showing that
under an a priori smallness assumption the solution satisfies the decay and energy estimates
(1.3) and (1.4), for, w.l.o.g., ū = 0. Then we can extend them globally by standard methods
(cf. e.g. [24], proof of Theorem 3.6). We show the following.

4.1 Proposition. Consider d ≥ 3, s > d/2 + 1 and assume (HB), (HA) and (D). Then
there exist constants µ > 0, δ = δ(µ) > 0, and C = C(µ, δ) > 0 (all independent of T )
such that the following holds: For all u0 ∈ Hs+1, u1 ∈ Hs with ‖u0‖s+1 + ‖u1‖s < δ and all
u ∈ C0([0, T ], Hs+1) ∩ C1([0, T ], Hs) satisfying (1.1), (1.2) and

sup
t∈[0,T ]

‖u(t)‖2s+1 + ‖ut(t)‖
2
s +

∫ T

0

‖u(τ)‖2s+1 + ‖ut(τ)‖
2
s dτ ≤ µ

we have for all t ∈ [0, T ]

‖u(t)‖s + ‖ut(t)‖s−1 ≤ C(1 + t)−
d
4 (‖u0‖s + ‖u0‖L1 + ‖u1‖s−1 + ‖u1‖L1), (4.1)

‖u(t)‖2s+1 + ‖ut(t)‖
2
s +

∫ t

0

‖u(τ)‖2s+1 + ‖ut(τ)‖
2
s ≤ C(‖u0‖

2
s+1 + ‖u0‖

2
L1 + ‖u1‖

2
s1 + ‖u1‖

2
L1)

(4.2)

We split the proof into two parts corresponding to the following two assertions.

4.2 Proposition. In the situation of Proposition 4.1 there exist µ > 0, δ > 0, and C >
0 such that the following holds: For all u0 ∈ Hs+1 ∩ L1, u1 ∈ Hs ∩ L1 with ‖u0‖s+1 +
‖u1‖s, ‖u0‖L1 + ‖u1‖L1 < δ and all u ∈ C0([0, T ], Hs+1) ∩ C1([0, T ], Hs) satisfying (1.1),
(1.2) and

sup
t∈[0,T ]

‖u(t)‖2s+1 + ‖ut(t)‖
2
s+1 +

∫ T

0

‖u(τ)‖2s+1 + ‖ut(τ)‖
2
s dτ ≤ µ

(1.3) holds for all t ∈ [0, T ].

4.3 Proposition. In the situation of Proposition 4.1 there exist µ > 0, and C > 0 such that
the following holds: For all u0 ∈ Hs+1, u1 ∈ Hs and all u ∈ C0([0, T ], Hs+1)∩C1([0, T ], Hs)
satisfying (1.1), (1.2) and

sup
t∈[0,T ]

‖u(t)‖2s+1 + ‖ut(t)‖
2
s+1 +

∫ T

0

‖u(τ)‖2s+1 + ‖ut(τ)‖
2
s dτ ≤ µ

we have for all t ∈ [0, T ]

‖u(t)‖2s+1 + ‖ut(t)‖
2
s +

∫ t

0

‖u(τ)‖2s + ‖ut(τ)‖
2
s−1dτ

≤ C(‖u0‖
2
s+1 + ‖u1‖

2
s) + C

∫ t

0

‖u(τ)‖2s + ‖ut(τ)‖
2
s−1 dτ.

(4.3)

4For example, the recent result in [3], which applies to the class we study in Section 5, is of this type.
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From there Proposition 4.1 clearly follows by multiplying (4.3) with a sufficiently small factor
integrating, (1.3) with respect to t, and adding the resulting inequalities.

For notational reasons we write the first order representation (3.3) of (1.1) in the compact
form

Ut = L(u)U + (0, Q(u,Dx,tu))
t (4.4)

with U = (u, ut),

L(u) =

(

0 In
∑d

j,k=1B
jk(u)∂xj

∂xk
−
∑d

j=1A
j(u)∂xj

∑d
j=1(B̄

j0 + B̄0j)(u)∂xj
− A0.

)

Proof of Proposition 4.2. As s > d/2+1 we find by Moser type inequalities (cf. [4] Appendix
C and the references therein)

‖(L2(u)− L2(0))U‖s−1 + ‖(L2(u)− L2(0))U‖L1 ≤ Cµ‖u‖s−1(‖u‖s+1 + ‖ut‖s),

where L(u)U = (U2, L2(u)U). Furthermore

‖Q(u,Dx,tu))‖s−1 + ‖Q(u,Dx,tu)‖L1 ≤ Cµ‖u‖s‖ut‖s−1.

Now writing system (4.4) as L(0)U = (0, L2(0)−L2(u)+Q(u,Dx,tu)) and applying Corollary
3.6 to f = (L2(0)− L2(u)) +Q(u,Dx,tu) with s replaced by s− 1 yields

‖u(t)‖s + ‖ut(t)‖s−1 ≤ C(1 + t)−
d
4 (‖u0‖s + ‖u0‖L1 + ‖u1‖s−1 + ‖u1‖L1)

+ Cµ sup
τ∈[0,t]

(‖u(τ)‖s+1 + ‖ut(τ)‖s)

∫ t

0

(1 + t− τ)−
d
4 (‖u(τ)‖s + ‖ut‖s−1)dτ.

(4.5)

As t → (1 + t)−
d
4 is square-integrable over [0,∞) for d ≥ 3 this gives (1.3) as in e.g. [24],

proof of Proposition 3.3.

Proof of Proposition 4.3. From now Cµ always denotes some constant depending monoton-
ically increasing on µ, whose concrete value may change at every instance.

For 0 < ǫ < 1 let Jǫ be the Friedrichs mollifier and set V = (Λu, ut),W := Wǫ := ΛsJǫ(Λu, ut)
and

Mu(x, ξ) = Mu(t)(x, ξ) = M(u(t, x), ξ)

=

(

0 〈ξ〉In
(

− B(u, ξ)−A(u, ξ)
)

〈ξ〉−1 C(u, ξ)−A0(u)

)

.

We start with the following observation.
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4.4 Lemma. W satisfies the differential equation

Wt = Op[Mu]W +R1, (4.6)

for some R1 ∈ L2 satisfying

‖R1‖ ≤ Cµ‖V ‖2s + C‖V ‖s−1 (4.7)

Proof. Set

L̃(u) :=

(

ΛIn 0
0 In

)

L(u)

(

Λ−1In 0
0 In

)

.

Then
Vt = Op[Mu]V + R̃1 (4.8)

where
R̃1 = (L̃(u)−Op[Mu])V + (0, Q(u,Dx,tu)).

As we have already seen in the proof of Proposition 4.2 (now with s− 1 replaced by s)

‖Q(u,Dx,tu)‖s ≤ Cµ‖V ‖2s.

By Lemma 2.9
‖(L̃(0)−Op[M0])V ‖s ≤ C‖V ‖s−1

and due to Lemma 2.9 (iii) all terms appearing in

(L̃(u)− L̃(0)−Op[Mu −M0])V

are of the form (a(u) − Op[au])f , where a is a smooth function with a(0) = 0 and f ∈
{∂lt∂

β
xu| l ≤ 1, l + |β| ≤ 2} ⊂ Hs−1 →֒ L∞. Hence Lemma 2.10 yields

‖(L̃(u)− L̃(0)−Op[Mu −M0])V ‖s ≤ Cµ(‖u‖s‖V ‖s + ‖V ‖s−1).

In conclusion we have shown

‖R̃1‖s ≤ Cµ(‖V ‖
2
s + ‖V ‖s−1). (4.9)

Now apply ΛsJǫ to (4.8) and obtain

Wt = Op[Mu]W +R1, (4.10)

where

R1 = [ΛsJǫ,Op[Mu]]V + ΛsJǫR̃1

Note that (Jǫ)ǫ∈(0,1) is a family of pseudo-differential operators, constant with respect to x,
with symbols uniformly bounded in S0. Thus we get from (4.9)

‖ΛsJǫR1‖ ≤ Cµ‖V ‖
2
s + C‖V ‖s−1

and from Proposition 2.19 (iii)

‖[ΛsJǫ,Op[Mu]]V ‖ ≤ Cµ‖u‖s‖V ‖s + C‖V ‖s−1,

which proves the assertion.
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Next, let D∞ ∈ C∞(Bn
r (0) × {ξ ∈ R

d : |ξ| ≥ r},C2n×2n) be the mapping constructed in
Proposition 3.7 and extend it trivially by zero to a function defined on Bn

r (0)×Rd := U0×Rd.
Choose a function φ ∈ C∞(Rd), with 0 ≤ φ ≤ 1, φ(ξ) = 0 for |ξ| ≤ 2r and φ(ξ) = 1 for
|ξ| ≥ 3r. Set

D(v, ξ) := φ(ξ)D∞(v, ξ), (v, ξ) ∈ U0 × R
d

Let µ be sufficiently small such that u(t, x) ∈ Bn
r (0) for all (t, x) ∈ [0, T ]× R

d and define

Du(x, ξ) := Du(t)(x, ξ) = D(u(t, x), ξ), (t, x, ξ) ∈ [0, T ]× R
d × R

d.

Choose another function ψ ∈ C∞(Rd), with 0 ≤ ψ ≤ 1, ψ(ξ) = 0 for |ξ| ≥ 5r, ψ(ξ) = 1 for
|ξ| ≤ 4r and define

D̃u(x, ξ) = Du(x, ξ) + ψ(ξ)I2n.

4.5 Lemma. The family of operators (Gu(t))t∈[0,T ] defined by

Gu(t) :=
1

2
(Op[D̃u(t)] + Op[D̃u(t)]

∗) + op[D̃0]−Op[D̃0]

is self-adjoint and uniformly positive definite in L(L2) for µ sufficiently small. Furthermore

1

2

d

dt

〈

GuW,W 〉 = Re〈Gu Op[Mu]W,W 〉+R2,

for some R2 ∈ R with

|R2| ≤ Cµ‖W‖(‖V ‖2s + ‖V ‖s‖W‖+ ‖V ‖s−1).

Proof. By Proposition 3.7 D̃,D ∈ S0(U) and D̃u = D̃∗
u is uniformly positive definite. In

particular, op[D̃0] = op[D̃0]
∗ is a self-adjoint and uniformly positive definite operator on

L(L2) (cf. Lemma 2.9). Due to ibid. also Op[D̃0]
∗ = Op[D̃0], i.e.

Gu = op[D̃0] +
1

2
(Op[D̃u − D̃0] + Op[D̃u − D̃0]

∗).

Proposition 2.19 (i) gives
‖Op[D̃u − D̃0]‖L(L2) ≤ Cµ‖u‖s,

which yields the first assertion.

Now apply Gu to (4.6), take the L2 scalar product with W and consider the real part to find

Re〈GuWt,W 〉 = Re〈Gu Op[Mu]W,W 〉+ Re〈GuR1,W 〉 := Re〈GuOp[Mu]W,W 〉+R21.
(4.11)

Due to (4.7) and ‖Gu‖L(L2) ≤ Cµ,

‖R21‖ ≤ Cµ‖W‖(‖V ‖2s + ‖V ‖s−1). (4.12)
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As Gu is self-adjoint we get

Re〈GuWt,W 〉 =
1

2

d

dt

〈

GuW,W 〉 − Re
〈( d

dt
Gu

)

W,W 〉 (4.13)

and 2.20 (iv) yields

2‖
d

dt
Gu‖L(L2) ≤

∥

∥

d

dt
Op[D̃u]

∥

∥

L(L2)
≤ Cµ‖ut‖s. (4.14)

The second statement then clearly follows from (4.11)-(4.14).

The last step consists in showing the following.

4.6 Lemma. It holds

Re〈GuOp[Mu]W,W 〉 ≤ −c‖W‖2 + Cµ‖W‖2(‖u‖
1

2

s+1 + ‖u‖s) + Cµ‖W‖2−1).

From Lemmas 4.5, 4.6 we obtain

1

2

d

dt
〈GuW,W 〉+c‖W‖2 ≤ Cµ‖W‖(‖V ‖2s+‖V ‖s‖W‖+‖V ‖

1

2 )+Cµ(‖V ‖2s−1+‖W‖2−1). (4.15)

As Λ−kW = Λ−kWǫ → V as ǫ → 0 uniformly with respect to t for 0 ≤ k ≤ s and Gu is
uniformly postive definite, we find by integrating (4.15)

‖V (t)‖2s +

∫ t

0

‖V ‖2s dτ ≤ Cµ(‖V (0)‖+

∫ t

0

‖V (τ)‖3s + ‖V (τ)‖
5

2
s + ‖V (τ)‖s−1)dτ, t ∈ [0, T ],

which yields the assertion since ‖V ‖2s = ‖u‖2s+1 + ‖ut‖2.

Proof of Lemma 4.6. Set κ := op[D̃0]−Op[D̃0], which is infinitely smoothing. Then

Gu =
1

2
(Op[D̃u] + Op[D̃u]

∗) + κ.

As ‖Mu‖L(Hl,Hl−1) ≤ Cµ, l ∈ R, due to Proposition 2.19 (i) we find

Re〈κOp[Mu]W,W 〉 ≤ Cµ‖W‖2−1

By construction D̃u = D̃∗
u and thus 2.19 (ii) yields

Re
〈

(
1

2
(Op[D̃u]

∗ −Op[Du]) Op[Mu]W,W
〉

≤ Cµ‖u‖s‖W‖2.

Next note that D̃u(x, ·)−Du(x, ·) is compactly supported with support not depending on t.
Therefore Op[D̃u −Du] is infinitely smoothing and

Re〈Op[D̃u −Du] Op[Mu]W,W 〉 ≤ Cµ‖W‖2−1.
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In conclusion

Re〈Gu Op[Mu]W,W 〉 = Re〈Op[Du] Op[Mu]W,W 〉+ Re〈κOp[Mu]W,W 〉

+
1

2
Re〈(Op[D̃u]

∗ −Op[D̃u]) Op[Mu])W,W 〉+ Re〈Op[D̃u −Du]MuW,W 〉

≤ Re〈Op[Du] Op[Mu]W,W 〉+ Cµ(‖u‖s‖W‖2 + ‖W‖2−1)

(4.16)

By Proposition 2.19 (iii)

‖(Op[Du] Op[Mu]−Op[DuMu])W‖ ≤ Cµ‖u‖s‖W‖+ C‖W‖−1.

Hence

Re〈Op[Du] Op[Mu]W,W 〉 ≤ Re〈Op[DuMu]W,W 〉+ Cµ‖u‖s‖W‖2 + C‖W‖2−1. (4.17)

Set Xu := DuMu + c∞/2I2n with c∞ as in Lemma 3.7. Note that c∞ does not depend on µ.
Since Op[I2n]− IdL2 is infinitely smoothing we conclude

Re〈Op[DuMu]W,W 〉 ≤ Re〈Op[Xu]W,W 〉 −
c∞
2
‖W‖2 + C‖W‖2−1. (4.18)

By Proposition 3.7

Xu(x, ξ) + X ∗
u (x, ξ) = DuMu(x, ξ) + (DuMu)(x, ξ)

∗ + c∞ ≤ 0,

for x ∈ Rd und ξ ∈ Rd with |ξ| ≥ 3r. Since u ∈ Hs+1 and s + 1 ≥ d/2 + 2, Proposition 2.24
applied to −Xu gives

Re〈Op[Xu]W,W 〉 ≤ Cµ(‖u‖
1

2

s+1‖W‖2 + ‖W‖−1). (4.19)

(4.18) and (4.19) lead to

Re〈Op[DuMu]W,W 〉 ≤ −c‖W‖2 + Cµ(‖u‖
1

2

s+1‖W‖2 + ‖W‖2−1) (4.20)

for c independent of u. Clearly the assertion follows from (4.16), (4.17), (4.18) and (4.20).

5 A class of examples from dissipative relativistic fluid

dynamics

We consider the Euler-augmented Navier-Stokes formulation of dissipative relativistic fluid
dynamics on flat Minkowski space-time derived in [12] as a generalization of a model proposed
in [1]. For barotropic fluids it consists of a system of four equations which, using Einstein’s
summation convention, read

Aαβγ(ψǫ)
∂ψγ

∂xδ
=

∂

∂xβ
(

Bαβγδ(ψǫ)
∂ψγ

∂xδ
)

, α = 0, 1, 2, 3, (5.1)
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where all Greek indices run from 0 to 3, Aαβγ , Bαβγδ are contravariant tensors and the
unknown function ψǫ = (ψ0, ψ1, ψ2, ψ3)t determining the state of the fluid is a 4-vector with
respect to the Minkowski-metric of flat space-time. More specifically ψǫ = uǫ/θ with uǫ being
the 4-velocity, θ the temperature of the fluid. We show that the results of the present work
imply non-linear stability of the homogeneous reference state ψ̄ = ūǫ/θ̄, where ūǫ = (1, 0, 0, 0)
represents the fluid’s rest frame and θ̄ > 0 is a constant temperature.

For a fluid with equation of state p = ρ/r, 1 ≤ r < ∞, p being the pressure, ρ the specific
internal energy, the coefficent matrices evaluated at ψ̄ are given by [12] (w.lo.g. assume
θ̄ = 1)5

A0(ψ̄) =

(

r 0
0 I3

)

, Aj(ψ̄) =

(

0 (ej)t

ej 0

)

, B00(ψ̄) =

(

−r2µ 0
0 −νI3

)

,

B0j(ψ̄) = Bj0(ψ̄) =
1

2

(

0 −(µr + ν)(ej)t

−(µr + ν)ej 0

)

,

Bij(ψ̄) =

(

−νδij 0
0 ηδij + 1

2
(−µ+ 1

3
η + ζ)(ei ⊗ ej + ej ⊗ ei)

)

, i, j = 1, 2, 3,

where η, ζ > 0 quantify the fluid’s viscosity, ν, µ > 0 with µ > η̃ := 4
3
η + ζ reflect a frame

change and Aβ(ψǫ) := (Aαβγ(ψǫ))0≤α,γ≤3, B
βγ(ψǫ) := (Bαβγδ(ψǫ))0≤α,γ≤3, β, δ = 0, . . . , 3.

We do not give the detailed non-linear formulation at this point and just refer to [12]. The
only information we need for the argumentation below is the fact that for all β, δ = 0, . . . , 3
and all states ψǫ the coefficient matrices Aβ(ψǫ), Bβδ(ψǫ), β, δ = 0, . . . , 3 are symmetric (cf.
ibid.).

We show (HA), (HB), (D) for the matrices (−B00)−1Bβδ, (−B00)−1Aβ.

(HA) is straightforward: As −B00(ψǫ), A0(ψǫ) are positive definite at ψǫ = ψ̄ and symmetric
for all states they are symmetric positive definite also in a neighbourhood of ψ̄. Thus (HA)
(a) is satisfied with FA(u) = −B00(u) and (HA) (b) with H(u) = A0(u).

Regarding (HB) Freistühler proved ibid. that at the reference state ψǫ = ψ̄ for each ω ∈ S2

the matrix

B̃(ψǫ,ω) =

(

0 I4
−(−B00)−

1

2B(ψǫ,ω)(−B00)−
1

2 i(−B00)−
1

2C(ψǫ,ω)(−B00)−
1

2

)

,

where

B(ψǫ,ω) =
d
∑

ij=0

Bij(ψǫ)ωiωj, C(ψǫ,ω) = 2
d
∑

j=0

B0j(ψǫ)ωj , ω = (ω1, . . . , ω2) ∈ S
2,

5Here e1, e2, e3 and δij denote the conanical basis of R3 and the Kronecker symbol, respectively.
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has four simple and two semi-simple purely imaginary eigenvalues. This is then also true for

B(ψǫ,ω) :=

(

0 I4
(−B00)−1B(ψǫ,ω) i(−B00)−1C(ψǫ,ω),

)

= T −1B̃(ψǫ,ω)T

with T = diag((−B00)
1

2 , (−B00)
1

2 ). Now in the present context the geometric multiplicities
of purely imaginary eigenvalues of B(ψǫ,ω) are state invariant properties. Therefore there
exists a symbolic symmetrizer of B due to Remark 3.2.
To see this invariance note that (even in the general setting in Section 3) the eigenvectors
v = v(u,ω) ∈ C2n \ {0} to an eigenvalue λ = λ(u,ω) ∈ C of B(u,ω) are exactly of the form
v = (v1, λv1) with v1 ∈ Cn such that eλt+iξv1 is a plane wave solution to the linearization
of (1.1) at u. As (5.1) is a covariant expression, eλt+iξv being a plane wave solution with
λ ∈ iR is also a covariant property (cf. e.g. [13]).

It remains to show (D1), (D2), (D3). In the following we only consider matrices evaluated
at ψ̄. The Fourier-symbols correpsonding to the differential operators in (5.1) are given by

A(ω) =
d
∑

j=1

Ajωj =

(

0 ωt

ω 0

)

, B(ω) =
d
∑

j,k=1

Bjkωjωk =

(

−r2µ 0
0 η + (−µ + 1

3
η + ζ)ω ⊗ ω

)

,

C(ω) = 2
d
∑

j=1

B0jξj

(

0 −(µr + ν)ωt

−(µr + ν)ω 0

)

, ω = (ω1, ω2, ω3) ∈ S
d−1.

It is straightforward to see that for any ω ∈ S
d−1 the matrices A0, Aj(ω), B00, Bjk(ω), C(ω)

all decompose in sense of linear operators as A0 = A0
l ⊕ A0

t , A(ω) = Al ⊕ At, B
00 =

B00
l ⊕ B00

t , B(ω) = Bl ⊗ Bt, C(ω) = Cl ⊕ Ct with respect to the orthogonal decomposition
C4 = (C×ωC)⊕ ({0}×{ω}⊥). Thus we can verify the conditions for A0

l , Al, B
00
l , Bl, Cl and

A0
t , At, B

00
t , Bt, Ct separately. We have

A0
t = I2, At = 0, B00 = −νI2, Bt = ηI2, Ct = 0.

As η > 0, these matrices correspond to coefficients of damped wave equations and it is
well-known that such equations satisfy (D). One can also check this easily by virtue of [14],
Theorem 4 and Lemma 5.

Next

A0
l =

(

r 0
0 1

)

, Al =

(

0 1
1 0

)

,

B00
l =

(

−r2µ 0
0 −ν

)

, Bl =

(

−ν 0
0 η̃ − µ

)

, Ct =

(

0 −(µr + ν)
−(µr + ν) 0

)

.

It was shown in [14] that

Ãj = (−B00
l )−

1

2Aj
l (−B

00
l )−

1

2 , B̃jk
l = (−B00

l )−
1

2Bjk
l (−B00

l )−
1

2

satisfy (D). But then also Ǎj := (−B00
l )−1Aj

l , B̌
jk := (−B00

l )−1Bjk
l satisfy (D).
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To see this note that Ǎj = SÃjS−1, B̌jk = SB̃jkS−1 with S = (−B00)
1

2 . Hence we have
W̌0 = SW̃0S

−1 for W̌0 and W̃0 as in (D1) for the matrices Ǎj, B̌jk and Ãj , B̃jk, respectively.
Further the symbolic symmetrizer H̃ = Ã0 of (Ã0)−1Ã(ω) the matrix Ȟ = S−1Ã0S−1 is a
symbolic symmetrizer for (Ǎ0)−1Ǎ(ω). This yields W̌1 = S−1W̃1S

−1 with W̌1, W̃1 as in (D1)
for the respective matrices. If now v is an eigenvector of W̌0, S

−1v is an eigenvector of W̃0

and as Ãj , B̃jk satisfy (D1) we get

〈(W̃1 + W̃ ∗
1 )S

−1v, S−1v〉 ≤ −c|S−1v|2 ≤ −č|v|2,

i.e. 〈(W̌1 + W̌ ∗
1 )v, v〉 ≤ −č|v|2, which proves (D1) for Ǎj, B̌jk.

(D2) follows analogously since with S = diag((−B00)
1

2 , (−B00)
1

2 ) the matrix S−1H̃(ω)S−1

is a symbolic symmetrizer for B̌(ω) if H̃(ω) is a symbolic symmetrizer for B̃(ω).

Lastly, (D3) is satisfied trivially, as the matrices introduce equivalent systems of PDEs and
thus solutions to the dispersion relation are identical for the two systems.
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