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GLOBAL EXISTENCE AND STABILITY FOR
EULER-BERNOULLI BEAM EQUATION WITH
MEMORY CONDITION AT THE BOUNDARY

JONG YEOUL PARK* AND JOUNG AE Kiv**

ABSTRACT. In this article we prove the existence of the solution to
the mixed problem for Euler-Bernoulli beam equation with memory
condition at the boundary and we study the asymptotic behavior
of the corresponding solutions. We proved that the energy decay
with the same rate of decay of the relaxation function, that is,
the energy decays exponentially when the relaxation function decay
exponentially and polynomially when the relaxation function decay
polynomially.

1. Introduction

The main purpose of this work is to study the asymptotic behavior of
the solutions of Euler-Bernoulli Beam Equation with boundary condition

of memory type. For this, we consider the following initial boundary-
value problem:

(1.1) Utt + Ugrpr + f(ur) =0 in Q@ x RT,
(1.2) w(0,1) = ug(0,t) = upe (L, t) =0, Vi>0,
¢
13) —u(l)+ / 9t = Ptgan(L, 7)dr = 0, V¢ >0,
0
(1.4) u(z,0) = u’(x), w(z,0)=u(z) in Q,
where Q = [0,L], ||| is the norm of L?(€2).
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The integral equation (1.3) describe the memory effect which can be
caused, for example, by the interaction with another viscoelastic ele-
ment. Frictional dissipative boundary condition for the wave equation
was studied by several authors, see for example([1, 3, 4, 5, 6, 8, 12, 13,
14])among others. In these works existence of solutions and exponen-
tial stabilization were proved for linear and for nonlinear equations. In
contrast with the large literature for frictional dissipative, for boundary
condition with memory, we have only a few works as for example([2, 3,
9, 10, 11}]). The main result this paper is to show that the solutions of
system (1.1)—(1.4) decays uniformly in time with the same rate of decay
of the relaxation function. More precisely, denoting by & the resolvent
kernel of g’/¢(0), we show that the solution decays exponentially to zero
provided « decays exponentially to zero. When the resolvent kernel « de-
cays polynomially, we show that the corresponding solution also decays
polynomially to zero.

The method used here is based on the construction of a suitable
Lyapunov functional £ satisfying

C2

d d
a < _ —t @ < _ 1-|—1/C\( — e
dtﬁ(t) < Clﬁ(t) + c2e or dtﬁ(t) > Cl[’(t) + (1 4 t)a+1

for some positive constants ci, c2,7, and a.
Note that, because of condition (1.2) the solution of system (1.1)—
(1.4) must belong to the following space:

V = {u € H*0,L) | u(0) = uy(0) = 0}

and
W ={ueVnHY0,L) | uw(L) =0}

The notation used in this paper is standard and can be found in Li-
ons’ book[7]. In the sequel by ¢ (sometime ¢3, ¢, - - ) we denote various
positive constants independent of ¢ and on the initial data. The organi-
zation of this paper is as follow. In Section 2, we establish the existence
of strong solutions for system (1.1)-(1.4). In Section 3, we prove the
uniform rate of exponential decay. In Section 4, we prove the uniform
rate of polynomial decay.

2. Existence and regularity

In this section, we shall study the existence and regularity of solu-
tions for system (1.1)-(1.4). To facilitate our analysis, we introduce the
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following binary operators:

(f06)(t / £t - $)l6(2) — o(s)[ds,

(t — s)o(s)ds,
/f

where * is the convolution product.
Differentiating (1.3), we arrive to the Volterra integral equations:

1 1
L.t —4q Lt)=—
umxm( , ) + g(o)g * umxz( s ) g(O)

Applying the Volterra’s inverse operator, we get

Ut(L, t)

umALJy:E%ﬁﬁAL¢)+n*uALJH,
where the resolvent kernel satisfy
K+ Lg’*,‘c: --l—g’.
9(0) 9(0)

Denoting by 7 = ﬁ, we obtain

(2.1) ugaz(L,t) = T{us(L,t) + k(0)u(L,t) — k(t)u(L,0) + " * u(L,t)}.

Since we are interested in relaxation function of exponential or polyno-
mial type and identity (2.1) involve the resolvent kernel x, we want to
know if k has the same properties. The following lemma answers this
question. Let h be a relaxation function and x its resolvent kernel, that

(2.2) K(t) — K+ h(t) = h(2).

LEMMA 2.1. If h is a positive continuous function, then k also is a
positive continuous function. Moreover,

(1) If there exist positive constants ¢y and v with ¢y < «y such that
h(t) < coe™ ™,
then, the function k satisfies

Iﬁ}(t) < 60(7_6) 6—-et
R A

?

for all 0 < € < v — ¢p.
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(2) Given p > 1, let us denote by
Cp = SUDycR+ /t(l +t)P(1+t—s)"P(14 ) Pds.
If there exists a posiotive constant co with cocp, < 1 such that
h(t) < co(1+¢)77,

then the function k satisfies
¢
K(t) < ——

1+¢8)7P.
Se(v)

Proof. Note that k(0) = h(0) > 0. Now, we take ¢ty = inf{t € RT :
k(t) = 0}, so k(t) > 0 for all ¢t € [0,%). If o € RT, from (2.2) we get
that —& x h(to) = h(to) but this is contradictory. Therefore x(t) > 0 for
all t € R(J{ . Now, let us fix ¢, such that 0 < € < v — ¢p and denote by

Ke(t) = ek(t), he(t) = eh(t).
Multiplying (2.2) by e, we get ke(t) = he(t) + ke * he(t), hence

sup Ke(s) < sup he(s)
s€[0,¢] s€[0,t]

-!—/ coeSM3ds x sup Ke(s)
0 s€[0,t]

<c+

sup Ke(s).
Y~ € s¢l0,4]

Therefore
Ke(t) < M,
Y—€—- 0O

which implies our first assertion. To show the second part let us consider
the following notations

kp(t) = (L +t)Pk(t), hp(t) = (14 ¢)Ph(t).

Multiplying (2.2) by (1+t)P, we get kp(t) = hy(t) + fg kp(t—s)(1+t—
5)7P(1 + t)Ph(s)ds, hence

sup kp(s) < sup hp(s) + cocp sup Kp(s)

s€[0,¢] s€[0,t] s€[0,t]
< co+ cocp sup Kp(s).
s€[0,t]
Therefore c
t) < ,
Klp( )< 1—cpcp

which proves our second assertion. O
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Due to this Lemma, in the remainder of this paper, we shall use (2.1)

instead of (1.3). The following lemma state an important property of
the convolution operator.

LEMMA 2.2. For f,¢ € C}([0,00); R), we have
t
| =905 o

= — I + 5700~ 5 % 50— ([ 6)as) of]

=3 5 2 dt : ‘)
The proof of this lemma follows by differentiating the term fUO¢.
The first-order energy of system (1.1)—(1.4) is given by

1
Bt u) = 5 (lue®)? + a2 = 76/ Tu(L,t) + ra(t) u(L, 1))
We summarize the well-posedness of (1.1)—(1.4) in the following theorem.

THEOREM 2.1. Let k € C*(R*) be such that x,—«',k"” > 0 and
f;R — R is continuously differentiable function there exist p a positive
constant such that

f(0)=0 and (f(r)— f(s),r —s) > p|r — s>, Vr,s€R.

Ifup € W, uy € L%(Q) satisfying the compatibility condition Uz (L, 0) =
Tu(L,0), then there is only one solution u of system (1.1)—(1.4) satis-
fying
(2.3)  w€ L®(0,00;V), v € L®(0,00; V), u” € L®(0, 00; L*(2)).
Proof. The main idea is to use the Galerkin method. To do this
let us take a basis {w;}jen to V which is orthonormal in L?(Q) and
we represent by V,,, the subspace of V' generated by the first m vector.
Standard results on ordinary differential equations guarautee that there

exists only one local solution u™(t) = IS} gj,m(t)w;, of the approximate
system,

(ugy, w) + (U, Waz) + (f(uf"), w)

(2.4) = — (Tuf(L,8) + K(O)u™ (L, ) = k()™ (L, 0)
+ & *u™(L, 1), w(L, t)),

for all w € V,,, with the initial data

(W™0), u" (0)) = (u°,u').
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The extension of these solutions to the whole interval [0,7],0 < T < oo,
is a consequence of the first estimate which we are going to prove below.

A Priori Estimate 1.
Replacing w by u]*(t) in (2.4), using Lemma 2.2 and from hypothesis
of f, we obtain

1d
3% (I @I + N I — r6'Oum™(L, 1) + Tt ™ (L, t)|2)

+ plluf(#)|1?
< — (L, O + Th(8)@™(L,0), u (L, 1)
+ %m’(t)[um(L,t)F - %H/’Dum(L, )
<= 2L )P + SR (L, 0P + DA (1) um(L, o)

T

2/<;”I:|um(L, t).

Using k, —&/, k" > 0, we get
d m m 2 m
FE&u™) +pllu* @) < cEB(0,u™).

Integrating it over [0,¢] and taking into account the definition of the
initial data of 4™, we conclude that

t
m 2 m 2 m 2
@5)nw<nn+u%am|+plnw<@nw
<e¢ Vte[0,T], YmeN.

A Priori Estimate II.

First of all, we are estimating u{?(0) in the L?norm. Considering
t =0 and w = u}(0) in (2.4) and using the compatibility condition we
obtain

luZ2 O + (e (0), uff (0)) + (£ (uy*(0)), uff (0)) = 0.

Since ug € W,u; € L%(R), the growth hypothesis for the function f
imply that f(u1) € L?(). Hence |[«F(0)||2 < C, Vme N
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Finally, differentiating (2.4) and multiplying the both sides of equa-
tion by w}(t), then we have

d
L (a2 + s O1F) + (7 )

= - T|U€?(L,t>~2 - TK’(O)(U?L(LJ%U’T(LJ))
+ 7K (t) (um(L, 0), u™(L, t)) - T((,a «w™(L, 1)), u™L, t)).

Noting that

¢
(k' xu™) = K (H)ul' + /0 K (t — s)ui*(s)ds

and using Lemma 2.2, we obtain
(2.6)
li m 2 m 2 D™ (I mir ot 2
lluts N + luge: DN — 760 (L, 1) + 7r(8) [wf" (L, 1))
2dt
+ (f (" ugy wiy)
= — 7l (L, &) + 76 () (u™ (L, 0), uf (L, 1))
+ %m’(t)|u£”(L,t)]2 - Tz—m”DuT(L, t).
We also note that from assumption on the function f, we get

(27) (s )| < ez )12

Substitution of inequality (2.7) into (2.6), we arrive at

o (B O + e — 8T (L, 1) + 7L, 0)?)
< el (1) + 5 (6 ()™ (L, )

Integrating with respect to the time and applying Gronwall’s inequality
we conclude that

(2-8) luft (D)1 + [[ufe (D> < ¢, ¥YmeN, vte[0,T].
By estimates (2.5) and (2.8), we obtain
(u™)  is bounded in L*(0,T;V)
(uf*)  is bounded in L*(0,T;V)
(ur)  is bounded in L*(0,T
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Therefore, we can get subsequences, if necessary, denoted by (u™), such
that

u™ — wu weakly star in L*°(0,T;V),
u® — wu; weakly star in  L*°(0,T;V),
ulf — uy weakly star in L0, T; L2(2)).

We can use Lions-Aubin Lemma to get the necessary compactness in or-
der to pass (2.4) to the limit. Then it is matter of routine to conclude the
existence of global solutions in [0, T]. The uniqueness is straightforward
by standard methods and Gronwall’s inequality. O

3. Exponential decay

In this section, we shall study the asymptotic behavior of the solu-
tions of system (1.1)—(1.4) when the resolvent kernel k is exponentially
decreasing, that is, there exist positive constants b1, by such that

(3.1) k(0) >0, K'(t) < —bik(t), &"(t) > —bar'(t).

Note that this conditions implies that x(t) < x(0)e %t

Our point of departure will be to establish some ineqalities for the
strong solution of system (1.1)—(1.4).

LEMMA 3.1. Any strong solution u of system (1.1)—(1.4) satisty

d

EE(t) < —;—|ut(L,t)|2 + %Hz(t)lu(L,tNZ

+ 5K Ol D = Z"Tu(L, 1) - pllus()].

Proof. Multiplying (1.1) by u; and integrating by parts over Q, we
get

[ =

- (w1 + oz 1) + (Fe®)), we(t)) = = (saae(L,8), (L, ).

N =
W
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Substituting the boundary term, using Lemma 2.1 and assumption of f,

we get

(£ue®)), ()

= —7lu(L, t)]* + %fi'

+ 7K(t) (u(L, 0), ut(L, t))
< = glun(L P + 5K Olu(L 1) — 5x"Ou(L, 1)

(®) (L, t)]* — %/@”Du(L,t)

+ 5RO, 1)

Using assumption of f, we obtain
d ,
() < — L) + SO, P + SR Olu(L, D

—F

dt
a

:
— 5~ Bu(l, 1) - pllus(B)]I2.

Let us consider the following binary operator:
t
(ro)(t) = [t = 9)(olt) = ws))ds.

Then applying the Holder’s inequality for 0 < y < 1, we have
¢
32 lsow)P <[ [ kP as] (s D)0,
0

Let us introduce the following functional:

B(t) = 6(u(t), w(t)) with 0 <8 < %

The following lemma plays an important role for the construction of the

Lyapunov functional.
LEMMA 3.2. For any strong solution of system (1.1)—(1.4), we get

L (1) < — Sluralt) 2 + clluc®)? + clfu®)? + clus (L, + clu(L, DI

dt
+ cx(t)|u(L, 0)|? + cr(0)|6'|0u(L, t) + cx(t)|u(L, )|
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Proof. From (1.1), it follows that

d
(_ﬁ\Il(t) = 8(u(t), ug(t)) + 0w ()]

5.3) = 8l (®)]1> ~ dllusa(®)I? — (£ (wel®), u(®))
— §r(u(L, ), u(L, b)) + 6rr(t)(u(L, 0), u(L, 1))
— o7 (n(O)u(L, £) + & *u(L, t), u(L, t)).
Note that
—k(0)u(L,t) — £ *x u(L,t)

__ / Wt~ 9)[ulLy5) = u(L,B)] ds — wlEu(L, )

(M

B 0
< ( /0 t ln'(s)lds)% [|m’|Du(L, t)] + &(t)|u(L, )|

< lu(t) — w(O)|} [|¥/Iu(L, )] * + r(B) (L, D).

Using (3.3), (3.4), and Young’s inequality, it follows that

L 9(t) < DI ~ Sluzad” — 5 (we(®), ()
— §r(ue(L, 1), u(L, b)) + 0rr(t) (u(L, 0), u(L, t))

+ 57‘(|m(t) — #(0)[3 [In’HZIu(L, t)] % (L, t)) + 67r(t)|u(L, )2
< — 8llugs ()2 + cllug @l + cllu@)|® + clue(L, 1)]? + clu(L, t)[*
+ cx(t)|u(L,0)|? + cx(0)|&'|Du(L, t) + cx(t)|u(L, )% O

Let us introduce the Lyapunov functional
(3.5) L(t) = NE(t) + ¥(t), with N > 0.

Using Young’s inequality and taking N large enough we find that
(3.6) @E(t) < L(t) < q1E(t), for some positive constants go and ¢1.

We will show later that the functional £ satisfies the inequality of the
following Lemma.

LEMMA 3.3. Let f be a real positive function of class C. If there
exists positive constants v, y1 and cg such that f'(t) < —yof(t)+coe ",
then there exist positive constants v and c such that f(t) < (f(0) +
c)e .
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Proof. First, let us suppose that v9 < 1. Define F(t) by
CQ —v1t
Fit)y=ft)+ e
(0 = ft)+ 2

Then

F'(t) = f'(t) ~ 20 et < o F(1).
Y1 — Y0
Integrating from 0 to ¢, we arrive to

F(t) < F(0)e ™ = f(t) < ( 1)+ - _070)6"70#

Now, we shall assume that v9 > 7;. In this conditions, we get
F1(t) < = f(t) + coe™ = (€ f (1)) < co
Integrating from 0 and ¢, we obtain
F(t) < (£(0) + cot)e™ ™.
Since t < (1 — €)™ ~9* for any 0 < € < 71, we conclude that

F(t) < (f(0) + co(n — €))e™.
This completes the proof. O

Finally, we shall show the main result of this section.

THEOREM 3.1. Let us suppose that the initial data (ug,u1) € W X
L%(f2) and that the resolvent  satisfies the conditions (3.1). Then there
exist positive constants oy and ~y; such that

E(t) < a1e”™E(0) for all t > 0.

Proof. We will suppose that (ug,u1) € (H*(Q)NW) x W and satisfies
the compatibility conditions uzy,(L,0) = 7u(L,0); our conclusion will
follow by standard density arguments. Using Lemmas 3.1 and Lemma
3.2, we get

deo<- G
— S NK'Ou(L, 1) = (Np = 8) [us()]]* = 8uias (&)}
+ cllu®)||? + clu(L, t)|? + cx(t)|u(L, 0)|?

+ ¢k (0)|&'|0u(L, t) 4 cx(t)|u(L, t)%

‘Then, choosing N large enough and Np >4, 5N > c, we obtain

N - c) e (L, 8)[2 + %N,«ﬁ(tnu(L,t)?\ + %Nﬁ’(t)\u(L,t)\Q

d
aﬁ(t) < —E(t) + ek (t)E(0), where gy >0 is a small constant.
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Here we use (3.1) to conclude the following estimates for the correspond-
ing two terms appearing in Lemma 3.1.

—%I{”DU(L, t) < c1x/0Ou(L, t),

—;:ﬁ’lu(L,t)|2 < — e1kfu(L, ).

Finally, from (3.1) and (3.6), we conclude that

d .
L L(t) < —ZL(t) + cE(0)exp(—2b1t).
dt Q1

Using the exponential decay of the resolvent kernel x and Lemma 3.3,
we conclude

L(t) < {L0) +c}e ™ forall t>0.

Use of (3.6) now completes the proof. O

4. Polynomial rate of decay

The proof of the existence of global solutions for (1.1)—(1.4) with
resolvent kernel x decaying polynomially is essentially the same as in
Section 3. Here our attention will be focused on the uniform rate of
decay when the resolvent x decays polynomially such as (1 +¢)7?. In
this case, we will show that the solution also decays polynomially with
the same rate. We shall use the following hypotheses:

0 < k() < bo(1+1)7?,

1
(4.1) CbikT < K(E) < ~bak'F

+2 +2
by(—K)>1 < K(t) < ba(—)7H1,
where p > 1 and b;, ¢=0,1,---,4, are positive constants.
Also we assume that
1

oo
(4.2) /0 IWOde<oo if 7> .

The following lemmas will play an important role in the sequel.
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LEMMA 4.1. Let m and h be integrable functions, 0 < r < 1 and
qg>0. Then, fort > 0:

/ |m(t — s)h(s)|ds
0

< (/Ot\m(t—sn”lﬁh( nds)"“ (/ =) (sl )

Proof. Let

o(s) = [m(t — )[' 77 |h(s)| T, w(s) = [m(t — )| 77 |h(s)| 7.
Then using Holder’s inequality with § = 5% for v and §* = ¢+ 1 for w,
we arrive to the conclusion. [

LEMMA 4.2. Let p > 1,0<r <1 and r > 0. Then for r > 0,
14(1—7)(p+1)
(16 [Ou(L, 8)) 0

<o [ IRl o) T (1P OLD).

and for r =0,

(‘Hl“:!’u,(L,t))

s
+F¥
[SRINY

t 2 2 ;’i_l N1+
S 2 (/0 ||u(8)“L2(0,L)d8 + t“u(s)||L2(0’L)> <|l€ | p+1 DU(L, t)) .

Proof. The above inequality is a immediate consequence of Lemma
4.1 with m(s) = [K'(s)], h(s) = [u(w,t) - u(e,5), q = (1= r)(p+ L),
and t fixed. O

LEMMA 43. Let a > 0, 8 > « + 1, and f > 0 be differentiable
. P g —& 1
function satisfying f'(t) < f—(oc)l—%f( Y+ aiop/(0) for t > 0 and some

positive constants ¢y, ¢;. Then there exists a constant ¢3 > 0 such that
fort 20, f(t) < 5= f(0).

Proof. Let t > 0 and
F(t) = F(8) + ~2(1 + £ £(0).
Then
F' = f — 261 +t)~@FV £(0)

—C1
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where we used 3 > « + 1. Hence
, —C

= 1

f(0)a

Integration yields F(t) < (1{1(3))(, <@ th)a f(0), hence f(t) < (1_-T-_$t_F f(0)
for some ¢3, which proves Lemma 4.3. O

: ~(e) pg)d) < S il
<f1+ +(1+0) +1 f(0)1+ )S F(O)ﬁFH )

THEOREM 4.1. Assume that (ug,u1) € W x L?(0,L) and that the
resolvent k satisfies (4.1). Then there exists a positive constant c for

which
c

E(t) < A+ o

E(0).

Proof. We will suppose that (ug,u;) € H*(0,L) N W x W and satis-
fies the compatibility condition; our conclusion will follows by standard
density arguments. We define the functional £ as in (3.5) and we have
the equivalence to the energy term E as given in (3.6) again.

From the Lemmas 3.1 and 3.2, we conclude that

(4.3) %E(t) < - cl(tm(L,t)l2 + £"Ou(L, 1)

+ (@) + Juaa(®)]12) + car? () E(O).

From hypothesis (4.1), we obtain

(4.4) %E(t) < — e (Ju(L,t) + (=) 0u(L, 1)

+ Nu®)]2 + s (DI) + can? (1) E(0).
From Lemma 4.2, we get
(=) 7 Ou(L, t)
(4.5) o c

1
> : ——((—#)Ou(L, t)) T T,
(J& |/ | ds) T=@*D B(0) T=7G+D)

On the other hand, since the energy is bounded, we have

(I + o) + @) T

(4.6) 1
< eB(0) T (Jus(L,8)[2 + llu(®)? + lluza(8)2)-
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Substituting (4.5) and (4.6) into (4.4), we arrive at

d - . S S
—L(t) < — ———— [(\ut(L,t)|2 + [u®)])? + e (B)[|?) T TPED
dt E’(O) a-n(m+D)

+ (|6 Ou(L, 1) TP | + ex?())E0).

Taking into account (3.6), we conclude that

d[;() c

4.7) e
dt £(0) THeFD

L) TPED + or?(1)E(0).
Applying the Lemma 4.3 with f = £ and 8 == 2p, we have:
c

(4.8) LW < G pae SO

Since (1 —r)(p+1) > 1,

(4.9) / E(s)ds < c/ L(s)ds < ¢L(0),
(4.10) tlu(®) 20,0y < ctL(t) < eL(0),

t o]
(4.11) /0 () 226, ds < ¢ /0 L(8)dt < eL(0).

In this conditions applying Lemma 4.2 for r = 0, we get

(=) TP Ou(L, £) > ((—m)Du(L,t))Hﬁ.

E(0)7T
Using the same arguments as in the derivation of (4.7), we have
d c

2L < LR 4 k(D) E0).
T o

Applying the Lemma 4.3, we obtain
L(t) <

c

Finally, from (3.6) we obtain E(t) < WE(O), which complete the
present proof. O



1152 Jong Yeoul Park and Joung Ae Kim

References

[1] P. L. Chow and J. L. Menaldi, Boundary stabilization of a nonlinear string with
nerodynamic force, Control of Partial Differential Equations, Lecture notes in
pure and Appl. Math. 165 (1994), 63-79.

[2] M. Ciarletta, A differential problem for heat equation with a boundary condition
with memory, Appl. Math. Lett. 10 (1997), no. 1, 95-191.

[3] M. Fabrizio and M. Morro, A boundary condition with memory in Electroma-
gretism, Arch. Ration. Mech. Anal. 136 (1996), 359-381.

[4] V. Komornik, Rapid boundary stabilization of the wave equation, SIAM J. Control
Optim. 29 (1991), 197-208.

[5] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of
the wave equation, J. Math. Pures Appl. 69 (1990), 33-54.

[6] 1. Lasiecka, Global uniform decay rates for the solution to the wave equation with
nonlinear boundary conditions, Appl. Anal. 47 (1992), 191-212.

[7] J. L. Lions, Quelques Methodes de resolution de problémes aux limites non lin-
easres, Dunod Gauthiers Villars, Paris, 1969.

[8] M. Milla Miranda and L. A. Medeiros, On boundary value problem for wave equa-
tions : Existence Uniqueness-Asymptotic behavior, Rev. Math. Apl. 17 (1996),
47-73.

[9] J. E. Mufioz Rivera and D. Andrade, Ezponential decay of nonlinear wave equa-
tion with a viscoelastic boundary condition, Math. Methods Appl. Sci. 23 (2000),
41-61.

[10] T. Qin, Breakdown of solutions to nonlinear wave equation with a viscoelastic
boundary condition, Arab. J. Sci. Engng. 19 (1994), no. 2A, 195-201.

, Global solvability of nonlinear wave equation with a viscoelastic boundary
condition, Chin. Ann. Math. 14B (1993), no. 3, 335-346.

[12] M. Tucsnak, Boundary stabilization for stretched string equation, Differential
Integral Equation 6 (1993), no. 4, 925-935. '

[13] J. Vancostenoble and P. Martinez, Optimality of energy estimate for the wave
equation with nonlinear boundary velocity feedbacks, SIAM J. Control Optim. 39
(2000), no. 3, 776-797.

[14] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary
feedback, SIAM J. Control Optim. 28 (1990), 466-477.

(11]

Jong Yeoul Park and Joung Ae Kim

Department of Mathematics

College of Science

Pusan National University

Pusan 609-735, Korea

E-mail: jyepark@pusan.ac.kr
1229ae@pusan.ac.kr



