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We consider the focusing mass-critical NLS iut +1u = −|u|4/du in high dimensions d ≥ 4, with initial

data u(0) = u0 having finite mass M(u0) =
∫

Rd |u0(x)|
2 dx < ∞. It is well known that this problem

admits unique (but not global) strong solutions in the Strichartz class C0
t,locL2

x ∩ L2
t,locL

2d/(d−2)
x , and also

admits global (but not unique) weak solutions in L∞
t L2

x . In this paper we introduce an intermediate class

of solution, which we call a semi-Strichartz class solution, for which one does have global existence

and uniqueness in dimensions d ≥ 4. In dimensions d ≥ 5 and assuming spherical symmetry, we also

show the equivalence of the Strichartz class and the strong solution class (and also of the semi-Strichartz

class and the semi-strong solution class), thus establishing unconditional uniqueness results in the strong

and semi-strong classes. With these assumptions we also characterise these solutions in terms of the

continuity properties of the mass function t 7→ M(u(t)).

1. Introduction

1.1. The focusing mass-critical NLS. This paper deals with low regularity solutions u : I ×R
d → C to

the initial value problem to the focusing mass-critical nonlinear Schrödinger equation (NLS)

iut +1u = F(u),

u(t0)= u0,
(1)

in high dimensions d ≥ 4, where I ⊂ R is a time interval containing a time t0 ∈ R, F : C → C is

the nonlinearity F(z) := −|z|4/d z, and we assume u0 to merely lie in the class L2
x(R

d) of functions of

finite mass M(u0) :=
∫

R2 |u0(x)|
2 dx . The exponent 1 + 4/d in the nonlinearity makes the equation

mass-critical, so that the mass M(u) is invariant under the scaling u(t, x) 7→ (1/λd/2)u(t/λ2, x/λ) of

the equation. The mass is also formally conserved by the flow, thus we formally have M(u(t))= M(u0)

for all t , though it will be important in this paper to bear in mind that this formal mass conservation can

break down if the solution is too weak in nature.

Remark 1.2. The condition d ≥ 4 is assumed in order to ensure that the nonlinearity F(u) is locally

integrable in space for u ∈ L2
x(R

d), so that (1) makes sense distributionally1 for u ∈ L∞
t,locL2

x(I ×R
d). It
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1Here and in the sequel, we use the subscript loc to denote boundedness of norms on compact sets, thus for instance

u ∈ L∞
t,loc

L2
x (I × R

d ) if and only if u ∈ L∞
t L2

x (J × R
d ) for all compact J ⊂ I , with the function space L∞

t,loc
L2

x (I × R
d ) then

being given the induced Frechet space topology.
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will be clear from our arguments that our results would also apply if F were replaced by any other non-

linearity of growth 1+4/d , whose derivative grew like |z|4/d and which enjoyed the Galilean invariance

F(eiθ z) = eiθ F(z) (in order to formally conserve mass), though in this more general setting, the mass

M(Q) of the ground state would need to be replaced by some unspecified constant εF,d > 0 depending

on the nonlinearity F and the dimension d .

The notion of a distributional solution, by itself, is too weak for applications; for instance, one has

difficulty interpreting what the initial data condition u(0) = u0 means for a distributional solution in

L∞
t,locL2

x . In practice, one strengthens the notion of solution at this regularity by working with the integral

formulation2

u(t)= ei(t−t0)1u0 + i

∫ t

t0

ei(t−t ′)1F(u(t ′)) dt ′ (2)

of the equation, where ei t1 is defined via the Fourier transform û(ξ) :=
∫

Rd e−i x ·ξu(x) dx as

êi t1u(ξ) := e−i t |ξ |2 û(ξ),

which is well-defined in the class of tempered distributions.

Remark 1.3. If u0 ∈ L2
x(R

d) and u ∈ L∞
t,locL2

x(I × R
d), then F(u) ∈ L∞

t,locL1
x,loc(I × R

d), and the right

side of Equation (2) makes sense as a tempered distribution in x for each time t . Furthermore, it is easy

to verify (by the standard duality argument) that the right side of (2) is continuous in t in the topology

S(Rd)∗ of tempered distributions.

1.4. Weak, strong, and Strichartz class solutions. With these preparations, we can now introduce the

three standard solution classes for this problem in L2
x(R

d).

Definition 1.5 (Weak, strong, Strichartz solutions). Fix a dimension d ≥ 4, an initial data u0 ∈ L2
x(R

d)

and a time interval I ⊂ R containing a time t0 ∈ R.

• A weak solution (or mild solution) to Equation (1) is a function u ∈ L∞
t,locL2

x(I × R
d) which obeys

(2) in the sense of tempered distributions for almost every3 time t .

• A strong solution to (1) is a weak solution u such that t 7→ u(t) is continuous in the L2
x topology,

thus u lies in C0
t,locL2

x(I × R
d).

• A Strichartz-class solution to (1) is a strong solution which also lies in L2
t,locL

2d/(d−2)
x (I ×R

d); thus

u lies in C0
t,locL2

x(I × R
d)∩ L2

t,locL
2d/(d−2)
x (I × R

d).

Remark 1.6 (Shifting initial data). Because the right side of Equation (2) is continuous in the distribu-

tional topology for any of the above three notions of solutions, we observe that if u is a solution to (1) in

any of the above classes on an interval I , and t1 ∈ I , then u is also a solution to (1) in the same class with

initial time t1 and initial data u(t1) (as defined using the right side of (2)). Thus one may legitimately

discuss solutions to NLS in one of the above three classes without reference to an initial time or initial

data.

2We adopt the usual convention
∫ a

b = −
∫ b

a when a < b.
3By definition of L∞

t , weak solutions are only defined for almost every time t , though from Remark 1.3, one can canonically

define u(t) for all t ∈ I .
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Remark 1.7. For future reference, we make the trivial remark that if one restricts a solution in any of

the above classes to a subinterval J ⊂ I , then one still obtains a solution in the same class. Conversely,

if one has a family of solutions in the same class on different time intervals In , such that
⋂

n In 6= ∅ and

any two solutions agree on their common domain of definition, then one can glue them together to form

a solution in the same class on the union
⋃

n In .

Remark 1.8. From Remark 1.3 we make the important observation that if u ∈ L∞
t L2

x(I ×R
d) is a weak

solution to Equation (1), then the map t 7→ u(t) is continuous in the weak topology of L2
x(R

d). In

particular we have the convergence property

lim
t ′→t

〈u(t ′), u(t)〉L2
x (R

d ) = M(u(t)), (3)

for all t ∈ I , which by the cosine rule implies the asymptotic mass decoupling identity

lim
t ′→t

M(u(t ′))− M(u(t ′)− u(t))− M(u(t))= 0. (4)

Thus any L2 discontinuity of u at t can be detected and quantified by the mass function t 7→ M(u(t)); in

particular, the solution t 7→ u(t) is continuous in L2 at precisely those points for which the mass function

t 7→ M(u(t)) is continuous.

In the Strichartz class, one has a satisfactory local existence and uniqueness theory:

Proposition 1.9 (Local existence and uniqueness in the Strichartz class). Let d ≥ 4, u0 ∈ L2
x(R

d), and

t0 ∈ R.

(i) (Local existence) There exists an open interval I containing t0 and a Strichartz class solution u ∈

C0
t,locL2

x(I × R
2)∩ L2

t,locL
2d/(d−2)
x (I × R

d).

(ii) (Uniqueness) If I is an interval containing 0, and u, u′ ∈ C0
t,locL2

x(I ×R
2)∩ L2

t,locL
2d/(d−2)
x (I ×R

d)

are Strichartz class solutions to (1) on I , then u = u′.

(iii) (Mass conservation) If u ∈ C0
t,locL2

x(I × R
2)∩ L2

t,locL
2d/(d−2)
x (I × R

d) is a Strichartz solution, then

the function t 7→ M(u(t)) is constant.

Proof. This is a standard consequence of the endpoint Strichartz estimate4

‖u‖
L2

t L
2d/(d−2)
x (I×Rd )

+ ‖u‖C0
t L2

x (I×Rd ) .d ‖u(t0)‖L2
x (R

d ) + ‖iut +1u‖
L2

t L
2d/(d+2)
x (I×Rd )

, (5)

from [Keel and Tao 1998]; see [Cazenave and Weissler 1989; Cazenave 2003]. Mass conservation is

obtained in these references by first regularising the data and nonlinearity so that the solution is smooth

(and the formal conservation of mass can be rigorously justified), and then taking limits using (5). �

Because of this proposition (and Remark 1.7), every initial data u0 ∈ L2
x(R

d) and initial time t0 ∈ R

admits a unique maximal Strichartz-class Cauchy development

u ∈ C0
t,locL2

x(I × R
2)∩ L2

t,locL2d/(d−2)
x (I × R

d),

4Here and in the sequel we use the usual notation X . Y or X = O(Y ) to denote the estimate |X | ≤ CY for some absolute

constant C > 0; if the implied constant C depends on a parameter (such as d), we will indicate this by subscripts, for example,

X .d Y or X = Od (Y ).
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where I is an open interval containing t0, and u is a Strichartz-class solution to (1) which cannot be

extended to any larger time interval.

Unfortunately, the lifespan I of this maximal Strichartz-class Cauchy development need not be global

if the mass M(u0) is large. For instance, if Q is a nontrivial Schwartz-class solution to the ground state

equation

1Q + |Q|4/d Q = Q, (6)

then as is well known, the function

u(t, x) :=
1

|t |d/2
e−i/t ei |x |2/4t Q(x/t) (7)

is a Strichartz-class solution on (0,+∞)× R
d or (−∞, 0)× R

d but cannot be extended in this class

across the time t = 0. One can also use Glassey’s virial identity [Glassey 1977] to infer indirectly the

nonglobal nature of maximal Strichartz-class Cauchy developments for suitably smooth and decaying

data with negative energy.

Remark 1.10. In the defocusing case F(z)=+|z|4/d z, it is conjectured that all maximal Strichartz-class

Cauchy developments are global. This has recently been established in the spherically symmetric case

[Tao et al. 2006], and is also known for data with additional regularity (for example, energy class) or

decay (for example, xu0 ∈ L2
x(R

d)), or with small mass; see [Tao et al. 2006] and the references therein

for further discussion. In the focusing case, the results of [Killip et al. 2007] give global existence for

spherically symmetric data when the mass M(u0) is strictly less than the mass M(Q) of the ground state;

see [Killip et al. 2008a] for a treatment of the endpoint case M(u0) = M(Q). Again, it is conjectured

that the same results hold without the spherical symmetry assumption, but this remains open.

On the other hand, it is possible to continue solutions in a weak sense beyond the time for which

Strichartz-class solutions blow up. In particular, we have the following standard result:

Proposition 1.11 (Global existence in the weak class). Let d ≥ 4, u0 ∈ L2
x(R

d), and t0 ∈ R. Then there

exists a global weak solution u ∈ L∞
t L2

x(R × R
d) to (1). Furthermore we have M(u(t))≤ M(u0) for all

t ∈ R.

Proof. We will prove a stronger result than this shortly, so we only give a sketch of proof here. By

Remark 1.7 and time reversal symmetry, it suffices to build a solution on [t0,+∞). For each ε > 0, one

can easily use parabolic theory to construct a global (strong) solution to the damped NLS iu
(ε)
t +1u(ε) =

iε1u(ε)+ Fε(u
(ε)) on [t0,+∞), whose mass is bounded above by M(u0), where Fε is a suitably damped

version of F (for example, Fε(z) := − max(|z|, 1/ε)4/d z); extracting a weakly convergent subsequence

and taking weak limits we obtain the claim. �

Unfortunately, while these weak solutions are global, they are nonunique, as the following standard

example shows.

Example 1.12. Consider the function given by Equation (7) for t ∈ (0,+∞) and by zero for t ∈ (−∞, 0].

This is a global weak solution in the sense of the above proposition (taking t0 to be any positive time,

and setting u0 = u(t0)), but is not unique; if, for instance, one takes u to equal (7) for t ∈ (−∞, 0) rather

than equal to zero, then the new solution is still a global weak solution with the same initial data. Note

that a modification of this example shows that uniqueness of weak solutions can break down even if the



WEAK SOLUTIONS OF MASS-CRITICAL NLS 65

Strichartz −−−→ strong




y





y

semi-Strichartz −−−→ semi-strong −−−→ weak

Figure 1. Inclusions between solution classes. In dimensions d ≥5 and assuming spher-

ical symmetry, we will show that two horizontal inclusions on the left are in fact equiv-

alences.

initial data is zero, and so one cannot hope to recover uniqueness purely by strengthening the hypotheses

on the initial data.

Remark 1.13. Example 1.12 also shows that mass is not necessarily conserved for weak solutions. On

the other hand, from Equation (4) we see that the function t 7→ M(u(t)) is lower semi-continuous, at

least.

1.14. Semi-Strichartz solutions. To summarise the discussion so far, the Strichartz class of solutions

has uniqueness but no global existence, while the class of weak solutions has global existence but no

uniqueness. It is thus natural to ask whether there is an intermediate class of solutions for which one has

both global existence and uniqueness. To answer this we define some further solution classes.

Definition 1.15 (Semi-strong and semi-Strichartz solutions). Fix a dimension d ≥ 4, an initial data

u0 ∈ L2
x(R

d) and a time interval I ⊂ R containing a time t0 ∈ R. A semi-strong solution (resp. semi-

Strichartz class solution) to Equation (1) is a weak solution u such that for every t ∈ I ∩ [t0,+∞) there

exists ε>0 such that u is a strong solution (resp. Strichartz class solution) when restricted to I ∩[t, t+ε),

and for every t ∈ I ∩ (−∞, t0] there exists ε > 0 such that u is a strong solution (resp. Strichartz class

solution) when restricted to I ∩ (t − ε, t].

We summarise the obvious inclusions between the five classes of solution in Figure 1. Note that unlike

the weak, strong, and Strichartz classes, the semi-strong and semi-Strichartz classes of solution depend

on the choice of initial time t0.

Example 1.16. Consider the weak solution u ∈ L∞
t L2

x(R×R
d) which is given by Equation (7) for t > 0

and is zero for t ≤ 0, let t0 > 0, and set u0 := u(t0). Then u is a semi-Strichartz class solution (and thus

semi-strong solution) to (1), but is not strong or Strichartz-class. If one redefines u for t < 0 by (7), then

u remains a weak solution, but is no longer semi-strong or semi-Strichartz.

Remark 1.17. The constructions in [Bourgain and Wang 1997], in our notation, yield semi-Strichartz

class solutions which blow up in the Strichartz class at a specified finite set of points in time, and are

equal to a prescribed state in L2
x(R

d) at the final blowup time, in dimensions d = 1, 2.

Our first main result is that the semi-Strichartz solution class enjoys global existence and uniqueness:

Theorem 1.18 (Global existence and uniqueness in the semi-Strichartz solution class). Suppose d ≥ 4,

u0 ∈ L2
x(R

d), and t0 ∈ R. Then there exists a global semi-Strichartz class solution u ∈ L∞
t L2

x(R × R
d)

to (1). Furthermore, this solution is unique in the sense that any other semi-Strichartz solution to (1) on

a time interval I containing t0 is the restriction of u to I . Finally, M(u(t)) is monotone nonincreasing
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for t ≥ t0 and monotone nondecreasing for t ≤ t0 (in particular, the only possible discontinuities are

jump discontinuities), and has a jump discontinuity exactly at those times t for which u is not locally a

Strichartz class solution.

Remark 1.19. Informally, the unique semi-Strichartz class solution is formed by solving the equation

in the Strichartz class whenever possible, and deleting any mass that escapes to spatial or frequency

infinity when the solution leaves the Strichartz class. The relationship between this class of solution and

Strichartz class solutions is analogous to the relationship between Ricci flow with surgery and Ricci flow

in the work of Perelman [2007; 2003], though of course the situation here is massively simpler than with

Ricci flow on account of the semilinear and flat nature of our equation. On the other hand, the entropy-

type solutions constructed in Proposition 1.11 do not necessarily converge to the solution in Theorem

1.18. For instance, the arguments in [Merle 1992] can be adapted to show that if one starts with the initial

data of Equation (7) at time t = −1, say, and evolves a parabolically regularised version of Equation (1)

using some viscosity parameter ε, then the solution at t = +1 can converge to an arbitrary phase rotation

of the solution (7) along a subsequence of ε, and in particular these solutions do not converge to the

semi-Strichartz solution (which vanishes after the singularity time). However, it is conceivable that the

entropy solutions do converge to the semi-Strichartz solutions for generic data, although the author does

not know how one would prove this.

Remark 1.20. One can push the global existence result further, to obtain scattering at t = ±∞, and can

in fact even push the solution “beyond” t = +∞ and t = −∞ by using the pseudoconformal transform

or lens transform, in the spirit of [Tao 2006]. We omit the details.

Remark 1.21. While the semi-Strichartz class enjoys global existence and uniqueness, it does not enjoy

continuous dependence on the data and is thus not a well-posed class of solutions. Indeed, if one considers

the solution in Example 1.16 for the spherically symmetric ground state Q, and then perturbs the initial

data u0 = u(t0) to have slightly smaller mass (while staying spherically symmetric), then from the results

in [Killip et al. 2007] we know that the perturbed solution exists globally in the Strichartz class, and in

particular has mass close to M(Q) for all negative times, in contrast to the original solution in Example

1.16 which has zero mass for all negative times, thus contradicting continuous dependence on the data

in any reasonable topology. Indeed this argument strongly suggests that there is no solution class for

this equation which is globally well-posed in the sense that one simultaneously has global existence,

uniqueness, and continuous dependence of the data, and which is compatible with the Strichartz class of

solutions.

Remark 1.22. In [Merle and Raphaël 2005; Fibich et al. 2006], solutions to Equation (1) are constructed

which are initially in H 1
x (R

d), but at the first blowup time develop a single point of concentration, plus

a residual component u∗ which is not in L
p
x (R

d) for any p > 2, and in particular has left H 1
x (R

d).

The semi-Strichartz solution would continue the evolution from u∗ at this time. Thus, we do not have

persistence of regularity for the semi-Strichartz class: a semi-Strichartz solution can exit the space in

finite time. (A similar phenomenon for the supercritical focusing NLS was also obtained in [Merle and

Raphaël 2008]. In contrast, the solution in Example 1.16 has H 1 norm going to infinity as t → 0+, but

never actually leaves H 1
x (R

d); similarly for the solutions in [Bourgain and Wang 1997]).

Theorem 1.18 is in fact an easy consequence of Proposition 1.9 and is proven in Section 2. One can

be somewhat more precise about the jump discontinuities:
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Theorem 1.23 (Quantisation of mass loss). Let d ≥ 4, u0 ∈ L2
x(R

d), and t0 ∈ R. Let u ∈ L∞
t L2

x(R × R
d)

be the unique global semi-Strichartz class solution to Equation (1) given by Theorem 1.18. Then there

exists an absolute constant εd>0 (depending only on d) such that every jump discontinuity of the function

t 7→ M(u(t)) has jump at least εd . If u0 is spherically symmetric, one can take εd to be the mass M(Q)

of the ground state.

Remark 1.24. A closely related result in the spherically symmetric case was established in [Killip et

al. 2008b, Corollary 1.12], in which it was shown that any blowup of a spherically symmetric Strichartz

class solution in two dimensions must concentrate an amount of mass at least equal to the ground state

M(Q); the same result in higher dimensions follows by the same argument together with the results in

[Killip et al. 2007]. Indeed, we will use the results in [Killip et al. 2007] to establish the spherically

symmetric case of this theorem. From Example 1.12 we see that M(Q) cannot be replaced by any larger

quantity in the above theorem.

Theorem 1.23 is of course consistent with the existence of a lower bound εd for mass concentration at

a point [Bourgain 1999; Merle and Vega 1998; Keraani 2006], although neither result seems to directly

imply the other. (The proof of Theorem 1.23 uses global-in-space Strichartz estimates, whereas the mass

concentration result requires more localised tools.)

Theorem 1.23, combined with Theorem 1.18 and Proposition 1.9(iii), has an immediate corollary:

Corollary 1.25. If u is a global semi-Strichartz class solution to Equation (1), the function t 7→ M(u(t))

is piecewise constant with at most finitely many jump discontinuities, with u being a Strichartz class

solution on each of the piecewise constant intervals.

We prove Theorem 1.23 in Section 3.

1.26. The spherically symmetric case. Now we turn to the question of whether strong (resp. semi-

strong) solutions are necessarily in the Strichartz class (resp. semi-Strichartz class), which would im-

ply (by Proposition 1.9 and Theorem 1.18) that they are unique. These type of results are known as

unconditional uniqueness (or unconditional well-posedness) results in the literature. For solutions in

higher regularities, such as the energy class, one can obtain unconditional uniqueness by exploiting

Sobolev embedding to obtain additional integrability of the strong solution u [Kato 1995; 1996; Furioli

and Terraneo 2003a; 2003b; Cazenave 2003; Tsutsumi 2007]. Unfortunately at the L2
x(R

d) level of

regularity, for which Sobolev embedding is not available5, it appears to be rather difficult to establish

such an unconditional uniqueness result, although the author tentatively conjectures it to be true. On

the other hand, we were able to establish this uniqueness under the additional simplifying assumption of

spherical symmetry (and assuming very high dimension d ≥ 5), thus replacing the data space L2
x(R

d) by

the subspace L2
rad(R

d) of spherically symmetric functions:

Theorem 1.27 (Unconditional uniqueness for spherically symmetric solutions). Let d ≥5, u0 ∈ L2
rad(R

d),

I be an interval, and t0 ∈ R. Let u ∈ L∞
t L2

x(I ×R
d) be a spherically symmetric weak solution to Equation

(1). Then the following are equivalent:

(i) u is a Strichartz class solution.

5Related to this difficulty is the Galilean invariance of the NLS equation at L2
x (R

d ), which strongly suggests that direct

application of Sobolev or Littlewood–Paley theory is unlikely to be helpful.
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(ii) u is a strong solution.

(iii) The function t 7→ M(u(t)) is constant.

(iv) The function t 7→ M(u(t)) is continuous.

(v) One has M(u(t)) ≥ lim supt ′→t M(u(t ′))− εd for all t ∈ I , where εd > 0 is a suitably small ab-

solute constant depending only on d. (Note from lower semi-continuity that we automatically have

M(u(t))≤ lim supt ′→t M(u(t ′)).)

Example 1.28. If u is given by Equation (7) for t 6= 0 and a spherically symmetric Q and vanishes for

t = 0, then u is a spherically symmetric weak solution but fails to conserve mass at t = 0, and is thus

not in the Strichartz class in a neighbourhood of t = 0.

Remark 1.29. From Theorem 1.27 and Proposition 1.9(ii), we see that spherically symmetric strong

solutions to (1) are unique. Another quick corollary of Theorem 1.27 is that any spherically symmetric

weak solution whose mass is always strictly smaller than εd is necessarily a Strichartz class solution (and

hence strong solution also), and thus also unique. In view of Theorem 1.23, it is natural to conjecture

that one can take εd to be the mass M(Q) of the ground state, which is the limit of weak uniqueness

thanks to Example 1.12, but our methods do not give this.

Remark 1.30. The above theorem shows that if a weak solution fails to be in the Strichartz class, then

at some time t it must lose at least a fixed amount εd of mass, though it is possible that this mass is then

instantly recovered (consider for instance the solution given by (7) for t 6= 0 and zero for t = 0). On

the other hand, it is conceivable that there exist weak solutions in which the mass function t 7→ M(u(t))

exhibits oscillating singularities rather than jump discontinuities, in which the mass oscillates infinitely

often as one approaches a given time; the above theorem implies that the net oscillation is at least εd but

does not otherwise control the behaviour of this function. If for instance there existed a nontrivial weak

solution on a compact interval I which vanished at both endpoints of the interval [Scheffer 1993], then

one could achieve such an oscillating behaviour by gluing together rescaled, time-translated versions of

this solution. However, we do not know if such weak solutions exist; solutions such as (7) constructed

using the pseudo-conformal transformation only exhibit vanishing at a single time t .

Remark 1.31. Note that we need to assume the solution is spherically symmetric, and not just the initial

data. In the category of weak solutions, at least, it is not necessarily the case that spherically symmetric

data leads to spherically symmetric solutions: consider for instance the weak solution which is equal to

a time-translated version of (7) for t 6= 0 and vanishes for t = 0; this solution is spherically symmetric at

time zero but not at other times.

We prove Theorem 1.27 in Section 6.1, after establishing an important preliminary smoothing estimate

for weak solutions in Section 4. Our main tool here is the in/out decomposition of waves used in [Tao

2004; Killip et al. 2008b], which is particularly powerful for understanding the dispersion of spherically

symmetric waves, and upon which we will rely heavily in order to establish a substantial gain of regularity

for weak solutions. Our arguments only barely fail at d = 4 and it is quite likely that a refinement of the

methods here can be extended to that case, but we do not pursue this matter here.

There is an analogue of Theorem 1.27 for semi-strong and semi-Strichartz class solutions:
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Theorem 1.32 (Characterisation of spherically symmetric semi-Strichartz solution). Suppose d ≥ 5,

u0 ∈ L2
rad(R

d), I be an interval, i and t0 ∈ R. Let u ∈ L∞
t L2

x(I × R
d) be a spherically symmetric weak

solution to Equation (1). Then the following are equivalent:

(i) u is the unique semi-Strichartz solution given by Theorem 1.18 (restricted to I , of course).

(ii) u is a semi-strong solution.

(iii) The function t 7→ M(u(t)) is right-continuous for t ≥ t0 and left-continuous for t ≤ t0, and is

piecewise constant with only finitely many jump discontinuities, with each jump being at least M(Q)

in size.

(iv) The function t 7→ M(u(t)) is right-continuous for t ≥ t0 and left-continuous for t ≤ t0.

(v) M(u(t)) ≥ lim supt ′→t+ M(u(t ′))− εd for all t ≥ t0 and M(u(t)) ≥ lim supt ′→t− M(u(t ′))− εd for

all t ≤ t0, where εd > 0 is a suitably small absolute constant depending only on d.

We prove Theorem 1.32 in Section 6.2, using a minor modification of the argument used to prove

Theorem 1.27.

2. Proof of Theorem 1.18

We first establish uniqueness. Suppose we have two semi-Strichartz class solutions u, u′ ∈ L∞
t L2(I ×R

2)

to (1). Let J be the connected component of {t ∈ I : u(t)= u(t ′)} that contains t0. Since u, u′ are weak

solutions, we see from Remark 1.8 that J is closed. From the uniqueness component of Proposition 1.9,

and Definition 1.15, we also see that J is right-open in I ∩ [t0,+∞) (that is, for each t ∈ J ∩ [t0,+∞)

there exists ε > 0 such that I ∩ [t, t + ε) ⊂ J ) and left-open in I ∩ (−∞, t0]; by connectedness we

conclude that J = I , establishing uniqueness.

Now we establish global existence. It suffices to establish a semi-Strichartz class solution on [t0,+∞),

as by time reversal symmetry we may then obtain a semi-Strichartz class solution and (−∞, t0], and glue

them together to obtain the desired global solution on R.

Let J denote the set of all times T ∈ [t0,+∞) for which there exists a semi-Strichartz class solution

u on [t0, T ] with M(u(t)) monotone nonincreasing on [t0, T ]; thus J is a connected subset of [t0,+∞)

containing t0. By the existence and mass conservation component of Proposition 1.9, we see that J is

right-open. Now we establish that J is closed. If tn is a sequence of times in J increasing to a limit t∗,

then by gluing together all the associated semi-Strichartz class solutions (using uniqueness) we obtain

a semi-Strichartz solution u on [t0, t∗) with M(u(t)) monotone nonincreasing on [t0, t∗); in particular u

lies in L∞
t L2

x([t0, t∗)×R
d), and F(u) lies in L∞

t L
2d/(d+4)
x ([t0, t∗)×R

d). From this we see that the right

side of Equation (2) is continuous all the way up to t∗ in the space of tempered distributions, and so we

can extend u as a weak solution to [t0, t∗]. This is still a semi-Strichartz solution, and by Fatou’s lemma

we see that M(u(t)) is still nondecreasing on [t0, t∗], and so t∗ ∈ J , thus establishing that J is closed. By

connectedness we conclude that J = [t0,+∞), and so we can obtain semi-Strichartz class solutions on

[t0, T ] for any t0 ≤ T <∞. Gluing these solutions together we obtain the desired solution on [t0,+∞),

establishing global existence.

The above argument has also established monotonicity of mass. Whenever u is a Strichartz class

solution in a neighbourhood of a time t1, it follows from Proposition 1.9 that mass is constant near t1, so
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the only remaining task is to show that whenever mass is continuous at a time t1, then u is a Strichartz

class solution in a neighbourhood of t .

The claim is obvious for t1 = t0, so without loss of generality we may take t1 > t0. By hypothesis,

M(u(t)) converges to M(u(t1)) as t → t1. By Equation (4), we conclude that u(t) converges strongly to

u(t1) in L2
x(R

d).

Let ε > 0 be a small number. By the endpoint Strichartz estimate (5), we have

‖ei(t−t1)1u(t1)‖L2
t L

2d/(d−2)
x (R×Rd )

<∞,

so by the monotone convergence theorem we have

‖ei(t−t1)1u(t1)‖L2
t L

2d/(d−2)
x (I×Rd )

< ε,

when I is a sufficiently small neighbourhood of t1.

Fix I . Let t2 converge to t1, then by the previous discussion u(t2) converges strongly to u(t1) in L2
x(R

d).

By the continuity (and unitarity) of the Schrödinger propagator, this implies that ei(t2−t1)1u(t2) converges

to u(t1). Applying the endpoint Strichartz estimate (5), we conclude that ei(·−t2)1u(t2) converges in

L2
t L

2d/(d−2)
x (I × R

d) to ei(·−t1)1u(t1). In particular, we have

‖ei(t−t2)1u(t2)‖L2
t L

2d/(d−2)
x (I×Rd )

< ε,

for all t2 sufficiently close to t1. On the other hand, we have M(u(t2))≤ M(u0). Thus if ε is chosen to be

sufficiently small depending on M(u0), we may apply the standard Picard iteration argument based on

the endpoint Strichartz estimate (5) and construct a Strichartz-class solution to NLS on I which equals

u(t2) at t2. Applying this with t2 slightly smaller than t1 and using the uniqueness of semi-Strichartz

class solutions, we see that u is equal to this Strichartz-class solution on I , and the claim follows.

3. Proof of Theorem 1.23

It is convenient here to use the original nonendpoint Strichartz estimate [Strichartz 1977]:

‖u‖
L

2(d+2)/d
t,x (I×Rd )

+ ‖u‖C0
t L2

x (I×Rd ) .d ‖u(t0)‖L2
x (R

d ) + ‖iut +1u‖
L2

t L
2(d+2)/(d+4)
x (I×Rd )

. (8)

Let εd > 0 be chosen later, and let u be a semi-Strichartz class solution. Suppose for contradiction

that we had a jump discontinuity at some time t1 of jump less than εd . As before we may assume without

loss of generality that t1 > t0.

Let t approach t1 from below, then M(u(t))− M(u(t1)) converges to a limit less than εd . By Equation

(4), we conclude that ‖u(t)− u(t1)‖L2
x (R

d ) converges to a limit less than εd .

By (8) and monotone convergence as before, we can find a small neighbourhood I of t1 such that

‖ei(t−t1)1u(t1)‖L
2(d+2)/d
t,x (I×Rd )

< ε
1/2
d .

If we let t2 approach t1 from below, then for t2 sufficiently close to t1 we thus have

‖ei(t−t2)1u(t1)‖L
2(d+2)/d
t,x (I×Rd )

< ε
1/2
d .
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On the other hand, from Equation (8) we have (for t2 sufficiently close to t1) that

‖ei(t−t2)1(u(t1)− u(t2))‖L
2(d+2)/d
t,x (I×Rd )

.d ‖u(t2)− u(t1)‖L2
x (R

d ) . ε
1/2
d ,

and thus by the triangle inequality

‖ei(t−t2)1u(t2)‖L
2(d+2)/d
t,x (I×Rd )

.d ε
1/2
d .

If εd is sufficiently small depending on d, we can then perform a Picard iteration, using (8) to control

the nonlinear portion u(t)− ei(t−t2)1u(t2) of the solution, to construct a solution in the class

C0
t L2

x ∩ L
2(d+2)/d
t,x (I × R

d)

that equals u(t2) on t2. Applying Strichartz estimates once more, we see that this solution is a Strichartz

solution on I . By uniqueness of semi-Strichartz solutions, we conclude that u is a Strichartz solution on

I and thus has no jump discontinuity at t1, a contradiction.

Now we handle the spherically symmetric case. We will need the following result from [Killip et al.

2007]:

Theorem 3.1 (Scattering below the ground state). Let d ≥ 3. Then for every 0<m < M(Q) there exists

a quantity A(m) <∞ such that whenever t0 ∈ R and u0 ∈ L2
x(R

d) with M(u0) ≤ m, then there exists a

global Strichartz-class solution u to (1) with ‖u‖
L2

t L
2d/(d−2)
x (R×Rd )

≤ A(m).

Proof. See [Killip et al. 2007, Theorem 1.5]. �

Now suppose for contradiction that we have a global semi-Strichartz class solution from spherically

symmetric initial data u0 which has a mass jump discontinuity of less than M(Q) at some time t1; we

can assume t1 > t0 as before.

Since u0 is spherically symmetric, we see from rotation invariance and uniqueness that u is spherically

symmetric. By arguing as before, we see that as t2 approaches t1 from below, M(u(t2)−u(t1)) converges

to a limit less than M(Q). In particular this limit is less than m for some 0< m < M(Q).

Let ε > 0 be a small number depending on m and M(u0) to be chosen later. By endpoint Strichartz

(5) and monotone convergence as before, we can find a small neighbourhood I of t1 such that

‖ei(t−t1)1u(t1)‖L2
t L

2d/(d−2)
x (I×Rd )

< ε,

and thus for t2 sufficiently close to t1

‖ei(t−t2)1u(t1)‖L2
t L

2d/(d−2)
x (I×Rd )

< ε. (9)

On the other hand, we also have

M(u(t2)− u(t1)) < m,

for t2 sufficiently close to (and below) t1. By Theorem 3.1, we may thus find a Strichartz-class solution

v on I of mass at most m with v(t2)= u(t2)− u(t1) and

‖v‖
L2

t L
2d/(d−2)
x (I×Rd )

≤ A(m).
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From this and Equation (9) and standard perturbation theory [Tao et al. 2008, Lemma 3.1], we may thus

find a Strichartz-class solution on I which equals u(t2) at t2. Arguing as before we conclude that u has

no jump discontinuity at t1, a contradiction.

Remark 3.2. It is conjectured that the spherical symmetry assumption can be removed from Theorem

3.1. If this conjecture is true, then it is clear that one can take εd = M(Q) in the nonspherically-symmetric

case of Theorem 1.23 as well.

4. A smoothing effect for spherically symmetric weak solutions

In this section, we establish a preliminary smoothing effect for spherically symmetric weak solutions

that will be needed to prove Theorems 1.27 and 1.32. More precisely, we show

Theorem 4.1 (Smoothing effect). Let d ≥ 4, let I be a compact interval, and let u ∈ L∞
t L2

x(I × R
d) be

a spherically symmetric weak solution to NLS with M(u(t))≤ m for all t ∈ I . Then for every R > 0 one

has the bound

‖u‖
L2

t L
2d/(d−2)
x (I×(Rd\B(0,R)))

.I,m,d R−1 + 1, (10)

where B(0, R) is the ball of radius R centred at the origin.

Remark 4.2. Theorem 4.1 asserts that a spherically symmetric weak solution behaves like a Strichartz-

class solution away from the spatial origin. The R−1 term on the right side is sharp, as can be seen

by considering a rescaled stationary solution u(t, x) = R−d/2ei t/R2

Q(x/R), where Q is a nontrivial

spherically symmetric solution to Equation (6).

We shall prove this theorem using the method of in/out projections, as used in [Tao 2004; Killip et al.

2008b; 2007]. We first recall some Littlewood–Paley notation.

Let ϕ(ξ) be a radial bump function supported in the ball {ξ ∈ R
d : |ξ | ≤ 11/10} and equal to 1 on the

ball {ξ ∈ R
d : |ξ | ≤ 1}. For each number N > 0, we define the Fourier multipliers

P̂≤N f (ξ) := ϕ(ξ/N ) f̂ (ξ),

P̂>N f (ξ) := (1 − ϕ(ξ/N )) f̂ (ξ),

P̂N f (ξ) := ψ(ξ/N ) f̂ (ξ) := (ϕ(ξ/N )− ϕ(2ξ/N )) f̂ (ξ).

We similarly define P<N and P≥N . All sums over N will be over integer powers of two unless otherwise

stated.

We now subdivide the Littlewood–Paley projections PN on the spherically symmetric space L2(Rd)rad

into two components, an outgoing projection P+ PN and incoming projection P− PN , as described in the

following lemma:

Proposition 4.3 (In/out decomposition). Let d ≥ 1. Then there exist bounded linear operators P+, P− :

L2(Rd)→ L2(Rd) with the following properties:

(i) P+, P− extend to bounded linear operators on L p(Rd) to L p(Rd) for every 1< p <∞.

(ii) P+ + P− is the orthogonal linear projection from L2(Rd) to L2(Rd)rad.
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(iii) For any N > 0, |x | & N−1, t & N−2, and choice of sign ±, the integral kernel6 [P± PN e∓i t1](x, y)

obeys the estimate

|[P± PN e∓i t1](x, y)| .d (|x ||y|)−(d−1)/2|t |−1/2,

when |y| − |x | ∼ N |t |, and

|[P± PN e∓i t1](x, y)| .d,m

N d

(N |x |)(d−1)/2〈N |y|〉(d−1)/2
〈N 2t + N |x | − N |y|〉−m,

for any m ≥ 0 otherwise.

(iii) For any N > 0, |x | & N−1, |t | . N−2, and choice of sign ±, we have

|[P± PN e∓i t1](x, y)| .d,m

N d

(N |x |)(d−1)/2〈N |y|〉(d−1)/2
〈N |x | − N |y|〉−m,

for any m ≥ 0.

Proof. See [Killip et al. 2008b, Proposition 6.2] (for the d = 2 case) or [Killip et al. 2007, Lemma 4.1,

Lemma 4.2] (for the higher d case). �

Remark 4.4. Heuristically, P− PN ei t1 and P+ PN e−i t1 for t > 0 both propagate away from the origin at

speeds ∼ N . The decay (|x ||y|)−(d−1)/2|t |−1/2 is superior to the standard decay |t |−d/2, which reflects

the additional averaging away from the origin caused by the spherical symmetry. (In the proof of [Killip

et al. 2008b, Proposition 6.2], this additional averaging is captured using the standard asymptotics of

Bessel and Hankel functions.)

Now we prove Theorem 4.1. Fix d, I, u,m, R; we allow implied constants to depend on d, I,m. We

may take R to be a power of 2. By the triangle inequality, we have

‖u‖
L2

t L
2d/(d−2)
x (I×(Rd\B(0,R)))

. ‖P≤1/Ru‖
L2

t L
2d/(d−2)
x (I×Rd )

+
∑

N>1/R

∑

±

‖P± PN u‖
L2

t L
2d/(d−2)
x (I×(Rd\B(0,R)))

.

For the first term, we use Bernstein’s inequality to estimate

‖P≤1/Ru(t)‖
L

2d/(d−2)
x (Rd )

. R−1‖u(t)‖L2
x (R

d ) . R−1,

which is acceptable, so we turn to the latter terms. For ease of notation we shall just deal with the

incoming terms ± = −, as the outgoing terms ± = − terms are handled similarly (but using Duhamel

backwards in time instead of forwards).

Write I = [t0, t1], then by Duhamel’s formula we have

P− PN u(t)= P− PN ei(t−t0)1u(t0)− i

∫ t

t0

P− PN ei(t−t ′)1F(u(t ′)) dt ′.

6The integral kernel T (x, y) of a linear operator T is the function for which T f (x) =
∫

Rd K (x, y) f (y) dy for all test

functions f .
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The contribution of the linear term P− PN ei(t−t0)1u(t0) is bounded by
∥

∥

∥

∥

∑

N>1/R

P− PN ei(t−t0)1u(t0)

∥

∥

∥

∥

L2
t L

2d/(d−2)
x (I×Rd )

.

∥

∥

∥

∥

∑

N>1/R

PN ei(t−t0)1u(t0)

∥

∥

∥

∥

L2
t L

2d/(d−2)
x (I×Rd )

. ‖ei(t−t0)1u(t0)‖L2
t L

2d/(d−2)
x (I×Rd )

. ‖u(t0)‖L2
x (R

d )

. 1,

thanks to Proposition 4.3(i), the boundedness of the Littlewood–Paley projection P>1/R , and the endpoint

Strichartz estimate (5). Thus this contribution is acceptable, and it remains to show that

∑

N>1/R

∥

∥

∥

∥

∫ t

t0

P− PN ei(t−t ′)1F(u(t ′)) dt ′

∥

∥

∥

∥

L2
t L

2d/(d−2)
x (I×(Rd\B(0,R)))

. R−1. (11)

As we are allowed to let implied constants depend on I , it suffices to show that

∫ t

t0

∥

∥P− PN ei(t−t ′)1F(u(t ′))
∥

∥

L
2d/(d−2)
x (Rd\B(0,R))

dt ′ . (N R)−c R−1,

for some absolute constant c > 0 and all t ∈ I and N > 1/R. By dyadic decomposition it suffices to

show that
∫ t

t0

∥

∥P− PN ei(t−t ′)1F(u(t ′)) dt ′
∥

∥

L
2d/(d−2)
x (B(0,2m+1 R)\B(0,2m R))

dt ′ . (2m N R)−c R−1,

for all m ≥ 0. Replacing R by 2m R, we thus see that it suffices to show that

∫ t

t0

∥

∥P− PN ei(t−t ′)1F(u(t ′)) dt ′
∥

∥

L
2d/(d−2)
x (B(0,2R))\B(0,R)

dt ′ . (N R)−c R−1,

whenever R > 0, N > 1/R, and t ∈ I .

From Proposition 4.3 we see that

‖P− PN ei t1 f ‖L∞
x (B(0,2R)\B(0,R)) . (R(R + N |t |))−(d−1)/2|t |−1/2‖ f ‖L1

x (R
d ),

for t & N−2, and

‖P− PN ei t1 f ‖L∞
x (B(0,2R)\B(0,R)) . R−(d−1)/2 N‖ f ‖L1

x (R
d ),

for 0< t . N−2; we unify these two estimates as

‖P− PN ei t1 f ‖L∞
x (B(0,2R)\B(0,R)) . (R(R + N |t |))−(d−1)/2 N 〈N 2t〉−1/2‖ f ‖L1

x (R
d ),

for t > 0. On the other hand, as P−, PN , ei t1 are bounded on L2 we have

‖P− PN ei t1 f ‖L2
x (B(0,2R)\B(0,R)) . ‖ f ‖L2

x (R
d ),

and hence by interpolation

‖P− PN ei t1 f ‖
L

2d/(d−4)
x (B(0,2R)\B(0,R))

. [(R(R + N |t |))−(d−1)/2 N 〈N 2t〉−1/2]4/d‖ f ‖
L

2d/(d+4)
x (Rd )

.
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Since

‖F(u(t ′))‖
L

2d/(d+4)
x (Rd )

. ‖u(t ′)‖
1+4/d

L2
x (R

d )
. 1

for all t ′ ∈ I , we thus have

‖P− PN ei(t−t ′)1F(u(t ′))‖
L

2d/(d−4)
x (B(0,2R)\B(0,R))

. [(R(R + N |t − t ′|))−(d−1)/2 N 〈N 2(t − t ′)〉−1/2]4/d ,

and hence by Hölder’s inequality

‖P− PN ei(t−t ′)1F(u(t ′))‖
L

2d/(d−2)
x (B(0,2R)\B(0,R))

. R[(R(R + N |t − t ′|))−(d−1)/2 N 〈N 2(t − t ′)〉−1/2]4/d .

We can thus bound the left side of Equation (11) by
∫ t

−∞

R[(R(R + N |t − t ′|))−(d−1)/2 N 〈N 2(t − t ′)〉−1/2]4/d dt ′.

The dominant contribution of this integral occurs in the region when |t − t ′| ∼ R/N , and so we obtain a

total contribution of

. R(R/N )(R−(d−1)(R/N )−1/2)4/d = R−1(RN )−(d−2)/d ,

which is acceptable. This proves Theorem 4.1. �

Remark 4.5. One can improve the 1 term on the right side of (10) to R−c for some c > 0, by using

the improved Strichartz estimates in [Shao ≥ 2009] that are available in the spherically symmetric case.

However, we will not need this improvement here.

5. Nearly continuous solutions are Strichartz class

Theorem 4.1 gives Strichartz norm control of a solution away from the spatial origin. When the solution

is sufficiently close in L∞
t L2

x to a Strichartz class solution, we can bootstrap Theorem 4.1 to in fact obtain

Strichartz control all the way up to the origin. More precisely, we now show:

Theorem 5.1 (Strichartz class criterion). Let d ≥5, let I be a compact interval, and let u ∈ L∞
t L2

x(I ×R
d)

be a spherically symmetric weak solution to NLS. Suppose also that there exists a Strichartz-class solution

v ∈ C0
t L2

x ∩ L2
t L

2d/(d−2)
x (I × R

2) such that ‖u − v‖L∞
t L2

x (R
d ) ≤ ε. If ε is sufficiently small depending on

d , then u ∈ L2
t L

2d/(d−2)
x (I × R

d).

Remark 5.2. The theorem fails if ε is large, as one can see from the weak solution defined by Equation

(7) for t 6= 0 and vanishing for t = 0. The arguments in fact give an effective upper bound for the

L2
t L

2d/(d−2)
x norm of u in terms of the corresponding norm of v . Heuristically, the point is that when u

(or u − v) has small mass, then there are not enough nonlinear effects in play to support persistent mass

concentration (as in the example in Remark 4.2) that would cause the L2
t L2d/(d−2) norm to become large.

We now prove Theorem 5.1. We fix d, I, u, v, ε and allow all implied constants to depend on d . By

shrinking the interval I and using compactness we may assume that

‖v‖
L2

t L
2d/(d−2)
x (I×R2)

≤ ε. (12)

We write w := u − v , thus

‖w‖L∞
t L2

x (I×Rd ) . ε (13)
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and w solves the difference equation

iwt +1w = F(v +w)− F(v) (14)

in the integral sense. From the fundamental theorem of calculus (or mean-value theorem) we have the

elementary inequality

F(v +w)− F(v)= O(|w|(|v| + |w|)4/d). (15)

For each integer k, let ck denote the quantity

ck := ‖w‖
L2

t L
2d/(d−2)
x (I×(Rd\B(0,2k)))

. (16)

From Theorem 4.1 and the triangle inequality we have

ck .I 2−k + 1, (17)

for all k. To prove the theorem, it suffices by the monotone convergence theorem to show that supk ck is

finite. For this we use the following inequality:

Proposition 5.3 (Key inequality). Let d ≥ 4. For every k we have

ck . ε+ ε4/d
∑

j≤k

2− d−2
2
(k− j)(c j + c

1−4/d
j ).

Proof. Fix k. By the triangle inequality, we have

ck . ‖P≤2−kw(t)‖
L2

t L
2d/(d−2)
x (I×Rd )

+
∑

±

‖P± P>2−kw(t)‖
L2

t L
2d/(d−2)
x (I×(Rd\B(0,2k)))

. (18)

Consider the first term on the right side. By (13)–(15) and (5) we have

‖P≤2−kw(t)‖
L2

t L
2d/(d−2)
x (I×Rd )

. ε+ ‖P≤2−k O(|w|(|v| + |w|)4/d)‖
L2

t L
2d/(d+2)
x (I×Rd )

,

so to show that the contribution of this case is acceptable, it suffices to show that

∥

∥P≤2−k O(|w|(|v| + |w|)4/d)
∥

∥

L2
t L

2d/(d+2)
x (I×Rd )

. ε4/d
∑

j≤k

2− d−2
2
(k− j)(c j + c

4/d
j ).

By the triangle inequality, we can bound the left side by

∥

∥P≤2−k O(|w|1Rd\B(0,2−k)(|v| + |w|)4/d)
∥

∥

L2
t L

2d/(d+2)
x (I×Rd )

+
∑

j<k

∥

∥

∥

∥

P≤2−k O(|w|1B(0,2− j+1)\B(0,2− j )(|v| + |w|)4/d)

∥

∥

∥

∥

L2
t L

2d/(d+2)
x (I×Rd )

. (19)

For the first term of (19), we discard the P≤2−k projection and use Hölder’s inequality to bound this by

.
∥

∥w
∥

∥

1−4/d

L2
t L

2d/(d+2)
x (I×(Rd\B(0,2−k)))

∥

∥v
∥

∥

4/d

L2
t L

2d/(d+2)
x (I×Rd )

∥

∥w
∥

∥

4/d

L∞
t L2

x (I×Rd )

+
∥

∥w
∥

∥

L2
t L

2d/(d+2)
x (I×(Rd\B(0,2−k)))

∥

∥w
∥

∥

4/d

L∞
t L2

x (I×Rd )
,
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which by (13), (12), and (16) is bounded by

. ε4/dc
1−4/d
k + ε4/dck,

which is acceptable.

For the second term of (19), we observe from the Hölder and Bernstein inequalities that

∥

∥P≤2−k ( f 1B(0,2− j+1)\B(0,2− j ))
∥

∥

L
2d/(d+2)
x (Rd )

. 2− d−2
2

k
∥

∥ f 1B(0,2− j+1)\B(0,2− j )

∥

∥

L1
x (R

d )

. 2− d−2
2
(k− j)‖ f ‖

L
2d/(d+2)
x (B(0,2− j+1)\B(0,2− j ))

,

for any f . Using this inequality and arguing as before, we see that the second term of (19) is bounded

by

.
∑

j<k

2− d−2
2
(k− j)(ε4/dc

1−4/d
j + ε4/dc j ),

which is acceptable.

Since we have dealt with the first term of (18), it now suffices by the triangle inequality to show that

‖P± P>2−kw(t)‖
L2

t L
2d/(d−2)
x (I×(Rd\B(0,2m)))

. ε+ ε4/d
∑

j≤k

2− d−2
2
(k− j)(c j + c

1−4/d
j ),

for either choice of sign ±. We shall just do this for the incoming case ± = −: the outgoing case ± = +

is similar but requires one to apply Duhamel’s formula backwards in time.

Write I = [t0, t1]. By Duhamel’s formula and (14), we have

P− P>2−kw(t)= P− P>2−k ei(t−t0)1w(t0)− i

∫ t

t0

P− P>2−k ei(t−t ′)1(F(v +w)− F(v))(t ′) dt ′.

The contribution of the first term is O(ε) by Proposition 4.3(i), Equations (5) and (13), so it suffices to

show that

∥

∥

∥

∥

∫ t

t0

P− P>2−k ei(t−t ′)1(F(v +w)− F(v))(t ′) dt ′

∥

∥

∥

∥

L2
t L

2d/(d−2)
x (I×(Rd\B(0,2k)))

. ε4/d
∑

j≤k

2− d−2
2
(k− j)(c j + c

1−4/d
j ).

We split

F(v +w)− F(v)= (F(v +w)− F(v))1Rd\B(0,2k−1) +
∑

j<k−1

(F(v +w)− F(v))1B(0,2 j+1)\B(0,2 j ).

The contribution of the first term can be estimated using Proposition 4.3(i), Equations (5) and (15) to be

. ‖|w|(|v|4/d + |w|4/d)‖
L2

t L
2d/(d+2)
x (I×(Rd\B(0,2k−1)))

.

By a slight modification of the calculation used to bound the first term of (19), we can control this

expression by

. ε4/dc
1−4/d
k−1 + ε4/dck−1,
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and so by the triangle inequality it suffices to show that

∑

N>2−k

∥

∥

∥

∥

∫ t

t0

P− PN ei(t−t ′)1[(F(v +w)− F(v))(t ′)1B(0,2 j+1)\B(0,2 j )] dt ′

∥

∥

∥

∥

L2
t L

2d/(d−2)
x (I×(Rd\B(0,2k)))

. ε4/d2− d−2
2
(k− j)(c j + c

1−4/d
j ), (20)

for each j < k − 1.

Fix j . By Proposition 4.3(ii), (iii), the integral kernel (P− PN ei(t−t ′)1)(x, y) for x ∈ R
d\B(0, 2k),

t ′ < t , N > 2−k , and y ∈ B(0, 2 j+1)\B(0, 2 j ) obeys the bounds

|[P− PN ei(t−t ′)1](x, y)| .
N d

(N |x |)(d−1)/2〈2 j N 〉(d−1)/2
〈N 2(t − t ′)+ N |x |〉−100d

. N d(N |x |)−50d〈N 2(t − t ′)〉−50d ,

say. From this we obtain the pointwise bound

|P− PN ei(t−t ′)1( f 1B(0,2 j+1)\B(0,2 j ))(x)| . N d(N |x |)−50d〈N 2(t − t ′)〉−50d‖ f ‖L1
x (B(0,2

j+1)\B(0,2 j )),

for x ∈ R
d\B(0, 2k) and any f , which by Hölder’s inequality implies the bounds

∥

∥P− PN ei(t−t ′)1( f 1B(0,2 j+1)\B(0,2 j ))
∥

∥

L
2d/(d−2)
x (Rd\B(0,2k))

. 2
d−2

2
k2

d−2
2

j N d(2k N )−50d〈N 2(t − t ′)〉−50d‖ f ‖
L

2d/(d+2)
x (B(0,2 j+1)\B(0,2 j ))

.

By Young’s inequality we conclude that the left side of (20) is bounded by

.
∑

N>2−k

2
d−2

2
k2

d−2
2

j N d−2(2k N )−50d
∥

∥F(v +w)− F(v)
∥

∥

L2
t L

2d/(d+2)
x (I×B(0,2 j+1)\B(0,2 j ))

.

Modifying the computation used to bound the first term of (19), this expression can be controlled by

.
∑

N>2−k

2
d−2

2
k2

d−2
2

j N d−2(2k N )−50d(ε4/dc
1−4/d
j + ε4/dc j ),

and on performing the summation in N one obtains the claim (20), and Proposition 5.3 follows. �

From Proposition 5.3 (and using the hypothesis d ≥ 5 to make the decay 2− d−2
2
(k− j) faster than the

blowup of 2− j ), we see that if we have any bound of the form

ck ≤ A + B2−k,

for all k and some A, B > 0, then (if ε is sufficiently small, and A is sufficiently large depending on ε),

one can conclude a bound of the form

ck ≤ A + 1
2

B2−k,

for all k. Iterating this and taking limits, we conclude that

ck ≤ A,
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for all k. Applying this argument starting from Equation (17) we conclude that ck . 1 for all k, as desired,

and Theorem 5.1 follows.

6. Proofs of theorems

With Theorem 5.1 in hand, it is now an easy matter to establish Theorems 1.27 and 1.32.

6.1. Proof of Theorem 1.27. It is clear that (i) implies (ii), and that (iii) implies (iv) implies (v). From

Proposition 1.9 we also see that (ii) implies (iii). So the only remaining task is to show that (v) implies

(i). It suffices to do this locally, that is, to show that for any time t for which (v) holds, that u is a

Strichartz class solution in some neighbourhood of t in I .

By the hypothesis (v), one can find a connected neighbourhood J of t in I such that

M(u(t ′))≤ M(u(t))+ εd ,

for all t ′ ∈ J . By Equation (4) (and shrinking J if necessary) we conclude that

‖u(t ′)− u(t)‖2
L2

x (R
d )

≤ 2εd ,

say, for all t ′ ∈ J .

By shrinking J some more, we may apply Proposition 1.9 to find a Strichartz class solution

v ∈ C0
t L2

x ∩ L2
t L2d/(d−2)

x (J × R
d)

on J with v(t) = u(t). Since v is a strong solution, by shrinking J some more we may assume that

‖v(t ′)− v(t)‖L2
x (R

d ) ≤ ε
1/2
d for all t ′ ∈ J . By the triangle inequality we thus see that

‖u − v‖L∞
t L2

x (J×Rd ) . ε
1/2
d .

Applying Theorem 5.1 and taking εd sufficiently small, we conclude that u is a Strichartz class solution

on J as required, and Theorem 1.27 follows.

6.2. Proof of Theorem 1.32. It is clear that (i) implies (ii) and that (iii) implies (iv) implies (v). From

Corollary 1.25 we know that (i) implies (iii), while from Proposition 1.9(iii) and Definition 1.15 we see

that (ii) implies (iv). Thus, as before, the only remaining task is to show that (v) implies (i). Again, it

suffices to establish the local claim that if t ≥ t0 is such that (v) holds, then u is in the Strichartz class for

some [t, t + ε)∩ I , and similarly for t ≤ t0 and (t − ε, t] ∩ I . But this follows by a routine modification

of the arguments in Section 6.1. �
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