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GLOBAL EXISTENCE FOR ID, COMPRESSIBLE,
ISENTROPIC NAVIER-STOKES EQUATIONS

WITH LARGE INITIAL DATA

DAVID HOFF

ABSTRACT. We prove the global existence of weak solutions of the Cauchy

problem for the Navier-Stokes equations of compressible, isentropic flow of a

polytropic gas in one space dimension. The initial velocity and density are

assumed to be in L2 and L2 n BV respectively, modulo additive constants.

In particular, no smallness assumptions are made about the intial data. In

addition, we prove a result concerning the asymptotic decay of discontinuities

in the solution when the adiabatic constant exceeds 3/2.

1. Introduction. In this paper we prove the existence of global weak solutions

for the Navier-Stokes equations of compressible, isentropic flow

(1.1) vt-ux = 0,

(1.2) ut+p(v)x = (eux)x,        x E R, t > 0,

with large, discontinuous initial data

(1.3) (v(x, 0), u(x, 0)) = (vo(x), u0(x)).

Here v,u, and p are the specific volume, velocity, and pressure in the fluid, and

(1.1) and (1.2) are respectively the equations of conservation of mass and balance

of forces. We assume throughout that

(1.4) p(v)=v-i,        7>1,

and

(1.5) e(v) = b/v,        b > 0.

Specifically, we prove the following theorem:

THEOREM l. I. Assume that the initial data vo and uo satisfy 0 < v(0) <

v0(x) < v(0), v0 — v' E L2 n BV for some fixed v' > 0, and uQ E L2. Then the

Cauchy problem (1.1) (1.3) has a weak solution defined for all t > 0. The solution

satisfies

(1.6) 0 < v(t) < v(x,t) < v(t),

(1.7) v(-,t)-v', u(-,t)EL2(R),

and

(1.8) e(v)1/2uxEL2(Rx{0,oo]).
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170 DAVID HOFF

The proof of this theorem is given in §2. In §3 we give a result concerning the

qualitative behavior of the solution when the initial data contains a single jump

discontinuity.

These results represent a continuation of our previous work [1] in which global

existence for (1.1)—(1.3) was proved for initial data which was small in an appro-

priate sense. Our basic approach is, as before, to construct solutions as limits of

approximate solutions obtained from a semidiscrete difference scheme. This en-

ables us to bypass the need for a local existence theorem, as well as to avoid a

priori smoothness assumptions. A few of the estimates used here are the same as

in [1]. We shall therefore quote these estimates but omit their proofs.

The basic problem is to control the variable v pointwise, so that the nonlinear

terms p(v) and e(v) continue to be bounded. In [1] this was achieved by establishing

piecewise H1 estimates for v and estimates for the evolution in time of the jumps

in v, then passing to a limit as the discretization tended to zero. The fact that

these estimates could be made time-independent was a direct consequence of the

smallness of the initial data. In this paper we instead give a discrete version of the

argument of Kazhikov and Shelukhin, [5], modified to take account of the jump

discontinuities and infinite spatial domain, to derive bounds for v which do depend

on time.

We now give a brief, heuristic discussion of the behavior of discontinuities in

solutions of (1.1)—(1.2). Suppose that (v,u) is such a solution, and that v and u

are smooth except along a curve x = s. The Rankine-Hugoniot relations applied

to (1.1)-(1.2) then imply that

s[v] = — [u]     and     s[u] = [p — eux\.

(Here [■] denotes a jump across the discontinuity curve.) However, a result of

Hoff-Smoller [3] requires that u must be smooth for t positive, but that initial

discontinuities in v persist for all t. We therefore conclude that

(1.9) s = 0     and     \p(v)\ = [e(v)ux\.

That is, we expect that discontinuities in u are smoothed out instantly, but that

discontinuities in v propagate along the lines x = const, (which are particle paths

in the Lagrangian equations (1.1)—(1.2)).

It is noteworthy that these lines of discontinuity do not in fact appear in the so-

lutions of the conservation laws corresponding to (1.1)—(1.2), (i.e., equations (1.1)-

(1.2) with e(v) = 0). It is therefore of some interest to study the evolution in time

of the jump in p(v) (hence the jumps in v and in ux), as well as its dependence

on the viscosity parameter b. We carry out such a discussion in §3, where we re-

strict attention to initial data with a single discontinuity. As a consequence of our

analysis in §2, it is easy to see that, if there are time-independent bounds for the

variable v(x, t), then the jumps in p(v), v, and ux all tend to zero, exponentially as

t —► oo, and that this decay is more rapid the closer b is to zero. (These conclusions

therefore hold, by our previous results [1], for small initial data.) In §3 we show

that, even for large initial data, if the adiabatic constant 7 is larger than 3/2, then

these same conclusions hold: v(x,t) is bounded pointwise independent of time, and

the jump discontinuities in p(v), v and ux decay to zero exponentially as t —► 00.
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We believe that it would be of great interest to give a comprehensive comparison

of the solutions of the viscous equations (1.1)—(1.2) with the solutions of the corre-

sponding conservation laws. To some extent, our results in §3 are a first step in this

direction. We also call attention here to the result of Hoff and Liu [2], in which it

is proved that, if (vo,Uo) represents Riemann initial data for which the solution of

the conservation laws corresponding to (1.1)—(1.2) consists of a single shock wave,

then the solution of the Navier-Stokes equations (1.1)—(1.2) with the same initial

data exists for all £ > 0 and tends to that shock wave as the viscosity parameter

b tends to zero. We also point out that global existence of solutions of (1.1)—(1.2)

with general Riemann initial data is not yet proved; such data is excluded in the

present paper by the requirement that v0 — v' and tin be in L2. However, [2] does

contain a proof of local existence in time for initial data having different limits at

+00 and -co.

Existence theorems for the equations of compressible fluid flow also appear in

[3, 4, 5, and 6]. The reader may consult [1] for brief descriptions and comparisons

of these papers.

(NOTE ADDED IN PROOF. It has come to our attention that an existence result

similar to ours is obtained by D. Serre, [7]; he considers more general pressure

functions, but requires that the initial density be in LX(R).)

2. Proof of Theorem 1.1. In this section we prove Theorem 1.1 by applying

the semidiscrete difference scheme introduced in [1]. This scheme is described as

follows. Let h > 0 be an increment in x and define xk = kh. Approximations

to u(xk,t) and v(xk+i/i,t) will be denoted by uk(t) and vk+i/2(t), and quantities

such as e(vk+i/i(t)) will be abbreviated by £k+i/i(t), etc- We define the spatial

difference operator 8 by

£             Wk+i/i -Wk_i/i                                             wk+i-wk
8wk =-'—--—     and     8wk+i/2 =-.

We assume that initial values (ufc+1/2(0), uk(0)) have been given for integral k,

and that there are distinguished nodes xkl < ■ ■ ■ < xkm which may be thought of

as the points of discontinuity of vo(x). Approximate solutions uk(t) and vk+i/2(t)

are then computed form the odes

(2.1) vk+x/2 = 6uk+x/2,      all k;

and

(2.2) ùk = 8(-p + s8u)k,        kyíkt.

Observe that neither of the equations (1.1)—(1.2) is imposed along the discontinuity

lines x = xk.. Instead, we require that

(2.3) [p]kt = [e8u}ki;

that is,

Pfci+i/2 -Pki-i/2 = (e6u)ki+i/2 - (e6u)ki-i/i,

which is the obvious discretization of the jump condition (1.9).

Solving (2.3) for uki, we obtain

£k, + l/2Uk, + l + £fc(-l/2"fc,-l - h[p]k,
(2.4) uk.

Sfci + 1/2 +£fc,-l/2
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



172 DAVID HOFF

Thus as long as vk+i/i(t) > v > 0 for all k, uki is a smooth function of the variables

itfc, k t¿ ki, and vk+i/2. Equations (2.1)-(2.3) then represent an ode in the space

/°°, for which a unique solution therefore exists locally in time.

Define the functions E(v) and ip(v) by

(2.5) E(v) =blogv,

so that E'(v) = e(v), and

(2.6) ii(v) = /   ]p(v') - p(s)} ds = p(v')(v - v') + --{~y-,
Jv' 7-1

where v' > 0 is fixed.  We then have the following global existence result for the

scheme (2.1)-(2.3).

THEOREM 2.1.   Assume that the initial data (vj(0),uk(0)) for the scheme (2.1)-

(2.3) satisfies

^ufe(o)2/i + ^vK(o))/i + ^|[£;]fc,(o)|<Jft:o<oo
k j i

and

0 < 1 /Ko < Vj(0) < Ko    Vj.

Then there is a solution (vj(t),uk(t)) o/(2.1)-(2.3), defined for allt > 0, satisfying

(2.7) 0 < 1/C(T) < vj(t) < C(T),        0<t<T;

(2.8) ^2 uk(t)2h + J2^Át)h+ [ J2£i^ôu^s^hds-C:
Mfc. j Jo    j

(2.9) J2 6vk(t)2h < C(T),        0<t<T;
k^ki

and

(2.10) |[^k(í)l<l[^k(o)|<c.

In the above statement, and throughout this section, G will denote a generic

positive constant which is independent of t and of h, but which may depend on Ko-

C(t) is the same as C, excpet that C(t) may depend on t. Also, without loss of

generality, we may take Ko > 1 > h throughout.

PROOF OF THEOREM l. I. Theorem 1.1 now follows from Theorem 2.1 by con-

verting the intitial data (vo(x),uo(x)) to mesh functions (vj(0),uk(0)), solving the

scheme (2.1) (2.3) with these mesh functions as data, and then passing to the limit

as h —y 0, making use of the uniform estimates (2.7)-(2.10). The details are nearly

identical to those in the development in §3 of [1], and so will be omitted.    Q.E.D.

The proof of Theorem 2.1 will be given in a sequence of lemmas. We being with

the following energy estimates, which are proved in Lemmas 2.2 and 2.3 of [1]:

LEMMA 2.1. Assume that the equations (2.1)-(2.3) have a solution defined up

to time T with Vj(t) > 0 for 0 < t < T.  Then forO<t<T,

(2.11) J2 Mt)2h + J2^j(t)h+ f ^£](s)8uj(s)2hds<C
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and

(2.12) \Y,6Ek(t?h<C + Y, í nki(s)[È]ki(S)ds.
k^ki i   Jo

In addition, the jump in E(v) at xki satisfies

(2.13) \E}ki(t) = {E}kt(0)exp(J al(s)ds\

where

(2.14) at(s) = \p)kt(s)/{E)kt(s).

Our immediate goal is to obtain pointwise bounds for Vj(t) which are independent

of h. Only (2.11) of Lemma 2.1 will be required in this argument. We begin with

the following technical lemma.

LEMMA 2.2. Assume that the hypotheses of Lemma 2.1 are in force and fix j.

Then for each t > 0 there is an integer j' = j'(j,t), depending measurably on t,

such that

j'U.t)

(2.15) J2 vi(t)h>Y
i=j+i

(2.16) V(¿,t) > VC > 0,

and

(2.17) \xj,-Xj\<C.

PROOF. Fix t0 > 0 and choose first j" > j such that

j"-i j"

J2 vi(to)h < K   J2 v'(to)h.
1=3+1 1=3+1

(This is possible because v¡ —> v' > 0 as j —> oo.)   Then choose j' > j" so that

vj'(to) > min(l/2,t//2). We need an upper bound for X^=,+i i>i(to)h. First,

2   Mto)h < £ 1*1'-» ~ x3"\ ̂  2^Xj' ~ Xj''
i=j'"+i

Next, let / = j' or j". If v¡ < v' + 1, then v¡h < c. Otherwise, if vi > v' + 1, then

by (2.6) and Lemma 2.1,

vth < Cip(vi)h < C.

We therefore have that

Í ,
(2.18) 1 <   J2 vi(to)h <C + -\xj, - xj\.

1=3 + 1

(2.18) together with the condition

^'(io)>min[l/2,?;72] > 1/c

enable us to define j' as a measurable function of t.
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To estimate \xj¡ — Xj\, we observe that p = 7/(7 — 1) and 9 = 7 are conjugate

indices. Using (2.18) we then have that

(-ï-i)Ati*i'-*ii= £ <r ̂ r^ < (i>)     (E«r^)1/-/

I=J+1

However, from (2.6),

so that

V>(w) ~ w1  ^     as u —► 0

v1"1 < Cib(v) + 1,        u > 0.

Appealing to Lemma 2.1 again, we then have that

\xj> -xA<[C+ ||xy. - ijU^-^^fC + \Xj, - XjW1^.

This proves (2.17).    D

The next lemma is the discrete version of an argument given in [5], modified to

take account of the jumps in v.

LEMMA 2.3.   Assume that the hypotheses of Lemma 2.1 are in force. Fix j and

t E [0, T], and let j' = j'(j, t) as in Lemma 2.2.  Then for I < j',

(2.19)

where

vi(t)A(t) =
vi(0) + Ii(t)

vp(0)Bt(t)

A(t)
_ exp[6  »/0 pr(s)ds]

Bi(t) = exp

Vj.{t)

j'-i/i

b-1 y, («fc(o-«k(o))/>

fc=i+l/2
k^ki

and

Ii(t) = b~1 [ vjlUtS)(0)A(s)Bl(s)pl(s)vl(s)ds.
Jo

PROOF. We have from (2.1), (2.2), and (2.5) that, for k / h,

8Ek = 8(e8u)k — ùk + 8pk.

Consequently,

8Ek(-)\so = uk(-)\s0+ ¡S 8Pk(r)dr,
Jo
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and for I < j'(j,s),

tew)-w] 15=     £    8E^h+     £     ^fc-lo
i<fc<j"(j',s)

kjiki

Kk,<j'U,s)

=     E    u*(-)I5ä
i</C<j"(j',i»)

kjíki

+ Pi'(i»(T) ~     E    blfciW-pK1")
I<fci<i'(i,s)

But by (2.5), (2.1), and (2.3),

[È]ki = [e8u]ki = [p]fc,.,

so that the jump terms above exactly cancel. Rearranging, we thus obtain

-Ei(s)+      pi(r)dr= -Ej,{j¡s)+      pjl{j<s)(r)dT
Jo Jo

+ ErUiS)(0)-El(0) + blogBl(s).

Dividing by 6 and taking exponentials, we then get

(2 20) expffc-1/0apt (r)dr] _ «,•>(,-,,) (0)

vi(s)

and multiplying by p¡(s)vi(s),

d

dr.

vi
-A(a)Bi(a),

ds
exp Ib^fpiWdr] :=^-;^0)A(

bv,(0)

Thus

exp[b-^\l(s)ds]=l+^.

Substituting this into (2.20) and rearranging, we then obtain (2.19).    D

Pointwise bounds for Vj(t) will follow easily from (2.19) once we have estimated

the quantities A(t) and B¡(t) appearing in Lemma 2.3.

LEMMA 2.4.   Assume that the hypotheses of Lemma 2.1 are in force.  Then for

j<l<j'(j,t),

A(t) < CeL(2.21)

and

(2.22) 0 < Í/C < Bi(t) < C.

PROOF. From Lemmas 2.1 and 2.2 we have that

¿'-1/2

J2    [uk(t) - uk(0)}h

k=l + l/2
k^ki

^ O \/Xj' — X-j ̂  o.
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This proves (2.22). The proof of (2.21) is slightly more involved. If we sum over /

in (2.19) and use (2.15), we obtain

(2.23)

However,

by (2.6), so that

3'(3,t)

A(t) <   J2 v,(t)A(t)h
1=3 + 1

i'O'.t)
<C £  [wi(0) + J,(i)]A.

1=7 + 1

v < C[i¡)(v) + 1],        v > 0,

£ wj(0)A < C[l + \xj> - Xj\] < C
1=3 + 1

by (2.8) and (2.16). Also,

h(t)<C f A(s)pi(s)vl(s)ds,
Jo

so that (2.23) becomes

(2.24) A(t) <C + C f A(s)
Jo

j'U,t)
Y Pi(s)vi(s)h

1=3 + 1

ds.

If we knew that

(2.25) ¿ Pi(s)Vl(s)h < C,

l = — oo

then Gronwall's inequality applied to (2.24) would prove (2.21).

To prove (2.25) we first note that, from (2.1),

d u2
-T.-£ + uk6(p-e6u)k=Q,        k^ki.
dt l

Summing by parts, we therefore obtain

AI
d~t2

- y ulh+^2£3öu23h- J2pjëuih = °'
k^ki j j

where we used the jump condition (2.3). Thus rearranging,

/   ^^jpJ(s)8uJ(s)hds
Jo

<C
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by Lemma 2.1. Returning to (2.25), we then have that, since p'(v)v = Cp(v), and

iii = <Sw/ )

£pí(íW(í)a ^C+\      y^WMvi+p(vt)]vihda
\Jo     , j

/   £p;(s)éu¡(s)/ids
Jo

= C + C

<C

as required.    D

PROOF OF THEOREM 2.1. From (2.19), (2.21) and (2.22), we have that

vi(t) > Ce~Ct. Consequently pi(s) < CeCs, so that the integrand in the definition

of I¡(t) in Lemma 2.3 is bounded by A(s)v¡(s)eCs. (2.19) then implies that

vi(t)A(t) <C + C /   vi(s)A(s)
Jo

eCsds.

(2.7) then follows by Gronwall's inequality and (2.16). Since the nonlinear functions

appearing in (2.1)-(2.3) are smooth and Lipschitz for v E [a,b] Ç (0, oo), the

bounds (2.7) imply that the odes (2.1)-(2.3) are solvable globally in time. (2.8)

is then a restatement of (2.11); (2.10) follows from (2.13) and the fact that ai(s)

is negative; and (2.9) will follow from (2.12) and (2.7) once we bound the term

St/0 uki(s)[E]ki(s)ds appearing in (2.12).

To do this we first observe that, from (2.4),

Uk, =üfc, +0(h)\p)ki

where üki is a convex combination of uki+i and uki-i. The pointwise bound (2.7)

then implies that

J2 4h = C(T) ( J2 <h + h" ] < C(T)
Mk>

by Lemma 2.1. Thus

4. <c <C(T) 1 + £k2/iY4h + Y,6u2fi
.k        j      .

We therefore have from (2.11) and 2.10) that

J2Jo ukt(s)[È]ki(s) ds   <C(T)Y\[E}k,(0)\m^(^j\kt(8)2ds

< C(T) ( Í  [I + 8U](s)2h] ds\      < C(T)

as required.    D
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3. Decay of the discontinuities in density. In this section we focus atten-

tion on the discontinuities in the solution (1.1)—(1.2). These jumps evidently persist

for all time along the lines x — const. It is noteworthy that these discontinuities

fail to appear in the solutions of the conservation laws corresponding to (1.1)-(1.2)

(i.e., the equations (1.1)—(1.2) with e(v) = 0).

We recall from Lemma 2.1 that, for the approximate solution constructed in §2,

(3.1) [E\kt(t) = [E\ki(0)exp   [ ai(s)ds
Jo

where E(v) = blogv (so that E' = e) and

(3.2) ai(s) = \p}ki(s)/[E]ki(s) = ^(Ë) = -lv-> < 0.

Consequently, if there were time-independent bounds for v,

(3.3) 0 < v < v(x, t) < v,        i>0,

then (3.1) and (3.2) would imply that

|[fil*<WI<l[^fc((0)|«p(-(7/%-',0-

Thus the jump in E(v), hence the jumps in v, p(v), and ux would decay to zero

exponentially in t. Moreover, this rate of decay would be faster the closer 6 is to 0

(i.e., the smaller the viscosity term in the momentum equation). We reamrk that,

when the initial data (vo,uo) is small (in an appropriate sense), the results of [1]

apply to show that there are in fact such bounds (3.3), so that the jumps in v do

indeed decay to 0.

We therefore consider intitial data as in Theorem 1.1, but in which vq contains

just a single discontinuity at x = 0, not necessarily small, and with vq — v' in

H1(x < 0) n Hl(x > 0). We ask whether there are indeed time-independent

pointwise bounds for v, and whether the jump in v(-, t) does in fact decay to zero.

The following theorem gives an affirmative answer at least for the case 7 > 3/2.

THEOREM 3.1. Assume that the initial data (vo,uo) for (1.1)—(1.2) is as de-

scribed above and that p(v) = v ' with 7 > 3/2. Then there is a constant C,

independent of time, such that the solution constructed in §2 satisfies

(3.4) 0< l/C<v(x,t) <C

for all x andt. In addition, v(-,t) —v' is in H1(x < 0) tlH1(x > 0), and the jump

v(0+,t) — v(0—,t) decays to zero exponentially as t —* 00.

PROOF. We introduce the function F(v) defined by

F(v)= [  ip(s)1/2e(s)ds
J V'

where ip is as in (2.6). An easy computation based on the definition ofip then shows

that

(l-7)/2 < cF(v), 0 < v < 1
(3 5) - _

v1/2 < CF(v),        1 < v.
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Observe that then, formally,

\F(v(x,t))\ < J \F(v(x,t)x\dx

(3-6) . ,   1/2  / ,1/2

= / ip'(vY'2£(v)\vx\dx< Í / ip(v)dxl      1/ E2xdx\      .

A pointwise bound for F(v(x,t)) would then follow from time independent bounds

for the two integrals on the right. Together with (3.5), this would then prove (3.4).

Actually, we shall develop the entire argument at the discrete level, making suitable

modifications to take account of the jump in v.

We therefore analyze the solution (vj(t),uk(t)) of the difference scheme (2.1)-

(2.3) assuming that

0 < 11Ko < Vj(0) < Ko,

YM0)2h + J2^v3Í°))h<Ko,

and

As before, we let

Y¿vk(0)2h+\lv}o(0)\<Ko.
A,#0

[E]o(t) = E1/2(t) -E.1/2(t).

Now fix T and define v(T) and v(T) by

v —    inf   Vj(t)     and     v =   sup   Vj(t).
0<t<T 0<t<T

1 3

Then co>ii>u>0by Theorem 2.1. Our plan is to estimate sums corresponding

to the integrals on the right-hand side of the energy estimate (2.12) in terms of v

and v, and then to use a discrete version of the estimate (3.6) to bound F. The

argument will close, via (3.5), when 7 > 3/2.

Now, (2.4) shows that

\uo\ < |«i| + |m-i| + Chv~1v

since, by (2.13) and (2.14),

IbloWl = Ht)[E\o(t)\ < Cv-^\{E\o(0)\.
Consequently,

Y "fr < C Y u\h + Ch\-2iv2 < (7(1 + h3v-2^v2)
k /C777.O

by (2.11). A simple discrete Sobolev estimate then shows that

1/2 / \ xl2

ul<c{y^u2kh\       (j>?A

< c(\ + h^v-^v1'2 Y,eMh

1/2
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Thus
1/4

|«o| < Cvl'\l + h^v-i'W2)   Y,eMh

We can now estimate the integral on the right side of (2.12). Using (2.11) and

(2.13), we have

j uo(s)[È]o(s)ds\ < Cv1'4 (l + /i3/V/a«1/2)

(\   1/4

2_]£j(s)8uj(s)2h |a(s)|exp    /   a(r)dr ds
3 J Uo

< Cv1'4 (l + h^v-^v1/2) I T J2 ^Mhd

jTV(s)|4/3exp   lf<*(r)dr

,3/4

ds)

<Ce1'4(l + h3'4iL-''7v1'2)-C

•sup|a(s)|1/'4   /   — exp   - /   a(r)dr ds
s \Jo  ds        [3 J0

3/4

< CtT^V^l + ft3Vl/2»1/2).

Without loss of generality, we may take Cv"1^4^1^4 > 1.   Then from the above

estimate and (2.12) we obtain

(3.7)       £¿»^fc(í)2A<Cv-T'/4ü1/4(l-|-/i3/4i¿-'í/2t'V2),       0<Í<T.

We now use this bound, together with (2.11) of Lemma 2.1, to bound F(v3(t)). Fix

j and, without loss of generality, take j < 0. Then since

d£=dF/dE=^x/2^

dE      dv /   dv

we obtain

(3.8)

\F(vj(t))\ < £ \6Fk(t)\h = Y Hvk)1/2\8Ek\h
fc<0 fc<0

1/2

<cij2^3h)   [J26Elh
\3<0 J \k<0 )

1/2

<Cjrl/8«1/^l + As/V'T/4®1/4).

(The same bound holds for j > 0.) Now, (3.5) shows that

v--i/a < CF(v)i/{4-<-4),        w<u',

and
„1/8 < Ci»1/4,        « > i/,
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so that, if D(T) = W8«;1/8, then by (3.8),

D < t7supF(t;,(i))(^"1)/(47_4)

< C7[D(1 + ft3/8D2)](3T,-l)/(4T,-4)

Thus

(3.9) jD(T)(2-»-3)/(4^-4)  < c(1 + /l3/8jD(T)2)(2^-l)/(4^-4)>

Fix the constant C in (3.9) and define

D s max[2D(0), (2C7)(4^-4)/(2i-3)].

We claim that, if h is sufficiently small, depending on D, then D(T) < D for all

T. This is certainly true, for given h, if T is small. If for some T, D(T) — D, then

(3.9) implies that

r)(T)(2^-3)/(^-4) < C{l + h3/8D2)(2i-1')/(4-i-V < \C

for h small, so that
D(T) < (|C)(^-4)/(27-3))

a contradiction.

We have thus shown that v(T)-^/8v(TY^ < D for all T > 0. Since v > v' > v,

(3.4) is proved. Theorem 3.1 then follows easily upon passing to the limit as h —» 0.

We omit the details.    D
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