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Abstract. In this paper, we shall establish some global existence results for a 3D

hyperbolic system arising from Green-Naghdi models of thermoelasticity of type II with

a dissipative boundary condition for the displacement. The existence and exponential

decay of energy for the linear problem has been solved by Lazzari and Nibbi, Journal of

Mathematical Analysis and Applications, 338 (2008), 317–329. Furthermore, we shall es-

tablish the global existence of solutions to semilinear and nonlinear thermoelastic systems

by using the semigroup approach.

1. Introduction. We consider thermoelastic models based on the theory developed

by Green and Naghdi [9]–[11]. Instead of the classical entropy inequality, they used a

general entropy balance and, upon introducing a new thermal variable, proposed three

models, based on the different material responses, labeled as types I, II and III. The

linearized version of the first model leads to the Fourier law, and hence develops the
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classical thermoelastic theory; the linearized versions of both type-II and type-III models

allow heat transmission at finite speed.

In this paper, we shall study the global existence of solutions to the following ther-

moelastic model of type II:

ρutt = ∇ · [C∇u(x, t)− αIθ(x, t)] + f, (x, t) ∈ Ω× (0,∞), (1.1)

cθt = −∇ · [q(x, t) + βut(x, t)] + r, (x, t) ∈ Ω× (0,∞). (1.2)

From the Green-Naghdi law, we have

q(x, t) = −k∇τ (x, t), (x, t) ∈ Ω× (0,∞) (1.3)

where q is the heat flux and τ is a new variable, called the thermal displacement, which

satisfies τt = θ.

The body Ω is a bounded open set in R
3 with regular boundary ∂Ω; u(x, t) =

(u1(x, t), u2(x, t), u3(x, t)) represents the displacement vector, and θ denotes the tem-

perature relative to Θ0, i.e., θ = Θ−Θ0, where Θ represents the absolute temperature.

The terms f and r represent external forces, ρ represents the mass density and is a

positive constant, and C is a constant, fourth-order, symmetric tensor which is positive

definite, i.e., there exist two positive constants k1 and k2 such that for all symmetric

second-order tensors B,

k1|B|2 ≤ CB ·B ≤ k2|B|2; (1.4)

c and k, as well as α
β , are positive constants.

Assume that the system (1.1)-(1.3) is subject to the following dissipative boundary

condition with memory:

T (x, t)n(x, t) = −γ0v(x, t)−
∫ ∞

0

λ(s)vt(x, s), x ∈ ∂Ω, (1.5)

and the Neumann boundary condition for the heat flux, that is,

q(x, t) · n(x) = 0, x ∈ ∂Ω (1.6)

where n is the unit outward normal vector, v := ut the velocity, vt(x, s) := v(x, t − s)

the history of v, and T the stress tensor, which obeys the constitutive equation

T = CE − αIθ (1.7)

where E = 1
2 (∇u+∇uT ) is the strain tensor and I is the identity tensor.

For the boundary condition (1.5) with memory terms, several authors have studied

the dynamical problem in elasticity (see, e.g., [2, 3, 17]), in electromagnetism [20] and,

in thermoelasticity, for the Cattaneo-Maxwell and Gurtin-Pipkin models [8, 14] and

the Green-Naghdi model of type II [15]. In this paper, the boundary condition (1.5)

guarantees the decay of total energy (mechanical and thermal), because there is no

internal dissipation for Green-Naghdi models of type II.

We set the initial conditions to be⎧⎪⎪⎨
⎪⎪⎩

u(x, 0) = u0(x),

v(x, 0) = v0(x),

τ (x, 0) = τ0(x),

θ(x, 0) = θ0(x).

(1.8)
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For the memory kernel λ : R+ → R ∈ L1(R+) ∩H2(R+), by assuming that ∂Ω is locally

strong dissipative [2], we have

γ0 ∈ R
+, ω

∫ ∞

0

λ′(s) sin(ωs) ds < 0, ∀ω 	= 0;

furthermore, we assume that

λ′(s) < 0, λ′′(s) ≥ 0, ∀s ∈ R
+. (1.9)

Models of boundary conditions that include a memory term which produces damping

were proposed in [1] for the study of 1D wave propagation, in [22] for sound evolution in

a compressible fluid and in [7] in the context of Maxwell equations.

Let’s first recall some previous works in this direction. For thermoelasticity of type I,

there are many works (see, e.g., [6], [12]–[13], [16, 18, 29]) on the existence, uniqueness

and asymptotic behavior of solutions of the linear system. Racke, Shibata and Zheng [29]

obtained the global existence and uniqueness of solutions for the nonlinear thermoelastic

system of type I with small initial data; Muñoz Rivera and Qin [18] proved the global

existence, uniqueness, and asymptotic behavior of solutions for 1D nonlinear thermoe-

lasticity with thermal memory subject to Dirichlet-Dirichlet boundary conditions.

For the thermoelasticitic model of type II, or without energy dissipation, several re-

sults on existence, uniqueness, continuous dependence, spatial decay and wave propa-

gation (see, e.g., [4]–[5], [10, 15, 19], [24]–[27]) have been obtained, among which we

would like to mention especially the work by Qin and Muñoz Rivera [24], who studied

the global existence and exponential stability of solutions to homogeneous thermoelastic

equations of type II with thermal memory. Recently, Qin, Xu and Ma [25] obtained the

global existence and exponential stability of solutions to nonhomogeneous thermoelastic

equations of type II with thermal memory. Lazzari and Nibbi [15] obtained the expo-

nential decay of total energy for thermoelastic linear inhomogeneous systems of type II

(i.e., f = f(x, t), r = r(x, t)) with the dissipative boundary condition (1.5). We will

in this paper study the global existence of solutions for the semilinear and nonlinear

thermoelastic systems of type II (i.e., f = f(v,∇u, θ,∇τ, at) and r = r(v,∇u, θ,∇τ, at),

respectively). To our knowledge, we are the first to use the semigroup approach to study

such a problem.

For the thermoelasticitic model of type III, which represents thermal dissipation, there

are some interesting results (see, e.g., [15, 23, 28], [30]–[32]); for example, for the Cauchy

problem of the linear thermoelastic system of type III, Zhang and Zuazua [32] and Quin-

tanilla and Racke [28] independently studied the decay of energy by using the classical

energy method and the spectral method, and they obtained exponential stability in one

space dimension, and in two or three space dimensions for radially symmetric situations,

while the energy was found to decay polynomially for most domains in two space di-

mensions. Reissig and Wang [30] studied Lp–Lq decay estimates and propagation of

singularities of solutions in one space dimension, and later Yang and Wang [31] studied

well-posedness and decay estimates in three space dimensions. Lazzari and Nibbi [15]

also studied the asymptotic behavior of the solution of a 3D thermoelastic system of type

III with an absorbing boundary. In particular, Qin, Ma and Huang [23] obtained the
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global existence of solutions for a higher-dimensional linear and nonlinear thermoelastic

equations of type III by using the semigroup method.

The notation in this paper will be as follows: Lp (1 ≤ p ≤ +∞), Wm,p (m ∈ N),

H1 = W 1,2 and H1
0 = W 1,2

0 will denote the usual (Sobolev) spaces on Ω. In addition,

‖ · ‖B denotes the norm in the space B; we also put ‖ · ‖ = ‖ · ‖L2(Ω). We denote

by Ck(J,B), k ∈ N0, the space of k-times continuously differentiable functions from

J ⊆ R into a Banach space B, and likewise by Lp(J,B), 1 ≤ p ≤ +∞, the corresponding

Lebesgue spaces. Cβ([0, T ], B) denotes the Hölder space of B-valued continuous functions

with exponent β ∈ (0, 1) in the variable t.

From now on we shall drop the x variable whenever no ambiguity arises. In what

follows, we shall refer to the problem consisting of (1.1)-(1.3), (1.5)-(1.6) and (1.8) as

problem P.

The rest of this paper is organized as follows. In Section 2, we state the main theorems

of this paper. In Section 3, we will prove the main theorems via a series of lemmas.

2. Main results. Using integration by parts for (1.5), we obtain

T (x, t)n(x, t) = −γ0v(x, t)−
∫ ∞

0

λ′(s)wt(x, s) ds, x ∈ ∂Ω (2.1)

where wt(x, s) = ut(x, s)−u(x, t) denotes the past history of u and is defined for s ∈ R
+.

In order to simplify the notation, we introduce the new variable

at(s) = −
∫ ∞

0

λ′(τ + s)wt(τ ) dτ,

so that the boundary condition (1.5) or (2.1) takes the form

Ť (t)n = T (t)n+ γ0v(t) = at(0), (2.2)

and introduce the boundary energy function

ψ∂Ω(t) = −1

2

∫
∂Ω

∫ ∞

0

1

λ′(s)

∂at(s)

∂s
· ∂a

t(s)

∂s
dsda, (2.3)

which satisfies

d

dt
ψ∂Ω(t) =

1

2

∫
∂Ω

1

λ′(0)

∂at(0)

∂s
· ∂a

t(0)

∂s
da

−
∫
∂Ω

Ť (t)n · v(t) da− 1

2

∫
∂Ω

∫ ∞

0

λ′′(s)

(λ′(s))2
∂at(s)

∂s
· ∂a

t(s)

∂s
dsda.(2.4)

Thus the energy of a solution to problem P is defined by

ψ = ψΩ + ψ∂Ω

=
1

2

∫
Ω

[
ρ|v|2 + C∇u · ∇u+

cα

β
θ2 +

kα

β
|∇τ |2

]
dx+ ψ∂Ω. (2.5)

We further introduce some function spaces. Set

H∗(Ω) = {Φ ∈ L2(Ω) : ∇ · Φ ∈ L2(Ω)}. (2.6)
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Let the space Ḣ1(∂Ω) := Ḣ1

(
∂Ω× (0,∞), 1√

−λ′(s)
dsda

)
consist of functions at(s) on

(0,∞) for which

‖at‖2
Ḣ1 = −

∫
∂Ω

∫ ∞

0

1

λ′(s)

∂at(s)

∂s
· ∂a

t(s)

∂s
dsda. (2.7)

Put

H = (L2(Ω))3 × (L2(Ω))3 × L2(Ω)× L2(Ω)× Ḣ1(∂Ω) (2.8)

with the energy norm

‖(v,∇u, θ,∇τ, at)‖2H =

∫
Ω

[
ρ|v|2 + C∇u · ∇u+

cα

β
θ2 +

kα

β
|∇τ |2

]
dx

−
∫
∂Ω

∫ ∞

0

1

λ′(s)

∂at(s)

∂s
· ∂a

t(s)

∂s
dsda. (2.9)

In order to use the theory of semigroups, we set

v(x, t) = ut(x, t), τt(x, t) = θ(x, t), at(s) = −
∫ ∞

0

λ′(τ + s)wt(τ ) dτ.

By a straightforward calculation, we obtain

∂at(s)

∂s
=

∂at(s)

∂t
+ λ(s)v(x, t). (2.10)

Thus we can write problem P as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρvt = ∇ · [C∇u(x, t)− αIθ(x, t)] + f, (x, t) ∈ Ω× (0,∞),

cθt = −∇ · [q(x, t) + βv(x, t)] + r, (x, t) ∈ Ω× (0,∞),

q(x, t) = −k∇τ (x, t), (x, t) ∈ Ω× (0,∞),

T (x, t)n(x, t) = −γ0v(x, t)−
∫∞
0

λ′(s)wt(x, s) ds, x ∈ ∂Ω,

q(x, t) · n(x) = 0, x ∈ ∂Ω,

wt(x, s) = ut(x, s)− u(x, t), (x, t) ∈ Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

τ (x, 0) = τ0(x), θ(x, 0) = θ0(x), x ∈ Ω.

(2.11)

Now we define a linear unbounded operator A on H by

A(v,∇u, θ,∇τ, at)

=

(
1

ρ
∇ · (C∇u− αIθ),∇v,−1

c
∇ · (β − k∇τ ),∇θ,

∂at(s)

∂s
− λ(s)v

)
. (2.12)

Put

Φ = (v,∇u, θ,∇τ, at), K = (F, 0, G, 0, 0) (2.13)

where F = 1
ρf, G = 1

c r. Then system (2.11) can be formulated as an abstract first-order

Cauchy problem as follows: ⎧⎪⎨
⎪⎩

dΦ
dt

= AΦ+K,

Φ(0) = Φ0

(2.14)
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on the Hilbert space H, where Φ0 = (v0,∇u0, θ0,∇τ0, a
0). The domain of A is given by

D(A) =
{
(v,∇u, θ,∇τ, at) ∈ H : v ∈ (H1(Ω))3; ∇u ∈ (H∗(Ω))3; θ ∈ H1(Ω);

∇τ ∈ H∗(Ω);
∂at(s)

∂s
− λ(s)v ∈ Ḣ1(∂Ω); q(x, t) · n(x) = 0, x ∈ ∂Ω;

T (x, t)n(x, t) = −γ0v(x, t)−
∫ ∞

0

λ′(s)wt(x, s) ds, x ∈ ∂Ω
}
. (2.15)

Note that H∗(Ω) is given by (2.6). It is clear that D(A) is dense in H.

We are now in a position to state our main theorems.

Theorem 2.1. Suppose that F = F (Φ) and G = G(Φ), where Φ = (v,∇u, θ,∇τ, at),

and that K = (F, 0, G, 0, 0) satisfies the global Lipschitz condition on H, i.e., there is a

positive constant L such that for all Φ1,Φ2 ∈ H,

‖K(Φ1)−K(Φ2)‖H ≤ L‖Φ1 − Φ2‖H. (2.16)

Then for any Φ0 = (v0,∇u0, θ0,∇τ0, a
0) ∈ H, there exists a global mild solution Φ to

system (2.11) such that Φ ∈ C([0,∞),H), i.e.,

v(t) ∈ C([0,∞), (L2(Ω))3); ∇u(t) ∈ C([0,∞), (L2(Ω))3);

θ(t) ∈ C([0,∞), L2(Ω)); ∇τ (t) ∈ C([0,∞), L2(Ω));

at(t) ∈ C([0,∞), Ḣ1(∂Ω)).

Theorem 2.2. Suppose that F = F (Φ) and G = G(Φ), where Φ = (v,∇u, θ,∇τ, at),

and that K = (F, 0, G, 0, 0) is a nonlinear operator from D(A) into D(A) which satisfies

the global Lipschitz condition on D(A), i.e., there is a positive constant L such that for

all Φ1, Φ2 ∈ D(A),

‖K(Φ1)−K(Φ2)‖D(A) ≤ L‖Φ1 − Φ2‖D(A). (2.17)

Then for any Φ0 = (v0,∇u0, θ0,∇τ0, a
0) ∈ D(A), there exists a unique global classical

solution Φ = (v,∇u, θ,∇τ, at) ∈ C1([0,∞), H) ∩ C([0,∞), D(A)) to system (2.11), i.e.,

v ∈ C1([0,∞), (L2(Ω))3) ∩ C([0,∞), (H1(Ω))3),

∇u ∈ C1([0,∞), (L2(Ω))3) ∩ C([0,∞), (H∗(Ω))3),

θ ∈ C1([0,∞), L2(Ω)) ∩ C([0,∞), H1(Ω)),

∇τ ∈ C1([0,∞), L2(Ω)) ∩ C([0,∞), H∗(Ω)),

at ∈ C1([0,∞), Ḣ1(∂Ω)) ∩ C([0,∞), Ḣ2(∂Ω)),

where Ḣ2(∂Ω) = Ḣ2

(
∂Ω× (0,∞), 1√

−λ′(s)
dsda

)
with the norm

‖at‖2
Ḣ2 = −

∫
∂Ω

∫ ∞

0

1

λ′(s)

∂2at(s)

∂s2
· ∂

2at(s)

∂s2
dsda.
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3. Proofs of Theorems 2.1 and 2.2. In this section we will complete the proofs

of Theorems 2.1 and 2.2 by establishing a series of lemmas.

Lemma 3.1. The operator A defined by (2.12) is dissipative and closed.

Proof. By a straightforward calculation, it follows from (2.9) and (2.2) that for any

(v,∇u, θ,∇τ, at) ∈ D(A),

(A(v,∇u, θ,∇τ, at), (v,∇u, θ,∇τ, at))

=

∫
Ω

[
∇ · (C∇u(t)− αIθ(t)) · v(t) + C∇v(t) · ∇u(t)

]
dx

+
α

β

∫
Ω

[
∇ · (k∇τ (t)− βv(t)) θ(t) + k∇θ(t) · ∇τ (t)

]
dx

−
∫
∂Ω

∫ ∞

0

1

λ′(s)

∂

∂s

[
∂at(s)

∂s
− λ(s)v(t)

]
· ∂a

t(s)

∂s
dsda

=

∫
∂Ω

(C∇u− αIθ) v · n da− α

β

∫
∂Ω

(βv − k∇τ )θ · n da

+α

∫
Ω

Iθ · ∇v dx+
α

β

∫
Ω

(βv − k∇τ ) · ∇θ dx+
α

β

∫
Ω

k∇θ · ∇τ dx

−
∫
∂Ω

∫ ∞

0

1

λ′(s)

∂2at(s)

∂s2
· ∂a

t(s)

∂s
dsda+

∫
∂Ω

∫ ∞

0

v(t) · ∂a
t(s)

∂s
dsda

=

∫
∂Ω

T (t)n · v(t) da−
∫
∂Ω

v(t) · at(0) da−
∫
∂Ω

∫ ∞

0

1

λ′(s)

∂2at(s)

∂s2
· ∂a

t(s)

∂s
dsda

= −
∫
∂Ω

γ0|v(t)|2 da+
1

2

∫
∂Ω

1

λ′(0)

∂at(0)

∂s
· ∂a

t(0)

∂s
da

−1

2

∫
∂Ω

∫ ∞

0

λ′′(s)

(λ′(s))2
∂at(s)

∂s
· ∂a

t(s)

∂s
dsda ≤ 0. (3.1)

Thus, A is dissipative.

To prove that A is closed, let (vn,∇un, θn,∇τn, a
t
n) ∈ D(A) be such that

(vn,∇un, θn,∇τn, a
t
n) → (v,∇u, θ,∇τ, at) in H

and

A(vn,∇un, θn,∇τn, a
t
n) → (ϕ, z, ξ, η, ζ) in H.

Then we have

vn → v in (L2(Ω))3, (3.2)

∇un → ∇u in (L2(Ω))3, (3.3)

θn → θ in L2(Ω), (3.4)

∇τn → ∇τ in L2(Ω), (3.5)

atn → at in Ḣ1(∂Ω) (3.6)
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and

1

ρ
∇ · (C∇un − αIθn) → ϕ in (L2(Ω))3, (3.7)

∇vn → z in (L2(Ω))3, (3.8)

−1

c
∇ · (βvn − k∇τn) → ξ in L2(Ω), (3.9)

∇θn → η in L2(Ω), (3.10)

∂atn
∂s

− λ(s)vn → ζ in Ḣ1(∂Ω). (3.11)

From (3.2) and (3.8), we deduce that

vn → v in (H1(Ω))3 (3.12)

and

z = ∇v, v ∈ (H1(Ω))3. (3.13)

Similarly, using (3.4) and (3.10), we deduce that

θn → θ in H1(Ω) (3.14)

and

η = ∇θ, θ ∈ H1(Ω). (3.15)

From (3.7) and (3.14), we deduce that

∇ · (C∇un) → ρϕ+ α∇ · Iθ in (L2(Ω))3, (3.16)

and consequently, it follows from (3.3) that

∇un → ∇u in (H∗(Ω))3 (3.17)

and

ϕ =
1

ρ
∇ · (C∇u− αIθ), ∇u ∈ (H∗(Ω))3. (3.18)

From (3.9) and (3.12), we deduce that

1

c
∇ · (k∇τn) → ξ +

β

c
∇ · v in L2(Ω), (3.19)

and consequently, it follows from (3.5) that

∇τn → ∇τ in H∗(Ω) (3.20)

and

ξ = −1

c
∇ · (C∇u− αIθ), ∇τ ∈ H∗(Ω). (3.21)

In addition, it follows from (3.6), (3.11) and (3.12) that

∂atn
∂s

→ ∂at

∂s
in Ḣ1(∂Ω) (3.22)

and

ζ =
∂at

∂s
− λ(s)v ∈ Ḣ1(∂Ω). (3.23)
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Moreover, it is easy to deduce that

T (x, t)n(x, t) = −γ0v(x, t)−
∫ ∞

0

λ′(s)wt(x, s), x ∈ ∂Ω,

q(x, t) · n(x) = 0, x ∈ ∂Ω.

Thus, using (3.13), (3.15), (3.18), (3.21) and (3.23), we deduce that

A(v,∇u, θ,∇τ, at) = (ϕ, z, ξ, η, ζ), (v,∇u, θ,∇τ, at) ∈ D(A).

Hence, A is closed. �

Lemma 3.2. The adjoint operator A∗ of A is also dissipative.

Proof. Let Φ̃ = (ṽ,∇ũ, θ̃,∇τ̃ , ãt) be in H and consider the boundary conditions

(C∇ũ(t)− αIθ̃(t))n = γ0ũ(t) + ãt(0), ∇τ̃ (t) · n = 0, x ∈ ∂Ω. (3.24)

Denoting by H the Heaviside function and introducing a function j(ãt) such that

∂

∂s
j(ãt)(s) = −λ′(s)

∂

∂s

(
H(s)

λ′(s)

)
∂ãt

∂s
,

we claim that A∗Φ̃ is equal to

(
1

ρ
∇ · (αIθ̃ − C∇ũ),−∇ṽ,

1

c
∇ · (βṽ − k∇τ̃ ),−∇θ̃,−∂ãt(s)

∂s
+ λ(s)ṽ + j(ãt)(s)

)

and that the domain of A∗ is

D(A∗) =
{
(ṽ,∇ũ, θ̃,∇τ̃ , ãt) ∈ H : ṽ ∈ (H1(Ω))3; ∇ũ ∈ (H∗(Ω))3; θ̃ ∈ H1(Ω);

∇τ̃ ∈ H∗(Ω); −∂ãt(s)

∂s
+ λ(s)ṽ + j(ãt)(s) ∈ Ḣ1(Ω); ∇τ̃ (t) · n = 0,

x ∈ ∂Ω; (C∇ũ(t)− αIθ̃(t))n = γ0ũ(t) + ãt(0), x ∈ ∂Ω
}
. (3.25)
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By a straightforward calculation, we can obtain that for any Φ ∈ D(A) and Φ̃ ∈ D(A∗),

(AΦ, Φ̃) =

∫
Ω

[
∇ · (C∇u(t)− αIθ(t)) · ṽ(t) + C∇v · ∇ũ(t)

]
dx

−α

β

∫
Ω

[
∇ · (βv(t)− k∇τ (t)) θ̃(t) + k∇θ(t) · ∇τ̃ (t)

]
dx

−
∫
∂Ω

∫ ∞

0

1

λ′(s)

∂

∂s

(
∂at(s)

∂s
− λ(s)v(t)

)
· ∂ã

t(s)

∂s
dsda

= −
∫
Ω

[
v(t) · ∇ ·

(
C∇ũ(t)− αIθ̃(t)

)
+ C∇u(t) · ∇ṽ(t)

]
dx

+
α

β

∫
Ω

[
∇ · (βṽ(t)− k∇τ̃ (t)) θ(t) + k∇θ̃(t) · ∇τ (t)

]
dx

+

∫
∂Ω

v(t) ·
[(

C∇ũ(t)− αIθ̃(t)
)
n− γ0ṽ(t)− ãt(0)

]
da

+

∫
∂Ω

∫ ∞

0

1

λ′(s)

∂at(s)

∂s
· ∂

∂s

(
∂ãt(s)

∂s
− λ(s)ṽ(t)

)
dsda

−kα

β

∫
∂Ω

θ(t)∇τ̃(t) · n da+

∫
∂Ω

1

λ′(0)

∂at(0)

∂s
· ∂ã

t(0)

∂s
da

+

∫
∂Ω

∫ ∞

0

∂

∂s

(
1

λ′(s)

)
∂at(s)

∂s
· ∂ã

t(s)

∂s
dsda.

Note that Φ̃ ∈ D(A∗), so Φ̃ ∈ D(A∗) satisfies the boundary conditions (3.24), and we

have

(AΦ, Φ̃) = (Φ,−AΦ̃) +

∫
∂Ω

∫ ∞

−∞

∂

∂s

(
H(s)

λ′(s)

)
∂at(s)

∂s
· ∂ã

t(s)

∂s
dsda.

Thus

(A∗Φ̃, Φ̃) = −
∫
∂Ω

γ0|ṽ(t)|2 da− 1

2

∫
∂Ω

∫ ∞

0

λ′′(s)

(λ′(s))2
∂ãt(s)

∂s
· ∂ã

t(s)

∂s
dsda ≤ 0.

Hence, A∗ is also dissipative. �

Lemma 3.3. Let A be a densely defined linear operator on a Hilbert space H; if A and

A∗ (the adjoint of A) are dissipative, then A generates a C0-semigroup of contractions

on H.

Proof. By virtue of the Lumer-Phillips theorem (see, e.g., Pazy [21]), we need to prove

that

R(I −A) = H, (3.26)

i.e., that I −A is surjective. If A is dissipative and closed, then R(I −A) ⊆ H. Suppose

that R(I−A) 	= H; then there is a nontrivial element x∗ ∈ H∗ such that for all x ∈ D(A),

(x∗, x−Ax) = 0. (3.27)

Thus

x∗ −A∗x∗ = 0. (3.28)

Since A∗ is dissipative, we know that x∗ = 0, a contradiction. Hence the proof is

complete. �
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From Lemmas 3.1-3.3, we know that the operator A defined by (2.12) generates a

C0-semigroup of contractions on H. In the following, for the sake of convenience, we

introduce the definition of a maximal accretive operator (see, e.g., Zheng [33] and Pazy

[21]).

Definition. Let B be a linear operator defined in a Banach space H, that is, B :

D(B) ⊂ H �→ H. If for any x, y ∈ D(B) and any λ > 0,

‖x− y‖ ≤ ‖x− y + λ(Bx−By)‖, (3.29)

then B is said to be an accretive operator. Moreover, if B is a densely defined accretive

operator and I + B is surjective, i.e., R(I + B) = H, then B is said to be a maximal

accretive operator.

If we choose B = −A, then by virtue of Lemmas 3.1-3.3 and the definition of a

maximal accretive operator, we know that the operator B is a maximal accretive operator

and generates a C0-semigroup S(t) of contractions on H. Then system (2.11) can be

formulated as an abstract first-order Cauchy problem as follows:

⎧⎪⎨
⎪⎩

dΦ
dt

+BΦ = K,

Φ(0) = Φ0

(3.30)

where Φ0 = (v0,∇u0, θ0,∇τ0, a
0) and B is a maximal accretive operator defined in a

dense subset D(B) = D(A) of a Hilbert space H.

Lemma 3.4. Suppose that K = K(t) and

K(t) ∈ C1([0,∞),H), Φ0 ∈ D(B).

Then problem (3.30) admits a unique global classical solution

Φ ∈ C1([0,∞), H) ∩ C([0,∞), D(B)) (3.31)

which can be expressed as

Φ(t) = S(t)(Φ0) +

∫ t

0

S(t− τ )K(τ )dτ. (3.32)

Proof. Since S(t)Φ0 satisfies the homogeneous equation and nonhomogeneous initial

condition, it suffices to verify that w(t) given by

w(t) =

∫ t

0

S(t− τ )K(τ )dτ (3.33)
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belongs to C1([0,∞),H) ∩ C([0,∞), D(B)) and satisfies the nonhomogeneous equation.

Consider the difference quotient

w(t+ h)− w(t)

h

=
1

h

(∫ t+h

0

S(t+ h− τ )K(τ )dτ −
∫ t

0

S(t− τ )K(τ )dτ
)

=
1

h

∫ t+h

t

S(t+ h− τ )K(τ )dτ +
1

h

∫ t

0

(S(t+ h− τ )− S(t− τ ))K(τ )dτ

=
1

h

∫ t+h

t

S(z)K(t+ h− z)dz +
1

h

∫ t

0

S(z)(K(t+ h− z)−K(t− z))dz. (3.34)

As h → 0, the terms in the last line of (3.34) tend to the limit

S(t)K(0) +

∫ t

0

S(z)K ′(t− z)dz ∈ C([0,∞),H). (3.35)

It turns out that w ∈ C1([0,∞),H) and that the terms in the third line of (3.34) tend

to a limit too, which should be

S(0)K(t)−Bw(t) = K(t)−Bw(t). (3.36)

Thus the proof is complete. �

Lemma 3.5. Suppose that K = K(t) and

K(t) ∈ C([0,∞), D(B)), Φ0 ∈ D(B).

Then problem (3.30) admits a unique global classical solution.

Proof. From the proof of Lemma 3.4, we can obtain that

w(t+ h)− w(t)

h

=
1

h

∫ t+h

t

S(t+ h− τ )K(τ )dτ +
1

h

∫ t

0

(S(t+ h− τ )− S(t− τ ))K(τ )dτ

=
1

h

∫ t+h

t

S(t+ h− τ )K(τ )dτ +
1

h

∫ t

0

S(t− τ )(
S(h)− I

h
)K(τ )dτ (3.37)

As h → 0, the last terms in the line of (3.37) tend to

S(0)K(t)−
∫ t

0

S(t− τ )BK(τ )dτ

= S(0)K(t)−B

∫ t

0

S(t− τ )K(τ )dτ = K(t)−Bw(t) (3.38)

which, along with the results of Lemma 3.4, proves this lemma. �
Now we give the proofs of the main results.

Proof of Theorem 2.1. We can infer from (2.16) that K = (F, 0, G, 0, 0) satisfies the

global Lipschitz condition on H. Therefore, we use the contraction mapping theorem to

prove the present theorem. Two key steps in applying the contraction mapping theorem

are to figure out a closed set of the Banach space under consideration, and to set up an
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auxiliary problem so that the nonlinear operator defined by this auxiliary problem maps

from the closed set into itself and turns out to be a contraction. In the following we

proceed along these lines.

Let

E(Φ) = S(t)Φ0 +

∫ t

0

S(t− τ )K(Φ(τ ))dτ (3.39)

and

L =

{
Φ ∈ C([0,+∞),H)

∣∣∣ sup
t≥0

(
‖ Φ(t) ‖ e−kt

)
< ∞

}
(3.40)

where k is a positive constant such that k > L. In L, we introduce the following norm:

‖ Φ ‖L= sup
t≥0

(
‖ Φ(t) ‖ e−kt

)
. (3.41)

Clearly, L is a Banach space. We now show that the nonlinear operator E defined by

(3.39) maps L into itself, and that the mapping is a contraction. Indeed, for E ∈ L, we
have

‖ E(Φ) ‖≤‖ S(t)Φ0 ‖ +

∫ t

0

‖ S(t− τ ) ‖‖ K(Φ) ‖ dτ

≤‖ Φ0 ‖ +

∫ t

0

‖ K(Φ) ‖ dτ ≤‖ Φ0 ‖ +

∫ t

0

(L ‖ Φ(τ ) ‖ + ‖ K(0) ‖)dτ

≤‖ Φ0 ‖ +C0t+ L sup
t≥0

‖ Φ(t) ‖ e−kt

∫ t

0

ekτdτ

≤‖ Φ0 ‖ +C0t+
L

k
ekt ‖ Φ ‖L (3.42)

where C0 =‖ K(0) ‖. Thus,

‖ E(Φ) ‖L≤ sup
t≥0

[
(‖ Φ0 ‖ +C0t)e

−kt
]
+

L

k
‖ Φ ‖L< ∞, (3.43)

i.e., E(Φ) ∈ L.
For Φ1, Φ2 ∈ L, we have

‖ E(Φ1)− E(Φ2) ‖L = sup
t≥0

(
e−kt ‖

∫ t

0

S(t− τ )(K(Φ1(τ ))−K(Φ2(τ )))dτ ‖
)

≤ sup
t≥0

(
e−ktL

∫ t

0

‖ Φ1 − Φ2 ‖ dτ

)

≤ sup
t≥0

[
e−kt · L

k
· (ekt − 1)

]
‖ Φ1 − Φ2 ‖L

≤ L

k
‖ Φ1 − Φ2 ‖L . (3.44)

Therefore, by the contraction mapping theorem, the problem has a unique solution in L.
To show that the uniqueness also holds in C([0,∞),H), let Φ1, Φ2 ∈ C([0,∞),H) be
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two solutions of the problem and let Φ = Φ1 − Φ2. Then

Φ(t) =

∫ t

0

S(t− τ )(K(Φ1)−K(Φ2))dτ, (3.45)

‖ Φ(t) ‖≤ L

∫ t

0

‖ Φ(τ ) ‖ dτ. (3.46)

By the Gronwall inequality, we immediately conclude that Φ(t) = 0, i.e., the uniqueness

in C([0,∞), H) follows. Thus the proof is complete. �
Proof of Theorem 2.2. It follows from (2.17) thatK = (F, 0, G, 0, 0) satisfies the global

Lipschitz condition on D(A). Since B is a maximal accretive operator, let

A1 = D(B), B1 = B2 : D(B1) = D(B2) �→ A1. (3.47)

Then A1 is a Banach space and B1 is a densely defined operator from D(B2) into A1.

In what follows we prove that B1 is a maximal accretive operator in A1 = D(B).

Indeed, for any x, y ∈ D(B2), since B is accretive in H, we have

‖ x− y + λ(Bx−By) ‖D(B)

=
(
‖ x− y + λ(Bx−By) ‖2 + ‖ Bx−By + λ(B2x−B2y) ‖2

) 1
2

≥
(
‖ x− y ‖2 + ‖ Bx−By ‖2

) 1
2

=‖ x− y ‖D(B), (3.48)

i.e., B1 is accretive in A1. Furthermore, since B is a maximal accretive operator in H,

for any y ∈ H, there is a unique x ∈ D(B) such that

x+Bx = y. (3.49)

Now for any y ∈ A1 = D(B), equation (3.49) admits a unique solution x ∈ D(B). It

turns out that

Bx = y − x ∈ D(B). (3.50)

Thus x ∈ D(B2), i.e., B1 is a maximal accretive operator in A1. Let S1(t) be the

semigroup generated by B1. If Φ0 ∈ D(B2) = D(B1), then

Φ(t) = S1(t)Φ0 ∈ C([0,+∞), D(B2)) ∩ C1([0,+∞), D(B))

is unique classical solution of the problem. On the other hand, Φ(t) = S1(t)Φ0 is also a

classical solution in

C([0,+∞), D(B)) ∩ C1([0,+∞),H).

This implies that S1(t) is a restriction of S(t) on A1. By virtue of the proof of Theorem

2.1, there exists a unique mild solution Φ ∈ C([0,+∞), A1). Since S1(t) is a restriction

of S(t) on D(B), we infer from K(Φ) being an operator from D(B) to D(B) and Lemma

3.5 that Φ is a classical solution to the problem. Thus the proof is complete. �
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[8] H. Gao and J. E. Muñoz Rivera, On the exponential stability of thermoelastic problem with memory,

Appl. Anal. 78(2001), 379-403. MR1883541 (2002j:74034)
[9] A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc.

Roy. Soc. London A 432(1991), 171-194. MR1116956 (92i:73016)
[10] A. E. Green and P. M. Naghdi, On thermoelasticity without energy dissipation, J. Elasticity

31(1993), 189-208. MR1236373 (94f:73007)
[11] A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media,

I. Classical continuum physics, II. Generalized continua, III. Mixtures of interacting continua, Proc.
Roy. Soc. London A 448(1995), 335-356, 357-377, 379-388.

[12] S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl.
167(1992), 429-442. MR1168599 (93f:35229)

[13] S. Jiang and R. Racke, Evolution Equations in Thermoelasticity, Monographs and Surveys in
Pure and Applied Mathematics, 112, Chapman & Hall/CRC, Boca Raton, FL, 2000. MR1774100
(2001g:74013)

[14] B. Lazzari and R. Nibbi, On the energy decay of a linear hyperbolic thermoelastic system with
dissipative boundary, J. Thermal Stresses 30(2007), 1-14.

[15] B. Lazzari and R. Nibbi, On the exponential decay in thermoelasticity without energy dissipation
and of type III in presence of an absorbing boundary, J. Math. Anal. Appl. 338(2008), 317-329.
MR2386418 (2009e:35281)

[16] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Research Notes in Mathe-
matics, 389, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR1681343 (2000c:47080)
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