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Abstract

The existence of global-in-time classical solutions to the Cauchy problem for in-

compressible, nonlinear, isotropic elastodynamics for small initial displacements

is proved. The generalized energy method is used to obtain strong dispersive es-

timates that are needed for long-time stability. This requires the use of weighted

local decay estimates for the linearized equations, which are obtained as a special

case of a new general result for certain isotropic symmetric hyperbolic systems.

In addition, the pressure that arises as a Lagrange multiplier to enforce the in-

compressibility constraint is estimated as a nonlinear term. The incompressible

elasticity equations are inherently linearly degenerate in the isotropic case; i.e.,

the equations satisfy a null condition necessary for global existence in three di-

mensions. c© 2007 Wiley Periodicals, Inc.

1 Introduction

The behavior of elastic waves in a three-dimensional isotropic incompressible

material is studied. Unlike compressible elastodynamics, where there are nonlinear

interactions of shear and pressure waves, with incompressible elastodynamics the

only waves present are shear waves. In an isotropic system, shear waves are lin-

early degenerate, and therefore global solutions to the perturbative incompressible

equations can be expected via the generalized energy method. This article confirms

this intuitive idea.

Strong dispersive estimates are needed for long-time stability of the solutions

for incompressible elastodynamics. The generalized energy method based on the

Lorentz invariance of the wave equation combines energy and decay estimates

that, together with a null condition, provide global existence results (see [6, 7]).

However, the equations of motion for elasticity are only Galilean invariant and the

Lorentz rotations cannot be used. As Klainerman and Sideris observed in [8], how-

ever, Lorentz invariance is not necessary to obtain almost global existence in three

dimensions for isotropic systems such as the equations of elasticity. Global small
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solutions to the equations for compressible elasticity were obtained in [12, 13] with

the addition of a null condition for pressure waves; see also [1, 2].

With the observation that the null condition is inherently satisfied by shear

waves, the authors were able to show global existence for incompressible elas-

ticity for small data as a limit of slightly compressible materials in [14]. The key

step was that the pressure waves vanish in the limit and the shear waves are already

null. For this work it was convenient to consider the equations of elasticity as a

first-order system in Eulerian coordinates. In this frame the singular term is linear.

We find this same set of variables works well for the incompressible equations as

the constraints are most naturally posed in that frame. The system can be viewed as

an extension of the incompressible Euler equations where the inverse deformation

gradient is coupled with the velocity and pressure. It also shares common features

with viscoelastic theories, in particular for the Oldroyd-B system for viscoelastic

materials [3, 9, 10, 11].

The argument requires the use of weighted local decay estimates for the lin-

earized incompressible equations. We obtain these as a special case of a new

general result for certain isotropic symmetric hyperbolic systems presented in a

separate paper [15]. This article contains further examples, including compressible

elasticity.

One must also handle the pressure that arises as a Lagrange multiplier that

enforces the incompressibility constraint. Although it involves nonlocal operators,

the pressure term is compatible with our weighted estimate. It can be treated as a

quadratic nonlinearity and hence can be bounded by the energy.

The global existence of small solutions to the three-dimensional incompressible

and isotropic elasticity equations was announced by Ebin [5]. His direct argument

relies on the Lorentz invariance of the wave equation, the linearized operator in

the incompressible case; however, in our view insufficient attention is paid to the

incompressibility constraint, which is incompatible with the Lorentz rotations. The

special case of incompressible neo-Hookean materials was studied in [4].

The main result, Theorem 2.2, is stated on page 1711 after introducing the

equations under consideration. In Section 3 we show that the equations satisfy the

hypotheses of the local decay theorem in [15], and we describe the notation to be

used throughout. In Section 4, we state the local decay estimates from [15], adapt

these estimates to our argument, and highlight the Sobolev estimates we will need.

In Section 5 we complete the proof of the main result via energy estimates.

2 Preliminaries

Classically the motion of an elastic body is described as a second-order evolu-

tion equation in Lagrangian coordinates. In [14] it was shown that one can write

these equations as a first-order system with constraints in Eulerian coordinates.

This simplifies the incompressibility constraint. Here we will use the same vari-

ables as in [14]. We start with a time-dependent family of orientation-preserving
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diffeomorphisms x(t, · ), 0 ≤ t < T . Material points X in the reference con-

figuration are deformed to the spatial position x(t, X) at time t . We also write

X (t, x) for the inverse transformation. Derivatives with respect to the material co-

ordinates will be written as (Dt , D) and with respect to the spatial coordinate as

(∂t , ∂1, ∂2, ∂3) = (∂t ,∇) = ∂ .

LEMMA 2.1 Given a family of deformations x(t, X) with inverse X (t, x), define

the velocity and inverse deformation gradient as follows:

v(t, x) = Dt x(t, X (t, x)),(2.1a)

H(t, x) = ∇ X (t, x).(2.1b)

Then for (t, x) ∈ [0, T ) × R3,

∂t H + ∇(Hv) = ∂t H + v · ∇ H + H∇v = 0,(2.2a)

∂j H i
k (t, x) = ∂k Hi

j (t, x).(2.2b)

If, in addition, det H(0, x) = 1 and ∇ · v(t, x) = 0, then we have

(2.2c) det H(t, x) = 1.

PROOF: Since X (t, x(t, X)) = X , we see that X (t, x) is constant along particle

trajectories. This means that

∂t X + v · ∇ X = 0.

Taking the gradient with respect to x yields (2.2a). As soon as H satisfies (2.1b),

(2.2b) follows. Using (2.2a), one can write down the continuity equation for det H

given by

∂t det H + v · ∇ det H + ∇ · v det H = 0.

If ∇ · v(t, x) = 0, then we see that det H is constant along particle paths. Thus if

det H(0, x) = 1, then det H(t, x) = 1 for all t ≥ 0. �

The equations of motion for incompressible elasticity can be derived from the

formal variational problem

δ

∫∫ [
1

2
|v|2 − W (F) + λ(det H − 1)

+ µi
�(∂t H i

� + v · ∇ Hi
� + Hi

k∂�v
k)

+ ηi
�m(∂� Hi

m − ∂m Hi
� )

]
det Hdx dt = 0,

with H = F−1, in which the isotropic strain energy function W (F) ∈ C∞(GL3, R)

depends on F through the principal invariants of the strain matrix FT F . Summa-

tion over repeated indices will always be understood. We use the notation GL3

for the group of invertible 3 × 3 matrices over R with positive determinant. The

quantities λ, µ, and η are Lagrange multipliers.
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The Piola-Kirchhoff stress has the form S(F) = ∂W
∂ F

. We assume that the mate-

rial is stress free at the identity, i.e.,

(2.3) S(I ) = 0,

and we define the elasticity tensor

(2.4a) A�m
i j (F) = ∂S�

i

∂ F
j

m

(F) = ∂2W

∂ Fi
�∂ F

j
m

(F).

In the isotropic case (and under the Legendre-Hadamard ellipticity condition), the

linearized elasticity tensor takes the form

(2.4b) A�m
i j (I ) = (c2

1 − 2c2
2)δ

�
i δ

m
j + c2

2(δ
�mδi j + δ�

j δ
m
i ) with c1 > c2 > 0.

The parameters c1 and c2 depend only on W , and they represent the speeds of prop-

agation of pressure and shear waves, respectively. As we will see later, the pressure

waves are degenerate for incompressible motions. Note that the hydrodynamical

case W ≡ W (det F) is ruled out by the condition c2 > 0 in (2.4b). Then for

(t, x) ∈ [0, T ) × R3, the equations of motion for the system of incompressible

elasticity are

∂t H i
� + v · ∇ Hi

� + Hi
p∂�v

p = 0,(2.5a)

∂tv
i + v · ∇vi + Â�m

pj (H)H
p

i ∂� H j
m + ∂i p = 0,(2.5b)

with the constraints

∂� Hi
m = ∂m Hi

� ,(2.5c)

det H = 1,(2.5d)

∇ · v = 0.(2.5e)

We use definitions (2.4a) and (2.4b) and the chain rule to relate the elasticity

tensor Â(H) to the tensor A(F) coming from the strain energy function W (F).

In order to ensure that the energy density for our system is positive definite, we

add the null Lagrangian c2
2(δ

�
i δ

m
j − δ�

j δ
m
i ) in the definition of Â(H). This will not

change the equations as long as we consider solutions that satisfy the constraint

(2.5c). We have the following:

Â�m
i j (H) = AL M

I J (F)F I
i F J

j F�
L Fm

M

∣∣
F=H−1 + c2

2(δ
�
i δ

m
j − δ�

j δ
m
i ),(2.6a)

Â�m
i j (H) = Âm�

j i (H),(2.6b)

Â�m
i j (I ) = (c2

1 − c2
2)δ

�
i δ

m
j + c2

2δ
�mδi j ,(2.6c)

and, in addition, for |Ḣ | ≡ |H − I | sufficiently small,

(2.6d) Â�m
i j (H)Ḣ i

� Ḣ j
m ≥ c2

2|Ḣ |2.
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We will be studying global existence for the system of incompressible elasto-

dynamics with small initial data. We consider small perturbations from the back-

ground state (H, v) = (I, 0), and the linearized equations for U̇ = (Ḣ , v̇) =
(H − I, v) are given below,

∂t Ḣ + ∇v̇ = N H (U̇ ),(2.7a)

∂t v̇ + ∇ · T Ḣ + ∇ p = N v(U̇ ),(2.7b)

where T ∈ L(R3 ⊗ R3, R3 ⊗ R3) is defined by

(2.7c) T Ḣ = c2
2 Ḣ + (c2

1 − c2
2) tr Ḣ I

and

(∇ · T Ḣ)i = ∂�(T Ḣ)i
�.

Furthermore,

(2.7d) (N H )i
�(U̇ ) = −v̇ · ∇ Ḣ i

� − Ḣ i
p∂�v̇

p

and

(2.7e) (N v)i (U̇ ) = −v̇ · ∇v̇i − Â�m
pj (H)Ḣ

p

i ∂� Ḣ j
m .

Since

det(H) = det(I + Ḣ) = 1 + tr Ḣ + 1

2
((tr Ḣ)2 − tr Ḣ 2) + det Ḣ ,

we can express the constraints appearing in Lemma 2.1 as

∂� Hi
m − ∂m Hi

� = 0,(2.7f)

∇ tr H = M H (U̇ ),(2.7g)

∇ · v = 0,(2.7h)

with

(2.7i) M H (U̇ ) = −∇
[

1

2

(
(tr Ḣ)2 − tr Ḣ 2

) + det Ḣ

]
.

We write condition (2.7g) as a derivative so it will fit in the form of the theorem

in [15].

We now state the global existence result. For expository reasons, we post-

pone the definition of the generalized energy norm Eκ [U (t)] and the generalized

Sobolev spaces H κ
� and H κ

� (T ) until Section 3.3. In what follows we use the nota-

tion 〈 f 〉 = (1 + | f |2)1/2.

THEOREM 2.2 Let W (F) be an isotropic strain energy function satisfying (2.4b).

Let X0(x) be an orientation- and volume-preserving diffeomorphism on R3, and

let v0(x) be a divergence-free vector field on R3. Define

U0 = (H0, v0) = (∇ X0, v0),

U̇0 = (Ḣ0, v̇0) = (H0 − I, v0).
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Suppose that U̇0 ∈ H κ
�, with κ ≥ 8, and that

(2.8) E1/2
κ [U0] < C, E

1/2

κ−2[U0] < ε,

for uniform constants C and ε.

If ε is sufficiently small, then the initial value problem for (2.7a)–(2.7b) with

initial data U (0) = U0 has a unique solution U (t) ∈ H κ
� (T ) for all T that satisfies

the constraints (2.7f)–(2.7h) and the estimates

E
1/2

κ−2[U (t)] ≤ C ′E1/2

κ−2[U0] ≤ C ′ε,(2.9a)

E1/2
κ [U (t)] ≤ C ′E1/2

κ [U0]〈t〉C ′ε,(2.9b)

for all t ∈ (0,∞), where C ′ is a uniform constant.

The proof of this theorem will be given in Section 5.

3 General Framework

3.1 Structure of Equations

In order to obtain local energy decay, we first put the system (2.5a)–(2.5b) with

constraints (2.5c)–(2.5e) in the framework of the theorem from [15]. The goal is to

write the problem as a symmetric hyperbolic system

(3.1a) L(∂)U̇ ≡ ∂t U̇ − A(∇)U̇ = N (U̇ ) − ∇ P,

together with a system of constraints

(3.1b) B(∇)U̇ = M(U̇ ).

The natural vector space in which to work is V = (R3 ⊗ R3) × R3, and we will

write U = (H, v), Ū = (H̄ , v̄), etc., for elements in V .

In (3.1a), we have U̇ = (H − I, v), P = (0, p), and A(∇) = Ak∂k . Here the

coefficients Ak ∈ L(V,V) are defined by

AkU = Ak(H, v) = (−v ⊗ ek,−T Hek),

where T is as in (2.7c). Using (2.7d) and (2.7e), the nonlinearity is given by

N (U̇ ) = (N H (U̇ ), N v(U̇ )). The system given in (2.7a)–(2.7b) is equivalent to

equation (3.1a).

Next, we reformulate the system of constraints. Let {ei }3
i=1 be the standard basis

on R3, and define the antisymmetric maps

(3.2) Si j = ei ⊗ ej − ej ⊗ ei , 1 ≤ i < j ≤ 3.

With

W = (R3 ⊗ R3) × R3 × R3 × R,

we define Bk ∈ L(V,W) by

BkU = Bk(H, v) =
∑
�,m,n

〈H, en ⊗ S�mek〉R3⊗R3(S�m, en, 0, 0)

+ tr H(0, 0, ek, 0) + 〈v, ek〉R3(0, 0, 0, 1).

(3.3)
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Then the constraint system (2.7f)–(2.7h) can be written in the general form (3.1b)

with B(∇) = Bk∂k and M(U̇ ) = (0, M H (U̇ ), 0) by using (2.7i).

To discuss symmetry, the appropriate inner product on V is

〈U, Ū 〉V = 〈(H, v), (H̄ , v̄)〉V
= 〈T H, H̄〉R3⊗R3 + 〈v, v̄〉R3

= tr(T H)H̄ ∗ + 〈v, v̄〉R3 .

According to the result in [15], there are three conditions that our system (3.1a)–

(3.1b) must satisfy. The first is the symmetry condition, namely, as elements of

L(V,V),

(3.4) Ak = A∗
k , k = 1, 2, 3,

which clearly holds with the defined inner product.

Associated to the differential operators A(∇) and B(∇), define the symbols

A(ξ) = Akξ
k and B(ξ) = Bkξ

k, ξ ∈ R3.

The second assumption is that

(3.5) ker B(ξ) ∩ ker A(ξ) = {0} for every 0 �= ξ ∈ R3.

To verify this condition, we show that ker A(ω) ⊂ ker B(ω)⊥ for ω ∈ S2. Take

U ∈ ker A(ω) = {(H, v) ∈ V : T Hω = 0, v = 0},
and, using the notation

(3.6) P1(ω) = ω ⊗ ω, P2(ω) = I − ω ⊗ ω,

take

Ū ∈ ker B(ω) = {(H̄ , v̄) ∈ V : H = H̄ P1, tr H̄ = 0, 〈v̄, ω〉R3 = 0}.
Then

〈U, Ū 〉V = 〈T H, H̄〉R3⊗R3 + 〈v, v̄〉R3

= 〈T H, H̄ P1〉R3⊗R3 = 〈T Hω, H̄ω〉R3 = 0.

Note that the inclusion is strict: ker A � ker B⊥; this is different from the example

of compressible elasticity considered in [14, 15].

The third assumption is that there exist smooth maps carrying the identity to

the identity such that

V : SO(R3) → SO(V) and W : SO(R3) → L(W,W)

such that for every ξ ∈ R3 and R ∈ SO(R3)

A(Rξ) = V (R)A(ξ)V (R)∗(3.7a)

and

B(Rξ) = W (R)B(ξ)V (R)∗.(3.7b)



1714 T. C. SIDERIS AND B. THOMASES

The maps V and W will be used to define commuting vector fields. For our

situation we define the mapping V : SO(R3) → L(V,V) for pairs U = (H, v) by

(3.8) V (R)U = (RH R∗, Rv).

This map, in fact, takes values in SO(V), and it also satisfies conditions (3.7a) and

(3.7b). We will verify (3.7b). By the definitions

B(Rω)V (R)U =
∑
�,m,n

〈RH R∗, en ⊗ S�m Rω〉R3⊗R3(S�m, en, 0, 0)

+ tr RH R∗(0, 0, Rω, 0) + 〈Rv, Rω〉R3(0, 0, 0, 1)

=
∑
�,m,n

〈H, Ren ⊗ R∗S�m Rω〉R3⊗R3(S�m, en, 0, 0)

+ tr H(0, 0, Rω, 0) + 〈v, ω〉R3(0, 0, 0, 1).

Since R∗S�m R is antisymmetric, it lies in the span of the Si j , and so the last ex-

pression above depends linearly on the coordinates of BU . This implies the exis-

tence of a map W (R) ∈ L(W,W) for which (3.7b) is valid. The result from [15]

gives local energy decay for a hyperbolic system satisfying (3.4), (3.5), (3.7a), and

(3.7b). This decay will be discussed further in Section 4.

3.2 Vector Fields

Using the antisymmetric maps Si j defined in (3.2) let Ri j (τ ) = exp(τ Si j ) be

a smooth, one-parameter family in SO(R3). The perturbed angular momentum

operators that we will use arise as infinitesimal generators

̃i jU (x) ≡ i jU (x) + Zi jU (x) = d

dτ
V (Ri j (τ ))U (Ri j (τ )∗x)

∣∣
τ=0

,

where i j = xi∂j − x j∂i are the standard angular momentum operators and

Zi j = d

dτ
V (Ri j (τ ))

∣∣
τ=0

∈ L(V,V).

Furthermore, we define

Yi j = d

dτ
W (Ri j (τ ))

∣∣
τ=0

∈ L(W,W).

We shall also make use of the scaling vector field

S = t∂t + r∂r .

The vector fields will be abbreviated as �. We let

� = (�1, . . . , �8) = (∂, ̃, S).

Hence by �U we mean any one of ∂U , ̃U , or SU . By �a , a = (a1, . . . , aκ), we

denote an ordered product of κ = |a| vector fields �a1
· · · �aκ

. We note that the

commutator of any two �’s is again a �.
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In order to characterize the initial data, we introduce the time-independent ana-

logue of �. Set

� = (�1, . . . , �7) = (∇, ̃, x · ∇).

Then the commutator of any two �’s is again a �.

3.3 Spaces and Norms

In the following ‖ · ‖ and | · | will always denote the norms in L2(R3) and

L∞(R3), respectively. Let SL3 be the group of 3 × 3 matrices in R with determi-

nant 1. Define

H κ
� = {U = (H, v) : R3 → SL3 ×R3 : �aU ∈ L2(R3), |a| ≤ κ},

with the norm

‖U‖2
Hκ

�
=

∑
|a|≤κ

‖�aU‖2.

We now define the energy norm associated with the first-order system. Given

U = (H, v) ∈ SL3 ×R3 and U̇ = (Ḣ , v̇) = (H − I, v) ∈ (R3 ⊗ R3) × R3, define

(3.9) eU (U̇ ) = 1

2
[ Â�m

i j (H)Ḣ i
� Ḣ j

m + |v̇|2].

Solutions will be constructed in the space

H κ
� (T ) ≡

{
U = (H, v) : [0, T ) × R3 → SL3 ×R3 |

U̇ = (Ḣ , v̇) ≡ (H − I, v) ∈
κ⋂

j=0

C j ([0, T ), H
κ− j

� )

}
.

Given U ∈ H κ
� (T ), define

(3.10) Eκ [U (t)] =
∑
|a|≤κ

∫
eU (t)(�

aU̇ (t))dx .

By (2.6d), for |U̇ (t)| < ε,

(3.11) E1/2
κ [U (t)] ∼

∑
|a|≤κ

‖�aU̇ (t)‖.

We caution the reader that U̇ denotes a perturbation from the background state and

not a derivative.
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3.4 The Null Condition

Here we formulate the null condition that arises in our specific situation, re-

stricting the nonlinear interaction of shear waves. It is important to note that these

conditions are inherent properties of the PDEs and do not involve additional as-

sumptions.

Recalling the projection matrices (3.6) P1 = ω ⊗ ω and P2 = I − P1, a general

6-tensor B will be said to satisfy the null condition if

(3.12) B
�mn
i jk (P1)

L
� (P1)

M
m (P1)

N
n (P2)

i
I (P2)

j

J (P2)
k
K = 0

for all ω ∈ R3 and all I , J , K , L , M , and N .

There are three separate instances where this condition holds. The first involves

the main coefficients in the nonlinearity

(3.13a) B�mn
i jk = ∂3W

∂ Fi
�∂ F

j
m∂ Fk

n

(I ) = ∂ A�m
i j

∂ Fk
n

(I ),

as was verified in [13]. As in [14], two other sets of coefficients appear that also

satisfy the null condition (3.12). These are

(3.13b) B̂�mn
i jk (H) = ∂ Â�m

i j

∂ H k
n

(H) and B̃�mn
i jk = Â�m

kj δn
i .

3.5 Commutation

As was shown in [15] we have the following commutation properties for our

vector fields �:

L(∂)̃i j U̇ = ̃i j N (U̇ ) − ∇̃i j P,

B(∇)̃i j U̇ = (i j + Yi j )M(U̇ ),
(3.14a)

as well as

L(∂)SU̇ = (S + 1)N (U̇ ) − ∇S P,

B(∇)SU̇ = (S + 1)M(U̇ ).
(3.14b)

Using Lemma 4.7 in Section 4, we can make sense of � f (U̇ (t, x)) for a nonlinear

function f that vanishes to at least quadratic order. Hence we will use the nota-

tion � f (U̇ (t, x)) with the understanding that these terms will be handled with this

lemma. The only difference in our situation from the general case considered in

[15] is the pressure, but it is easy to check that the vector fields commute as above

when we define �P via ̃P = (0, p), S P = (0, Sp), and ∂ P = (0, ∂p). This

leads to the following proposition:
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PROPOSITION 3.1 For any solution U = (H, v) ∈ H κ
� (T ) of the PDEs (2.7a)–

(2.7b) and the constraints (2.7f)–(2.7h), we have

∂t�
a Ḣ + v · ∇�a Ḣ + H∇�a v̇

+
∑

b+c=a
c �=a

[�bv̇ · ∇�c Ḣ + �b Ḣ∇�cv̇] = 0,(3.15a)

∂t(�
a v̇)i + v · ∇(�a v̇)i + Â�m

pj (H)H
p

i ∂�(�
a Ḣ) j

m + ∂i�
a p

+
∑

b+c=a
c �=a

{�bv̇ · ∇(�cv̇)i + �b[ Â(H)H ]�m
i j ∂�(�

c Ḣ) j
m} = 0,(3.15b)

in which the sums extend over all ordered partitions of the sequence a, with |a| ≤ κ .

In addition, the following constraints hold:

∂j (�
a H)i

k = ∂k(�
a H)i

j ,(3.15c)

∇ tr �a H = �a(M(U̇ )),(3.15d)

∇ · �av = 0.(3.15e)

The proof of the commutation comes directly from [15].

3.6 Spectral Projections

For a system of the form (3.1a), consider the eigensystem corresponding to

the symbol A(ω) for each ω ∈ S2. Let Pβ(ω) be the orthogonal projection of

V onto the eigenspace of A(ω) corresponding to the eigenvalue λβ . We regard

the projections {Pβ(ω)} as homogeneous functions of degree 0 on Rn by setting

ω = x/|x |. We have the following:

LEMMA 3.2 The orthogonal projections Pβ(ω) are smooth functions of ω = x/|x |
on Sn−1 that satisfy the commutation property [̃i j ,Pβ(ω)] = 0.

The proof is straightforward and given in [15].

4 Decay Estimates

4.1 Local Energy Decay

The local energy decay result from [15] is:

THEOREM 4.1 Assume that conditions (3.4) and (3.5) hold. There are positive con-

stants α and C, depending on the coefficients Ak and Bk, such that all sufficiently

regular solutions of (3.1a) and (3.1b) satisfy the estimate

αt‖∂jU‖L2({r≤αt},V) ≤ C‖U‖L2(R3,V) + ‖SU‖L2(R3,V)

+ t‖N (U̇ )‖L2(R3,V) + t‖M(U̇ )‖L2(R3,W).
(4.1)
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If, in addition, conditions (3.7a) and (3.7b) hold, then

‖(λβ t − r)Pβ∂jU‖L2({r≥αt},V) ≤ C[‖̃U‖L2(R3,V) + ‖U‖L2(R3,V)]
+ ‖SU‖L2(R3,V) + t‖N (U̇ )‖L2(R3,V)

(4.2)

and

‖r B∂jU‖L2({r≥αt},W) ≤ C[‖̃U‖L2(R3,V) + ‖U‖L2(R3,V)]
+ ‖r M(U̇ )‖L2(R3,W).

(4.3)

Having verified conditions (3.4), (3.5), (3.7a), and (3.7b), we apply Theo-

rem 4.1 to the system (2.7a)–(2.7b) with constraints (2.7f)–(2.7h). Consider the

eigensystem for A(ω),

A(ω)U = A(ω)(H, v) = (−v ⊗ ω,−T Hω),

where T is defined in (2.7c). In this case, the nonzero eigenvalues of A(ω), repre-

senting slow and fast propagation speeds, are

λ±
s = ±c2, λ±

f = ±c1.

Using the notation (3.6) the spectral projections are

P
±
s U = 1

2
(P2 H P1 ± c−1

2 P2v ⊗ ω,±c2 P2 Hω + P2v),

P
±
f U = 〈U, z±〉V z±, z± = 1√

2c1

(P1,±c1ω).

Let Ps = P+
s + P−

s . Theorem 4.1, via (4.1) and (4.2), gives a bound for

(4.4) ‖(λs t − r)Ps∂jU‖L2(R3,V) = ‖(λs t − r)(P2∂j H P1, P2∂jv)‖L2(R3,V)

in terms of

(4.5) C
[‖�U‖L2(R3,V) + ‖U‖L2(R3,V) + t‖∇ p‖L2(R3,V)

+t‖N (U̇ )‖L2(R3,V) + t‖M(U̇ )‖L2(R3,V)

]
.

The fast components turn out to be anomalous because the additional constraints

strengthen the estimates.

The projection onto ker A is

P0U = (H P2, 0) − c2
1 − c2

2

c2
1

tr H P2(P1, 0).

Since

|P0U |2
V

= c2
2|H P2|2R3⊗R3 + (c2

1 − c2
2)

c2
2

c2
1

(tr H P2)
2,

we get a bound for

(4.6) ‖(t + r)∂j H P2‖2
L2(R3)

in terms of (4.5).
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Combining (4.4) and (4.6), we have that

(4.7) ‖(λs t − r)(P2∂j H, P2∂jv)‖L2(R3,V)

is bounded by (4.5).

In view of (3.3), we get from (4.1) and (4.3) that

(4.8) ‖(t + r) tr ∂j H‖L2(R3) + ‖(t + r)〈ω, ∂jv〉‖L2(R3)

is bounded by the expression (4.5) plus ‖r M(U̇ )‖L2(Rn ,W). Since

|P1 H |2
R3⊗R3 = |P1 H P1|2R3⊗R3 + |P1 H P2|2R3⊗R3

= (tr H P1)
2 + |P1 H P2|2R3⊗R3

= (tr H − tr H P2)
2 + |P1 H P2|2R3⊗R3

and also |P1v|2
R3 = 〈ω, v〉2

R3 , we obtain from (4.6) and (4.8) that

(4.9) ‖(t + r)(P1∂j H, P1∂jv)‖L2(R3,V)

has the same bound as (4.8).

We may therefore conclude with the following corollary:

COROLLARY 4.2 A C1 solution U of (2.7a)–(2.7b) and (2.7f)–(2.7h) satisfies the

estimate

‖(λs t − r)(P2∂j H, P2∂jv)‖L2(R3,V) + ‖(t + r)(P1∂j H, P1∂jv)‖L2(R3,V)

≤ C
[‖�U‖L2(R3,V) + ‖U‖L2(R3,V) + t‖∇ p‖L2(R3,V)

+ t‖N (U )‖L2(R3,V) + ‖(t + r)M(U )‖L2(R3,V)

]
.

4.2 Bound for Pressure

The following simple lemma is important because it shows that the gradient of

the pressure can be treated as a nonlinear term in H k
�(T ).

LEMMA 4.3 Let U ∈ H κ
� (T ) solve the equations (2.7a)–(2.7b) and the constraints

(2.7f)–(2.7h). Then we have for |a| ≤ κ − 1,

(4.10) ‖∇�a p‖ ≤ C[‖�a N (U̇ )‖ + ‖�a M(U̇ )‖].

PROOF: We begin by taking the divergence of (2.7b), which, with the use of

the constraints (2.7f)–(2.7h), gives

�p = ∇ · N v(U̇ ) − c2
1∇ · M H (U̇ ).

This holds for higher derivatives as well and hence for any a, |a| ≤ κ − 1,

(4.11) ��a p = ∇ · [�a(N v(U̇ )) − c2
1�

a(M H (U̇ ))].
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If we temporarily call the right-hand side of (4.11) ∇ · �, we integrate by parts to

get

‖∇�a p‖2 =
∫

∂i�
a p∂i�

a p dx = −
∫

��a p�a p dx

= −
∫

∇ · ��a p dx =
∫

�∇�a p dx ≤ ‖�‖ · ‖∇�a p‖,
which implies the result. �

4.3 Weighted L
2 Estimates

The main decay result we need can now be stated by combining Corollary 4.2

with Lemma 4.3. First we will introduce some notation. Define the weights

(4.12) W1 = 〈t + r〉 and W2 = 〈c2t − r〉.
Using the projections defined in (3.6) (and abusing notation), we define the projec-

tion of U by

(4.13) P1U = (P1 H, P1v) and P2U = (P2 H, P2v).

Further, define

(4.14) Xκ [U (t)] =
∑

|a|≤κ−1

3∑
i=1

∑
α=1,2

‖Wα Pα∂i�
aU (t)‖.

PROPOSITION 4.4 Let U ∈ H κ
� (T ) solve equations (2.7a)–(2.7b) and constraints

(2.7f)–(2.7h). Then we have

Xσ [U (t)] ≤ C E1/2
σ [U (t)]

+ C
∑
|a|≤σ

(〈t〉‖�a(N (U̇ ))‖ + ‖〈t + r〉�a(M(U̇ ))‖) .(4.15)

PROOF: We can obtain the decay results for higher derivatives by first taking �a

derivatives of the equations (2.7a)–(2.7b) and constraints (2.7f)–(2.7h) and using

the commutation properties given in Proposition 3.1. In this way we can obtain

Corollary 4.2 for higher derivatives. The result follows upon applying Lemma 4.3.

�

4.4 Sobolev Estimates

The following two results appeared in [14]; we will omit the proofs.

PROPOSITION 4.5 Let U̇ ∈ H κ
� (T ), with Xκ [U (t)] < ∞ and |U̇ | < δ small. Then

for i = 1, 2,

〈r〉|�aU̇ (t, x)| ≤ C E1/2
κ [U (t)], |a| + 2 ≤ κ,(4.16a)

〈r〉W1/2

i |Pi�
aU̇ (t, x)| ≤ C[E1/2

κ [U (t)] + Xκ [U (t)]], |a| + 2 ≤ κ,(4.16b)

〈r〉Wi |Pi∇�aU̇ (t, x)| ≤ CXκ [U (t)], |a| + 3 ≤ κ.(4.16c)
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LEMMA 4.6 Suppose that f : R3 → R3,
∑

|a|≤2 ‖a f ‖W 2−|a|,2 < ∞, and ∇ ∧ f =
0. Then

(4.17) |x |3/2|P2 f (x)| ≤ C
∑
|a|≤2

‖a f ‖.

4.5 Bootstrapping the Nonlinearity

Here we show that the X norm can be bounded by the energy for small initial

data. The factor 〈t + r〉 can be absorbed using the estimates from Proposition 4.5.

We will also need some facts about the weights Wα as defined in (4.12), which are

collected below.

We observe that r ∼ 〈c2t〉 on Cc2
≡ {|t − r/c2| < t/2} and 〈c2t − r〉 ≥ C〈t〉 on

Cc
c2

, which implies that

(4.18) C〈t〉−1〈r〉〈c2t − r〉 ≥ 1.

Additionally, since

〈t + r〉 ≤ C〈r〉Wα for α = 1, 2,

we have that

(4.19)

〈t + r〉|U | = 〈t + r〉|P1U + P2U | ≤ 〈t + r〉
∑

α=1,2

|PαU |

≤ C〈r〉
∑

α=1,2

Wα|PαU |

for all U ∈ (R3 ⊗ R3) × R3 × R.

Next, we include a technical result that allows us to handle the cubic and higher-

order terms.

LEMMA 4.7 Suppose that U ∈ H κ
� (T ) with κ ≥ 3. Set κ ′ = [κ/2] + 2 (so

that κ ′ ≤ κ). Suppose that Eκ ′ [U (t)] < 1 and |U̇ (t)| ≤ δ, 0 ≤ t < T , with δ

sufficiently small. Consider a smooth mapping f : (R3 ⊗ R3) × R3 → Rd for

any d. If f vanishes to order p at the origin, then we have the pointwise estimate

|�b f (U̇ (t, x))| ≤ C
∑

|b1|+···+|bp |≤|b|
|�b1U̇ (t, x)| · · · |�bpU̇ (t, x)|, |b| ≤ κ.

PROOF: Using the chain rule, we write

(4.20) �b f (U̇ )(t, x) =
∑
j≤|b|

∑
b1+···+bj =b

f ( j)(U̇ (t, x))�b1U̇ (t, x) · · · �bj U̇ (t, x).

At most one derivative above can exceed order [κ/2], since |b| ≤ κ . Since U̇ is

small and Eκ ′ [U (t)] < 1, we have by the Sobolev lemma and (3.11) that

|�cU̇ (t, x)| ≤ C E
1/2

κ ′ [U (t)] ≤ C, |c| ≤ [κ/2].
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The result now follows from (4.20) since by the mean value theorem

| f ( j)(U̇ )| ≤ C |U̇ |p− j , j ≤ p,

for |U̇ | ≤ 1. �

We are now ready to move to the main results of this section.

LEMMA 4.8 Let U ∈ H
µ

� (T ), µ ≥ 3, be a solution of the PDEs (2.7a)–(2.7b) and

the constraints (2.7f)–(2.7h). Set µ′ = [µ/2] + 2, and assume that Eµ′ [U (t)] < 1

and |U̇ (t)| < δ throughout [0, T ), with δ sufficiently small. Then we have

Xµ[U (t)] ≤ C
[
E1/2

µ [U (t)] + Xµ′ [U (t)]E1/2
µ [U (t)] + Xµ[U (t)]E

1/2

µ′ [U (t)]].
PROOF: Using Proposition 4.4 we have

Xµ[U (t)] ≤ C E1/2
σ [U (t)]

+ C
∑
|a|≤µ

|b|+|c|=|a|

(〈t〉‖�a(N (U̇ ))‖ + ‖〈t + r〉�a(M(U̇ ))‖).
Here the form of �a(N (U̇ )) and �a(M(U̇ )) can be given by∑

|a|=|b|+|c|≤µ−1

�b f (U̇ )∇�cU̇ ,

where f vanishes to order p = 1. This can be checked from the definitions of N

and M . Applying Lemma 4.7, we have the pointwise estimate∑
|a|≤µ−1

|�a N (U̇ (t, x))| ≤ C
∑

|b|+|c|≤µ−1

|�bU̇ (t, x)||∇�cU̇ (t, x)|,

and similarly for �a M(U̇ ).

With this and (4.19), we obtain∑
|a|≤µ−1

[〈t〉‖�a N (U̇ )‖ + ‖〈t + r〉�a M(U̇ )‖]
≤ C

∑
|b|+|c|≤µ−1

‖〈t + r〉|�bU̇ | |∇�cU̇ | ‖

≤ C
∑

α=1,2
i=1,2,3

|b|+|c|≤µ−1

‖〈r〉|�bU̇ |Wα|Pα∂i�
cU̇ | ‖.

In the sum, either |b| ≤ [µ/2] or |c| + 1 ≤ [µ/2], according to which we

estimate as follows:

‖〈r〉|�bU̇ |Wα |Pα∂i�
cU̇ | ‖

≤ C

{
‖〈r〉Wα Pα∂i�

cU̇‖∞ ‖�bU̇‖ if |c| + 1 ≤ [µ/2],
‖Wα Pα∂i�

cU̇‖ ‖〈r〉�bU̇‖∞ if |b| ≤ [µ/2].
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In the first case, using (4.16c), we get the upper bound

CXµ′ [U (t)]E1/2
µ [U (t)],

and in the second case, using (4.16a), we get the upper bound

CXµ[U (t)]E
1/2

µ′ [U (t)]. �

The next step is to bootstrap the preceding result to bound X by the energy.

PROPOSITION 4.9 Let U ∈ H κ
� (T ), κ ≥ 8, be a solution of (2.7a)–(2.7b). If

Eµ[U (t)] < ε′, µ = κ − 2, remains sufficiently small on [0, T ), then for either

ν = κ or ν = µ,

(4.21) Xν[U (t)] ≤ C E1/2
ν [U (t)].

PROOF: Since we have µ ≥ 6, it follows that µ′ = [µ/2] + 2 ≤ µ. We

ensure that ε′ is small enough so that for t ∈ [0, T ), Eµ[U (t)] < ε′ < 1, and

also |U̇ (t)| < δ, which is possible by Sobolev embedding. Hence we can apply

Lemma 4.8 to obtain

Xµ[U (t)] ≤ C
[
E1/2

µ [U (t)] + Xµ[U (t)]E1/2
µ [U (t)]].

Since E1/2
µ [U (t)] < ε′, we have for ε′ small enough that the bound (4.21) holds for

ν = µ.

Since κ ≥ 8, we have that κ ′ = [κ/2]+2 ≤ κ−2 = µ. So again by Lemma 4.8,

we may write

Xκ [U (t)] ≤ C
[
E1/2

κ [U (t)] + Xµ[U (t)]E1/2
κ [U (t)] + Xκ [U (t)]E1/2

µ [U (t)]].
If E1/2

µ [U (t)] < ε′ is small, then this implies that

Xκ [U (t)] ≤ C E1/2
κ [U (t)][1 + Xµ[U (t)]].

Thus we obtain (4.21) for ν = κ from this, (4.21) for ν = µ, and the fact that

Eµ[U (t)] is small for t ∈ [0, T ). �

5 Energy Estimates

We now have the decay estimates needed to complete the argument for global

existence.

PROOF OF THEOREM 2.2: Let U ∈ H κ
� (T ) be a local solution of (2.7a)–(2.7b)

and the constraints (2.7f)–(2.7h). Suppose that Eµ[U (t)] < ε′ and µ = κ − 2 for

0 ≤ t < T , where ε′ is sufficiently small, determined by Proposition 4.9. In order

to prove the global bounds in Theorem 2.2, it is sufficient to prove the following

inequalities:

d

dt
Eκ [U (t)] ≤ C〈t〉−1 E1/2

µ [U (t)]Eκ [U (t)],(5.1a)

d

dt
Eµ[U (t)] ≤ C〈t〉−3/2 E1/2

κ [U (t)]Eµ[U (t)].(5.1b)
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We will use the generalized energy method. Start by applying the derivative �a ,

|a| ≤ κ , to the system (2.7a)–(2.7b), according to Proposition 3.1. We then sym-

metrize the system by multiplying by the tensor Â. This results in

Â�m
pj (H)

[
∂t(�

a Ḣ)
p

� + v · ∇�a Ḣ
p

� + H
p

k ∂��
a v̇k

] = N̂ H
a ,(5.2a)

∂t(�
a v̇)i + v · ∇(�a v̇)i + H

p

i Â�m
pj (H)∂�(�

a Ḣ) j
m + ∂i�

a p = N̂ v
a .(5.2b)

From (3.15a)–(3.15b) we have

N̂a(U̇ ) = (N̂ H
a , N̂ v

a )

defined as follows:

N̂ H
a = − Â�m

pj (H)
∑

b+c=a
c �=a

[
�bv̇ · ∇(�c Ḣ)

p

� + (�b Ḣ)
p

k ∂�(�
cv̇)k

]
,(5.3a)

N̂ v
a = −

∑
b+c=a

c �=a

{
�bv̇ · ∇(�cv̇)i + �b[ Â(H)H ]�m

i j ∂�(�
c Ḣ) j

m

}
.(5.3b)

It is important to notice that N̂a(U̇ ) will never have more than κ derivatives falling

on a single term.

Next we proceed with the energy method by taking the L2 inner product of

(5.2a)–(5.2b) with �aU̇ and sum over |a| ≤ ν. Because the system has been

symmetrized, after integrating by parts and using the constraint ∇ · v = 0 and

summing over |a| ≤ ν, we obtain

d

dt
Eν[U (t)] =

∑
|a|≤ν

[
1

2

∫
∂t Â�m

pj (H)(�a Ḣ)
p

� (�a Ḣ) j
m dx

+
∫

∂k Â�m
pj (H)vk(�a Ḣ)

p

� (�a Ḣ) j
mdx

+
∫

∂�(H
p

i Â�m
pj (H))(�a Ḣ) j

m(�a v̇)i dx

+
∫

〈N̂a(U̇ ), �aU̇ 〉dx
]
.

(5.4)

In order to estimate the terms with the time derivatives, we use equation (2.5a)

and (3.13b). This gives

∂t Â�m
pj (H) = B̂�mn

pjk (H)∂t Ḣ k
n

= −B̂�mn
pjk (H)

[
v · ∇ H k

n + H k
q ∂nv

q
]
.
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We substitute this into (5.4), resulting in the energy identity

d

dt
Eν[U (t)]

=
∑
|a|≤ν

[
−1

2

∫
B̂�mn

pjk (H)[v̇ · ∇ Ḣ k
n + H k

q ∂n v̇
q](�a Ḣ)

p

� (�a Ḣ) j
m dx

+
∫

∂k Â�m
pj (H)vk(�a Ḣ)

p

� (�a Ḣ) j
m dx

+
∫

∂�(H
p

i Â�m
pj (H))(�a Ḣ) j

m(�a v̇)i dx

+
∫

〈N̂a(U̇ ), �aU̇ 〉dx

]
.

(5.5)

For the higher-energy estimate (5.1a), we will start with (5.5) with ν = κ . Since

κ ≥ 8, notice that we have [κ/2] + 2 ≤ µ. Using the smallness condition we may

apply Lemma 4.7 to (5.5), which gives

(5.6a)
d

dt
Eκ [U (t)] ≤ C

∑
|b|+|c|≤|a|

c �=a
|a|≤κ

∥∥ |�bU̇ | |∇�cU̇ |
∥∥ ‖�aU̇‖.

Set m = [(κ + 1)/2]. Using the property (4.19) for the weights, the Sobolev in-

equalities (4.16a) and (4.16c), and the bootstrapping lemma, we have the following

bound for the norms on the right:

‖ |�bU̇ | |∇�cU̇ | ‖

≤ C〈t〉−1
∑

α=1,2

3∑
i=1

‖〈r〉|�bU̇ |Wα |Pα∂i�
cU̇ | ‖

≤ C〈t〉−1

{∑
α=1,2

∑3
i=1 ‖〈r〉�bU̇‖∞ ‖Wα Pα∂i�

cU̇‖, |b| ≤ m,∑
α=1,2

∑3
i=1 ‖�bU̇‖ ‖〈r〉Wα Pα∂i�

cU̇‖∞, |c| ≤ m − 1,

≤ C〈t〉−1

{
E

1/2

|b|+2[U (t)]X|c|+1[U (t)], |b| ≤ m,

E
1/2

|b| [U (t)]X|c|+3[U (t)], |c| ≤ m − 1,

≤ C〈t〉−1
(
E

1/2

m+2[U (t)]E1/2
κ [U (t)] + E1/2

κ [U (t)]E
1/2

m+2[U (t)]).(5.6b)

Now κ ≥ 8, so m + 2 ≤ κ − 2 = µ. Therefore, inequality (5.1a) follows from

(5.6a) and (5.6b).

For the lower energy (ν = µ = κ − 2 in (5.5)) we are looking for the sharp

estimate (5.1b). It is necessary at this stage to separate the quadratic portion of the
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nonlinear terms in (5.5). Referring to (5.3a)–(5.3b), we use ν = κ −2 = µ in (5.5)

to obtain

(5.7a)
d

dt
Eµ[U (t)] =

∑
|a|≤µ

[∫
〈Q̄a(U̇ ,∇U̇ ), �aU̇ 〉dx +

∫
〈Ca(U̇ ), �aU̇ 〉dx

]
,

in which Q̄a(U̇ ,∇U̇ ) and Ca(U̇ ) represent quadratic and higher-order terms, re-

spectively. The precise form of the quadratic terms in (5.7a) is

(5.7b)

〈Q̄a(U̇ ,∇U̇ ), �aU̇ 〉

= −1

2
B̂�mn

pjk (I )∂n v̇
k(�a Ḣ)

p

� (�a Ḣ) j
m + B̂�mn

i jk (I )∂� Ḣ k
n (�a Ḣ) j

m(�a v̇)i

+ Â�m
pj (I )∂� Ḣ

p

i (�a Ḣ) j
m(�a v̇)i

−
∑

b+c=a
c �=a

{
Â�m

pj (I )[�bv̇ · ∇(�c Ḣ)
p

� + (�b Ḣ)
p

i ∂�(�
cv̇)i ](�a Ḣ) j

m

+ [�bv̇ · ∇(�cv̇)i + Â�m
pj (I )(�b Ḣ)

p

i ∂�(�
c Ḣ) j

m

+ B̂�mn
i jk (I )(�b Ḣ)k

n∂�(�
c Ḣ) j

m](�a v̇)i
}
.

Before confronting these crucial terms, let us first examine the highest-order

terms in (5.7a). Using Lemma 4.7, we have∫
〈Ca(U̇ ), �aU̇ 〉dx ≤ ‖Ca(U̇ )‖‖�aU̇‖

≤ C
∑

|b1|+|b2|+|b3|≤|a|
|b3|�=|a|

‖ |�b1U̇ | |�b2U̇ | |∇�b3U̇ | ‖ ‖�aU̇‖.

Without loss of generality assume that |b1| ≥ |b2|. Since we are considering

higher-order terms, we have more flexibility with our weights, and using (4.18)

we see that one can bound 〈t〉3/2 ≤ C〈r〉2W1/2
α Wβ for any α, β = 1, 2; thus we

have

‖ |�b1U̇ | |�b2U̇ | |∇�b3U̇ | ‖

≤ C〈t〉−3/2
∑

α,β=1,2

‖〈r〉2|�b1U̇ | |W1/2
α Pα�

b2U̇ | |Wβ Pβ∇�b3U̇ | ‖

≤ C〈t〉−3/2
∑

α,β=1,2

‖〈r〉�b1U̇‖∞ ‖〈r〉W1/2
α Pα�

b2U̇‖∞ ‖Wβ Pβ∇�b3U̇‖.

With the aid of (4.16a) and (4.16b), this in turn is bounded by

C〈t〉−3/2 E
1/2

|b1|+2[U (t)](E
1/2

|b2|+2[U (t)] + X|b2|+2[U (t)])X|b3|[U (t)].
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Now 2|b2| ≤ |b1| + |b2| ≤ |a| ≤ µ. Thus, |b2| + 2 ≤ [µ/2] + 2 ≤ µ, since

µ ≥ 6. We also have |b1| + 2 ≤ κ . Therefore, by the smallness assumption and

Proposition 4.9, all of the cubic and higher-order terms on the right-hand side of

(5.7a) are bounded by

C〈t〉−3/2 E1/2
κ [U (t)] Eµ[U (t)],

as required for (5.1b).

It remains to bound the terms in (5.7a) arising from the quadratic part of the

nonlinearity. It is necessary to partition the domain of integration into two compo-

nents: R ≡ {r ≤ 〈c2t/2〉} and its complement. On R we can still work generally,

and so using the fact that 〈c2t − r〉 ∼ 〈t〉, along with (4.16b) we can bound

(5.8)

∫
R

〈Q̄a(U̇ ,∇U̇ ), �aU̇ 〉dx

≤ ‖ |�bU̇ | |∇�cU̇ | ‖L2(R) ‖�aU̇‖

≤ C〈t〉−3/2
∑

α,β=1,2

‖W1/2
α |Pα�

bU |Wβ |Pβ∇�cU | ‖L2(R) ‖�aU̇‖

≤ C〈t〉−3/2
∑

α,β=1,2

∣∣W1/2
α |Pα�

bU |
∣∣

L∞(R)
‖Wβ |Pβ∇�cU | ‖L2(R) ‖�aU̇‖

≤ C〈t〉−3/2
[
E1/2

κ [U (t)] + Xκ [U (t)]]Xµ[U (t)]E1/2
µ [U (t)].

Recall that we are summing over |a| ≤ µ and |c| < µ; also |b| + 2 ≤ µ + 2 = κ .

Plugging this into (5.7a) will lead to the bound given in (5.1b) upon application of

Proposition 4.9.

Next we consider the region Rc. Using the fact that U = P1U + P2U , as

defined in (4.13), we can introduce the projection matrices into our quadratic terms

from (5.7a). All of the terms will be of the form

(5.9)

∫
Rc

〈Q̄a(PαU̇ , Pβ∇U̇ ), Pγ �aU̇ 〉dx,

for |a| ≤ µ and α, β, γ = 1, 2. As long as one of α, β, or γ is equal to 1, the decay

will come from at least one factor of 〈t + r〉 along with 〈r〉 decay since on Rc we

are away from the origin.

For example, suppose α = 1; then we have Wα = 〈t +r〉, and since r ≥ 〈c2t〉/2

we can use (4.16b) to obtain

‖ |P1�
bU̇ | |Pβ∇�cU̇ | ‖L2(Rc)

≤ C〈t〉−3/2|〈r〉〈t + r〉1/2 P1�
bU̇ |L∞(Rc) ‖∇�cU̇ ‖L2(Rc)

≤ C〈t〉−3/2
[
E1/2

κ [U (t)] + Xκ [U (t)]]Xµ[U (t)].(5.10)

The other cases with at least one of α, β, or γ equal to 1 are similar. Note that

unlike the case of compressible elasticity [13], there is no need for a null condition
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for the case (α, β, γ ) = (1, 1, 1). This is the result of the stronger estimates that are

available due to the constraint equations. Recall that we did not use the estimates

obtained for P f , but rather the constraint equations were sufficient for proving

estimates for ‖〈t + r〉P1∇U‖.

We are now left with verifying the case where (α, β, γ ) = (2, 2, 2) on Rc.

We must look carefully at the form of the nonlinear terms that appear explicitly

in (5.7b). In particular, we have two types of terms: one type involving convec-

tive derivatives and the other involving terms satisfying the null condition given in

(3.12). First, we consider the terms in (5.7b) containing a convective derivative,

P2�
bv · ∇. Since 〈P2�

bv, ω〉 = 0, we split the gradient into radial and angular

components,

(5.11) ∇ = ω∂r − 1

r
(ω ∧ ) where ω = x

r
and r = |x |,

to obtain

P2�
bv · ∇ = −r−1 P2�

bv · (w ∧ ),

and so by (4.16b) we have

‖P2�
bv · ∇�cU̇‖L2(Rc) ≤ ‖r−1|P2�

bv| |�c+1U̇ | ‖L2(Rc)

≤ C〈t〉−2‖〈r〉|P2�
bv| |�c+1U̇ | ‖L2(Rc)

≤ C〈t〉−2‖〈r〉P2�
bv‖∞ ‖�c+1U̇‖

≤ C〈t〉−2
[
E1/2

κ [U (t)] + Xκ [U (t)]]E1/2
µ [U (t)].

After applying Proposition 4.9 we have the estimate for the terms with convective

derivatives.

The remaining terms in (5.7a) have one of the following forms:∫
B

�mn
i jk (P2)

i
I (P2)

j

J (P2)
k
K (�b Ḣ)J

m∂�(�
c Ḣ)K

n (�a v̇)I dx,(5.12a) ∫
B

�mn
i jk (P2)

i
I (P2)

j

J (P2)
k
K (�a Ḣ)J

m(�b Ḣ)K
n ∂�(�

cv̇)I dx,(5.12b) ∫
B

�mn
i jk (P2)

i
I (P2)

j

J (P2)
k
K (∂t Ḣ)K

n (�a Ḣ)I
�(�

a Ḣ)J
m dx,(5.12c)

in which B
�mn
i jk is either B̂�mn

i jk (I ), B̂�nm
ik j (I ), B̂nm�

k ji (I ), B̃�mn
i jk , or B̃�nm

ik j , as defined in

(3.13b), Thus, the coefficients B satisfy the null condition for shear waves (3.12).

As usual, the derivatives are constrained by the relations b + c = a, c �= a, and

|a| ≤ µ. All three terms can be handled in the same manner, and so we will outline

the procedure only for the first group (5.12a). Thus, we are faced with estimating

(5.13)

∫
Rc

B
�mn
i jk (P2)

i
I (P2)

j

J (P2)
k
K (�b Ḣ)J

m∂�(�
c Ḣ)K

n (�a v̇)I dx .
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We can further introduce projections in the remaining indices,

B
�mn
i jk (P2)

i
I (P2)

j

J (P2)
k
K =

∑
α,β,γ

B
�mn
i jk (Pα)

L
� (Pβ)M

m (Pγ )N
n (P2)

i
I (P2)

j

J (P2)
k
K .

Thanks to the null condition (3.12), we can rule out (α, β, γ ) = (1, 1, 1) in the

sum, and so we need only consider the three possibilities that either α, β, or γ is

equal to 2.

Now if α = 2, then we use (5.11) to write (P2)
L
� ∂L = −r−1(ω∧)�. Thus, this

piece of our integral (5.13) is controlled by∫
Rc

r−1|�b Ḣ | |�c+1 Ḣ | |�a v̇|dx .

Recall that on Rc we have have r ≥ C〈t〉. Hence, using (4.16a), we find the upper

bound

〈t〉−2 E1/2
κ [U (t)]Eµ[U (t)].

If β = 2, then thanks to the constraint (2.5c), we can use Lemma 4.6 to see that

‖r3/2(P2)
M
m (�b Ḣ)

j

M‖∞ ≤ C E1/2
κ [U (t)].

Also, when γ = 2 we get

‖r3/2(P2)
N
n ∂�(�

c Ḣ)k
N‖∞ ≤ C E1/2

κ [U (t)].
In either case, this again leads to the bound

〈t〉−3/2 E1/2
κ [U (t)]Eµ[U (t)]

for the remainder of (5.13). �
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