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Abstract: In this paper we consider a nonlinear system of hyperbolic thermoelastic-

ity in two or three dimensions with Dirichlet boundary conditions in the case of

radial symmetry. We prove the global existence of small, smooth solutions and the

exponential stability.
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1 Introduction

The equations of thermoelasticity are used to model the behaviour of elastic and heat conductive

media. Let u = u(t, x), ϑ = ϑ(t, x), and q = q(t, x) (t > 0, x ∈ Ω, Ω ⊂ Rn bounded) be the

displacement vector, the temperature difference to a fixed reference temperature, and the heat

flux, respectively, then the linear differential equations for (u, ϑ, q) are first

utt − α∆u + β∇ϑ = 0 in [0,∞)× (0, L), (1.1a)

ζϑt + γ div q + β div ut = 0 in [0,∞)× (0, L), (1.1b)

where (1.1a) is an equation of motion and (1.1b) describes the conservation of energy. The

positive coefficients α, β, ζ, γ depend on the material. For a physical derivation of (1.1) we refer

to [2].

These two equations have to be completed by a heat equation. We use Cattaneo’s law of

heat propagation

τqt + q + κ∇ϑ = 0 in [0,∞)× (0, L) (1.2)

with positive constants κ, τ . The system (1.1) - (1.2) is purely hyperbolic, but slightly damped,

and it models thermal disturbances as wave-like pulses propagating with finite speed, the so-

called second sound. For a review of recent literature to the system of hyperbolic thermoelasticity

we refer to [4].
1E-mail: tilman.irmscher@web.de
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If we use Fourier’s law

q + κ∇ϑ = 0 in [0,∞)× (0, L), (1.3)

instead of (1.2) we get the (hyperbolic-)parabolic system of classical thermoelasticity including

the paradox of infinite propagation speed of heat pulses.

The system of nonlinear parabolic thermoelasticity with Dirichlet boundary conditions

in two or three space dimensions has been investigated in [9] in view of global existence of

small, smooth solutions and exponential decay. Therein, particularly radial symmetry has been

studied. As proved in [13], these results can be carried over to some other boundary conditions.

Tarabek [14] als well as Racke [11] then used Cattaneo’s law of heat conduction instead

of the classical (i. e. Fourier’s) law and discussed the now purly hyperbolic system in the

one-dimensional, nonlinear case. It is also well known that under certain conditions the linear

hyperbolic system in two or three – actually in all – space dimensions is exponentially stable,

cf. [11, 12]. For the multidimensional nonlinear hyperbolic system there are no comparable

results on the global existence or exponential stability. This work shall close this gap for space

dimensions n = 2, 3 in the radially symmetric case.

We do not want to give a derivation of the nonlinear equations. We rather refer to the

mentioned papers and the cited literature therein. Then we want to consider the following

nonlinear differential equations for (u, ϑ, q):

ui|t|t −Aij(∇u, ϑ, q)uj|k|k + Bij(∇u, ϑ, q)ϑ|j = 0 in [0,∞)× Ω, (1.4a)

c(∇u, ϑ, q)ϑ|t + g(∇u, ϑ, q)qi|i + Bij(∇u, ϑ, q)ui|j|t = 0 in [0,∞)× Ω, (1.4b)

Tij(∇u, ϑ)qj|t + qi + Kij(∇u, ϑ)ϑ|j = 0 in [0,∞)× Ω, (1.4c)

with the initial data

u(0) = u0, ut(0) = u1, ϑ(0) = ϑ0, q(0) = q0, (1.5)

and the Dirichlet boundary conditions

u|∂Ω = ϑ|∂Ω = 0. (1.6)

It is self-evident that (1.4a) and (1.4c) hold for all i = 1, ..., n. Also note that we use the

Einstein summation convention, i. e. repeated indices are implicitly summed over. This

shortens for example the product of matricies A,B to (AB)ij = AikBkj . Finally, we denote the

partial derivative ∂i(...), and ∂t(...) = (...)t with (...)|i, and (...)|t, respectively.

Remark 1.1. For more generality, one would use Cijkl(∇u, ϑ, q)uj|k|l in (1.4a) instead of the

Laplacian Aij(∇u, ϑ, q)uj|k|k. However, this restriction has turned out to be technically very

helpfull in [9] as well as in this paper.
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The appearing coefficients are subject to the following conditions:

Assumption 1.2. Let A,B, c, g, T, and K be smooth functions. Assume A, T , and K to be

symmetrical matrices and that there are positiv contants A0, c0, g0, T0,K0, and % such that

A(ζ, η, χ)ξ ·ξ > A0|ξ|2, c(ζ, η, χ) > c0, T (ζ, η)ξ ·ξ > T0|ξ|2, (1.7a)

B(ζ, η, χ)ξ ·ξ 6= 0, g(ζ, η, χ) > g0, K(ζ, η)ξ ·ξ > K0|ξ|2 (1.7b)

for all ζ ∈ Rn×n, η ∈ R, χ ∈ Rn with |ζ|, |η|, |χ| < %, and ξ ∈ Rn \ {0}.
Furthermore, we want to regard the nonlinear system as a perturbation of the isotropic linear

one, i. e. some constants α, β, ζ, γ, τ , and κ exist with

A(0, 0, 0) = αEn, c(0, 0, 0) = ζ, T (0, 0) = τEn,

B(0, 0, 0) = βEn, g(0, 0, 0) = γ, K(0, 0) = κEn.

Hence, we can rewrite (1.4) to

utt − α∆u + β∇ϑ = F, (1.8a)

ζϑt + γdiv q + βdiv ut = G, (1.8b)

τqt + q + κ∇ϑ = H, (1.8c)

with

F :=
(
A(∇u, ϑ, q)−A(0, 0, 0)

)
∆u−

(
B(∇u, ϑ, q)−B(0, 0, 0)

)
∇ϑ, (1.9a)

G := −
(
c(∇u, ϑ, q)− c(0, 0, 0)

)
ϑt −

(
g(∇u, ϑ, q)− g(0, 0, 0)

)
div q

− tr
((

B(∇u, ϑ, q)−B(0, 0, 0)
)
∇ut

)
, (1.9b)

H := −
(
τ(∇u, ϑ)− τ(0, 0)

)
qt −

(
K(∇u, ϑ)−K(0, 0)

)
∇ϑ. (1.9c)

Finally, we introduce for j ∈ N0 according to (1.5) the notation

uj := ∂j
t u(0), ϑj := ∂j

t ϑ(0).

Already in the parabolic case it has been proved that curl-free data give the exponential

stability, cf. [9]. Therefore, we will now turn over to the radially symmetric case which ensures

the rotation to vanish. Thus we will succeed for the first time in proving the existence of global

solutions of the nonlinear initial boundary value problem (1.4) – (1.6) in hyperbolic thermo-

elasticity.

But the at first view obvious way, i. e. carrying over the results in [9] directly to the mul-

tidimensional case, turned out to be too difficult. To overcome these difficulties we will rather

use an appropriate combination of the techniques presented in [12], and [9], respectively.
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2 Radial symmetry and local well-posedness

To begin with, we will characterize the term of radial symmetry :

Definition 2.1. Let Ω ⊂ Rn be a radially symmetric domain, i. e. for all x ∈ Ω and R ∈ O(n),

the orthogonal group of Rn, we get Rx ∈ Ω.

(i) A function f : Ω −→ R is called radially symmetric, if for all R ∈ O(n) it holds

f ◦R = f.

(ii) A vector field v : Ω−→Rn is called radially symmetric, if for all R ∈ O(n) it holds

RT ◦ v ◦R = v.

(iii) Let F , and V be a set of functions, and vector fields, respectively. Then

◦
F :=

{
f ∈ F : f radially symmetric

}
,

◦
V :=

{
v ∈ V : v radially symmetric

}
.

A subset Ω ⊂ Rn is obviously radially symmetric, if and only if so is the appropriate char-

acteristic function χΩ : Rn −→ {0, 1}. We get the following characterization (folklore, cf. [8], p.

64):

Lemma 2.2. Let I :=
{
|x| : x ∈ Ω

}
.

(i) A function f : Ω −→ R is radially symmetric, if and only if there is a function ϕf : I −→ R
with f(x) = ϕf

(
|x|

)
for all x ∈ Ω.

(ii) A vector field v : Ω −→ Rn is radially symmetric, if and only if v(0) = 0 (provided that

0 ∈ Ω) and there is a function Φv : I −→ R with v(x) = Φv

(
|x|

)
x
|x| for all x ∈ Ω \ {0}.

Proof. (i) Take v ∈ Rn with |v| = 1. The function ϕf : I −→ R is now declared by

ϕf (r) := f(rv).

For x ∈ Ω there is R ∈ O(n) with Rx = |x|v, and we get as asserted

f(x) = f(Rx) = f
(
|x|v

)
= ϕf

(
|x|

)
.

(ii) Let x ∈ Ω \ {0}. Then choose x⊥ ∈ Ω with x·x⊥ = 0, and it exists R ∈ O(n) with Rx = x

and Rx⊥ = −x⊥. It follows

v(x)·x⊥ = RT v(Rx)·x⊥ = v(Rx)·Rx⊥ = −v(x)·x⊥,
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hence v(x) ·x⊥ = 0. Since x⊥ is an arbitrary element of the orthogonal complement of

linR{x}, a function f : Ω −→ R with

v(x) = f(x)
x

|x|

for x 6= 0 must exist. Thus f(x) = v(x)· x
|x| holds, and for all R ∈ O(n) we get

f(Rx) = v(Rx)·Rx

|x|
= RT v(Rx)· x

|x|
= v(x)· x

|x|
= f(x).

For this reason f is a radially symmetric function, and according to (i) we have f(x) =

Φv

(
|x|

)
.

Obviously, the inversion holds in both cases.

To develope a theory of radially symmetric solutions of (1.4), the appearing coefficients must

transform as follows:

Assumption 2.3. For all R ∈ O(n), ζ ∈ Rn×n, η ∈ R, and χ ∈ Rn we have

M(RT ζR, η, RT χ) = RT M(ζ, η, χ)R for M ∈ {A,B}, (2.1)

and

f(RT ζR, η, RT χ) = f(ζ, η, χ) for f ∈ {c, g}, (2.2)

as well as

N(RT ζR, η) = RT N(ζ, η)R for N ∈ {T,K}. (2.3)

This guarantees that the operators in (1.4) preserve the radial symmetry. For example let

v := A(∇u, ϑ, q)∆u. If u, ϑ, and q are radially symmetric, then so is v:

RT v(Rx) = RT A
(
(∇u)(Rx), ϑ(Rx), q(Rx)

)
RRT (∆u)(Rx)

= A
(
RT (∇u)(Rx)R,ϑ(Rx), RT q(Rx)

)
RT (∆u)(Rx)

= A(∇u(x), ϑ(x), q(x))∆u(x)

= v(x).

Before formulating the local well-posedness theorem, we recall the following Sobolev em-

bedding therorem which is important for the proof an can be found for example in [1]:

Theorem 2.4. Let Ω ⊂ Rn, n ∈ N, be a domain satisfying the cone condition. For s ∈ N0 with

s > [n/2] + 1 the following embeddings hold:

Hs(Ω, R) ↪→ C0
b (Ω, R) and Hs(Ω, Rn) ↪→ C0

b (Ω, Rn).
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Thus we need at least s = 2 for n = 2, 3. Even in the case of radial symmetry this cannot

be improved in general. But if we consider a spherical shell, then we can deduce from Lemma

2.2 and the embedding theorem in one space dimension the following proposition for radially

symmetric functions, and vector fields, respectively. It says that we get the same embedding

theorem for a spherical shell in higher space dimensions as for a bounded interval:

Proposition 2.5 (Embedding theorem for the spherical shell). For the spherical shell

S := B(0, r, R) :=
{
x ∈ Rn : r < |x| < R

}
, 0 < r < R, we get

◦
H1(S, R) ↪→

◦
C0

b(S, R) and
◦

H1(S, Rn) ↪→
◦
C0

b(S, Rn).

Using spherical coordinates we can now transform the multidimensional, radially symmetric

problem to a one-dimensional one with additionally local dependent coefficients. Hence, we can

directly transfer the local well-posedness theorem, which is given for n = 1 in [11], to the case

of a spherical shell. Note that due to the radial symmetry the existence of div q, for example,

immediately gives the optimal regularity q ∈ H1(S, Rn).

Theorem 2.6. Let s > 3 and S := B(0, r, R) ⊂ Rn with 0 < r < R, n ∈ N. Assume the

following compatibility conditions:

uk ∈
◦

Hs−k(S, Rn) ∩
◦

H1
0(S, Rn) for k = 0, 1, ..., s− 1 and us ∈

◦
L2(S, Rn),

ϑl ∈
◦

Hs−1−l(S, R) ∩
◦

H1
0(S, R) for l = 0, ..., s− 2 and ϑs−1 ∈

◦
L2(S, R),

as well as q0 ∈
◦

Hs−1(S, Rn). Then, for sufficiently small T > 0, the initial boundary value

problem (1.4), (1.5), (1.6) has a unique solution (u, ϑ, q) on [0, T ] with

u ∈
s−1⋂
k=0

Ck
(
[0, T ],

◦
Hs−k(S, Rn) ∩

◦
H1

0(S, Rn)
)
, ∂s

t u ∈ C0
(
[0, T ],

◦
L2(S, Rn)

)
,

ϑ ∈
s−2⋂
l=0

C l
(
[0, T ],

◦
Hs−1−l(K, R) ∩

◦
H1

0(S, R)
)
, ∂s−1

t ϑ ∈ C0
(
[0, T ],

◦
L2(S, R)

)
,

q ∈
s−2⋂
m=0

Cm
(
[0, T ],

◦
Hs−1−m(S, Rn)

)
, ∂s−1

t q ∈ C0
(
[0, T ],

◦
L2(S, Rn)

)
.

In addition to the one derivative from Proposition 2.5 two more are required to get a local

existence result. If we don’t want to restrict ourselves to spherical shells we may formulate for

arbitrary, radially symmetric domains – in particular for a ball – the following theorem of local

well-posedness:

Theorem 2.7. Let s > [n/2] + 3. Furthermore, assume that the compatibility conditions in

theorem 2.6 hold. Then, for sufficiently small T > 0, the initial boundary value problem (1.4),

(1.5), (1.6) has a unique solution (u, ϑ, q) on [0, T ] with

u ∈
s⋂

k=0

Ck
(
[0, T ],

◦
Hs−k(Ω, Rn)

)
, (ϑ, q) ∈

s−1⋂
l=0

C l
(
[0, T ],

◦
Hs−1−l(Ω, R)×

◦
Hs−1−l(Ω, Rn)

)
,
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Thus the treatment of the two- ore threedimensional case requires at least s = 4. For the

expansion to a global existence theorem of small solutions we will therefore take all the derivatives

up to order four into account. Before beginning this we still need one more preliminary lemma.

In analogy to lemma 2.3 from [9] we verify the following

Lemma 2.8. Let v with vi|j = vj|i solve the equation of elasticity

vi|t|t −Aijvj|k|k = hi in [0,∞)× Ω,

v|∂Ω = 0 für t > 0

with A = A(t, x), h = h(t, x). Then we get∮
∂Ω

Aijvj|lvi|l dS = 2
d
dt

∫
Ω

vi|tσkvi|k dx +
∫

Ω
vi|tvi|tσk|k dx + 2

∫
Ω

Aijvj|lσk|lvi|k dx

−
∫

Ω
Aijvj|lvi|lσk|k dx− 2

∫
Ω

hiσkvi|k dx + R,

where σ ∈ C1(Ω, Rn) with σ|∂Ω = ν is a smooth continuation of the normal into the interior,

and

R := 2
∫

Ω
Aij|lvj|lσkvi|k dx−

∫
Ω

Aij|kvj|lσkvi|l dx.

Proof. Multiplying the equation by σkvi|k and integrating, we obtain∫
Ω

vi|t|tσkvi|k dx−
∫

Ω
Aijvi|l|lσkvi|k dx =

∫
Ω

hiσkvi|k dx. (2.4)

The first term can be written as∫
Ω

vi|t|tσkvi|k dx =
d
dt

∫
Ω

vi|tσkvi|k dx +
1
2

∫
Ω

vi|tvi|tσk|k dx. (2.5)

For the second integral we get∫
Ω

Aijvj|l|lσkvi|k dx =
∮

∂Ω
Aijvj|lσkσlvi|k dS −

∫
Ω

Aijvj|lσk|lvi|k dx

−
∫

Ω
Aijvj|lσkvi|l|k dx−

∫
Ω

Aij|lvj|lσkvi|k dx, (2.6)

and after another partial integration it follows∫
Ω

Aijvj|l|lσkvi|k dx =
∮

∂Ω
Aijvj|lσkσlvi|k dS−

∫
Ω
Aijvj|lσk|lvi|k dx−

∮
∂Ω

Aijvj|lσkσkvi|l dS

+
∫

Ω
Aijvj|l|kσkvi|l dx +

∫
Ω

Aijvj|lσk|kvi|l dx

−
∫

Ω
Aij|lvj|lσkvi|k dx +

∫
Ω

Aij|kvj|lσkvi|l dx. (2.7)

Due to the assumed symmetry of A

Aijvj|l|kσkvi|l = Ajivi|lσkvj|l|k = Aijvj|lσkvi|l|k
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holds. Note, that for the last equality the indizes of summation have been renamed. Therefore

we obtain from (2.6) and (2.7)∫
Ω

Aijvj|l|lσkvi|k dx = 2
∮

∂Ω
Aijvj|lσkσlvi|k dS −

∮
∂Ω

Aijvj|lvi|l dS −
∫

Ω
Aijvj|l|lσkvi|k dx

− 2
∫

Ω
Aijvj|lσk|lvi|k dx +

∫
Ω

Aijvj|lσk|kvi|l dx−R. (2.8)

From v|∂Ω = 0 we conclude

σkσlvi|k = σkσkvi|l = vi|l. (2.9)

The combination of (2.4), (2.5), (2.8), and (2.9) yields the assertion.

3 Global existence and exponential stability

In the following we assume Ω and the initial data to be radially symmetric. Let (2.1), (2.2), and

(2.3) be satisfied. Furthermore we make the following assumption:

Assumption 3.1. For all ζ ∈ Rn×n and η ∈ R it holds

K(ζ, η)T (ζ, η) = T (ζ, η)K(ζ, η). (3.1)

Note that in the standard case, i. e. Tij = τδij , this does not mean any restriction.

Now we can prove that for sufficiently small initial date the local, radially symmetric solution

according to Theorem 2.7 is a global one:

Theorem 3.2. There is ε > 0 such that if

‖u0‖2
H4 + ‖u1‖2

H3 + ‖ϑ0‖2
H3 + ‖q0‖2

H3 < ε

then (1.4) has an unique solution

u ∈
4⋂

k=0

Ck
(
[0,∞),

◦
H4−k(Ω, Rn)

)
, (ϑ, q) ∈

3⋂
l=0

C l
(
[0,∞),

◦
H3−l(Ω, R)×

◦
H3−l(Ω, Rn)

)
.

Moreover, the system is exponentially stable, i. e. there are constants C, d > 0 such that for all

t > 0

Λ(t) :=
4∑

k=0

∥∥(∂t,∇)ku(t, · )
∥∥2 +

3∑
l=0

∥∥(∂t,∇)l(ϑ, q)(t, · )
∥∥2

6 Ce−dtΛ(0).

Proof. The following proof combines the techniques from [11] and [12]: According to the first

paper we will use nonlinear multipliers, while the structure is more similar to that one in the

latter work. In essence, we will deduce an a priori estimate which simultaneously gives a uniform

bound on the highest norms of the local solution allowing a continuation-argument, as well as

shows the exponential decay.
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First we define

E1(t) := E[u, ϑ, q](t) (3.2a)

:=
1
2

∫
Ω

(
ui|tui|t + ui|kAklul|i + cϑ2 + qiK

#
il Tlmqm

)
(t, x) dx, (3.2b)

E2(t) := E[u|t, ϑ|t, q|t](t) (3.2c)

with K# := gK−1, as well as

E(t) := E1(t) + E2(t). (3.3)

According to the assumptions K#T is symmetric and positive definite, and from the equations

(1.4) – (1.6)

d
dt

E1 = −
∫

Ω
qiK

#
il ql dx + Rc (3.4)

follows, where

Rc =
∫

Ω

(
1
2

(
ui|kAkl|tul|i + c|tϑ

2 + qi(K
#
il Tlm)|tqm

)
(3.5)

− ui|kAkl|iul|t + ϑBik|kui|t + ϑg|iqi

)
dx. (3.6)

The nonlinear term Rc contains only summands of at least third order in
√

Λ as we will prove in

the subsequent section. In the following we will refer to all these arising perturbations of cubic

type as Rc.

Differentiating (1.4) with respect to t we obtain

d
dt

E2 = −
∫

Ω
qi|tK

#
il ql|t dx + Rc. (3.7)

The equation (1.4c) gives

‖∇ϑ‖2 6 C0

(
‖q‖2 + ‖q|t‖2

)
, (3.8)

where C0 – as well as Ci, i ∈ N, throughout the rest of the proof – is a positive constant

independent of (u, ϑ, q).

We multiplicate (1.8a) by 1
αui|k|k = 1

αuk|k|i and get after integration

‖∆u‖2 =
∫

Ω
( 1

αui|t|tuk|k|i + β
αϑ|kui|j|j) dx + Rc

6
∫

Ω
− 1

αui|i|t|tuk|k dx +
1
3
‖∆u‖2 +

3
4

β2

α2
‖∇ϑ‖2 + Rc

6
∫

Ω

(
(− 1

αui|i|tuk|k)|t + 1
αui|i|tuk|k|t

)
dx +

1
3
‖∆u‖2 +

3
4

β2

α2
‖∇ϑ‖2 + Rc,
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hence

2
3
‖∆u‖2 +

d
dt

∫
Ω

1
αdiv u|tdiv u dx 6

∫
Ω

1
α(div u|t)

2 dx +
3
4

β2

α2
‖∇ϑ‖2 + Rc. (3.9)

Multiplication of (1.8b) by 3
αβ uk|k|t yields∫

Ω

3
α(div u|t)

2 dx = −
∫

Ω
( 3γ

αβ qi|iuk|k|t + 3ζ
αβ ϑ|tuk|k|t) dx + Rc

=
∫

Ω

3γ
αβ qiui|k|k|t dx−

∮
∂Ω

3γ
αβ νiqiuk|k|t dS +

∫
Ω

3ζ
αβ ϑ|k|tuk|t dx + Rc

=
∫

Ω

(
( 3γ

αβ qiui|k|k)|t − 3γ
αβ qi|tui|k|k

)
dx

+
∫

Ω

(
( 3ζ

αβ ϑ|kuk|t)|t − 3ζ
αβ ϑ|kuk|t|t

)
dx−

∮
∂Ω

3γ
αβ νiqiuk|k|t dS + Rc,

thus from (1.4a) follows∫
Ω

3
α(div u|t)

2 dx 6 − d
dt

G1 +
1
6
‖∆u‖2 + C1‖q|t‖2 + C2‖∇ϑ‖2

−
∮

∂Ω

3γ
αβ νiqiuk|k|t dS + Rc (3.10)

with the energy functional

G1(t) := −
∫

Ω
( 3γ

αβ qiui|k|k + 3ζ
αβ ϑ|kuk|t)(t, x) dx.

From (3.9) and (3.10) we deduce∫
Ω

2
α(div u|t)

2 dx +
1
2
‖∆u‖2 +

d
dt

G2

6 C3‖∇ϑ‖2 + C4‖q|t‖2 −
∮

∂Ω

3γ
αβ νiqiuk|k|t dS + Rc (3.11)

with

G2(t) := G1(t) +
∫

Ω

1
αui|i|tuk|k(t, x) dx. (3.12)

Poincaré’s inequality for u|t and ϑ, as well as (1.4a) give

‖u|t|t‖2 + ‖u|t‖2 + ‖ϑ‖2 6 C5

(
‖∆u‖2 + ‖∇ϑ‖2 + ‖∇u|t‖2

)
. (3.13)

From (1.8a) follows (multiply by u)

−
∫

Ω
α∆u·u dx = −

∫
Ω

u|t|t ·u dx +
∫

Ω
β∇ϑ·u dx + Rc,

hence Poincaré’s inequalitity for u gives

1
2

∫
Ω

α|∇u|2 dx 6 C6

(
‖u|t|t‖2 + ‖∇ϑ‖2

)
+ Rc. (3.14)
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Multiplying (1.8b) by 1
ζ ϑ|t we easily can see

‖ϑ|t‖2 6
∫

Ω

γ
ζ qiϑ|i|t dx + C7‖div u|t‖2 +

1
2
‖ϑ|t‖2 + Rc

=
∫

Ω

(
(γ

ζ qiϑ|i)|t − γ
ζ qi|tϑ|i

)
dx + C8‖div u|t‖2 +

1
2
‖ϑ|t‖2 + Rc,

and for arbitrary ε1 > 0 we get

ε1‖ϑ|t‖2 − 2ε1
d
dt

∫
Ω

γ
ζ qiϑ|i dx 6 ε1C9‖q|t‖2 + ε1C10‖∇ϑ‖2 + ε1C11‖div u|t‖2 + Rc. (3.15)

For some ε2 > 0 the boundary term appearing in (3.11) can be eastimated as follows:∣∣∣∣∮
∂Ω

3γ
αβ νiqiuk|k|t dS

∣∣∣∣ 6
C12

ε2
‖ν ·q‖2

∂Ω + ε2‖∇u|t‖2
∂Ω (3.16)

Now let σ ∈ C1(Ω, Rn) be a smooth continuation of the normal into the interior (cf. lemma

2.8). Then the multiplication of (1.4b) by σkϑ|k|t gives

0 = −
∫

Ω
cϑ|tσkϑ|k|t dx−

∫
Ω

gqi|iσkϑ|k|t dx−
∫

Ω
Bijui|j|tσkϑ|k|t dx

= −1
2

∮
∂Ω

cϑ|tϑ|t dS +
1
2

∫
Ω

cϑ|tσk|kϑ|t dx− d
dt

∫
Ω

gqi|iσkϑ|k dx

+
∫

Ω
gqi|t|iσkϑ|k dx−

∫
Ω

Bijui|j|tσkϑ|k|t dx + Rc, (3.17)

thus with (1.4c)

0 = −1
2

∮
∂Ω

cϑ|tϑ|t dS +
1
2

∫
Ω

cϑ|tσk|kϑ|t dx− d
dt

∫
Ω

gqi|iσkϑ|k dx

−
∫

Ω
gT−1

ij qj|iσkϑ|k dx−
∫

Ω
gT−1

ij Kjlϑ|l|iσkϑ|k dx−
∫

Ω
Bijui|j|tσkϑ|k|t dx + Rc. (3.18)

For we have σiϑ|k = σkϑ|i on ∂Ω as a result of the radial symmetry of ϑ, and due to the

symmetry of T−1K, the following equality holds:∫
Ω

gT−1
ij Kjlϑ|l|iσkϑ|k dx =

∮
∂Ω

gT−1
ij Kjlϑ|lσiσkϑ|k dS −

∫
Ω

gT−1
ij Kjlϑ|lσk|iϑ|k dx

−
∫

Ω
gT−1

ij Kjlϑ|lσkϑ|i|k dx + Rc

=
∮

∂Ω
gT−1

ij Kjlϑ|lϑ|i dS −
∫

Ω
gT−1

ij Kjlϑ|lσk|iϑ|k dx

− 1
2

∮
∂Ω

gT−1
ij Kjlϑ|lϑ|i dS +

1
2

∫
Ω
gT−1

ij Kjlϑ|lσk|kϑ|i dx + Rc.

This gives in combination with (3.18)

0 =
∮

∂Ω
cϑ|tϑ|t dS −

∫
Ω

cϑ|tσk|kϑ|t dx + 2
d
dt

∫
Ω

gqi|iσkϑ|k dx

+ 2
∫

Ω
gT−1

ij qj|iσkϑ|k dx +
∮

∂Ω
gT−1

ij Kjlϑ|lϑ|i dS − 2
∫

Ω
gT−1

ij Kjlϑ|lσk|iϑ|k dx

+
∫

Ω
gT−1

ij Kjlϑ|lσk|kϑ|i dx + 2
∫

Ω
Bijui|j|tσkϑ|k|t dx + Rc. (3.19)

11



Defining

vi := ui|t,

hi := −Bijϑ|j|t −Bij|tϑ|j + Aij|tuj|l|l,

the time-differentiated equality (1.4a) is equivalent to

vi|t|t −Aijvj|l|l = hi,

v|∂Ω = 0,

and lemma 2.8 yields∮
∂Ω

Aijuj|l|tui|l|tdS = 2
d
dt

∫
Ω
ui|t|tσkui|k|tdx +

∫
Ω
|u|t|t|2σk|kdx + 2

∫
Ω
Aijuj|l|tσk|lui|k|tdx

−
∫

Ω
Aijuj|l|tσk|kui|l|t dx + 2

∫
Ω

Bijϑ|j|tσkui|k|t dx + Rc. (3.20)

By partial integration we get∫
Ω

Bijϑ|j|tσkui|k|t dx = −
∫

Ω
Bijϑ|tσk|jui|k|t dx−

∫
Ω

Bijϑ|tσkui|j|k|t dx + Rc

= −
∫

Ω
Bijϑ|tσk|jui|k|t dx +

∫
Ω

Bijϑ|k|tσkui|j|t dx

+
∫

Ω
Bijϑ|tσk|kui|j|t dx + Rc,

thus ∫
Ω

Bijϑ|j|tσkui|k|t dx =
∫

Ω
Bijui|j|tσkϑ|k|t dx +

∫
Ω

Bijϑ|t(σk|kui|j|t − σk|jui|k|t) dx. (3.21)

From (1.7) and (3.19) – (3.21) follows∮
∂Ω

c(ϑ|t)
2 dS +

∮
∂Ω

gT−1
ij Kjlϑ|lϑ|i dS + A0‖∇u|t‖2

∂Ω

+
d
dt

∫
Ω

2(gqi|iσkϑ|k − ui|t|tσkui|k|t) dx

6 C13

(
‖q‖2 + ‖ϑ|t‖2 + ‖∇ϑ‖2 + ‖∇u|t‖2 + ‖∆u‖2

)
+ Rc. (3.22)

Thereto one has to note that (1.4b) gives

‖div q‖2 = ‖g−1cϑ|t + g−1B ·∇u|t‖2

6 C14

(
‖ϑ|t‖2 + ‖∇u|t‖2

)
,

and that theorem 8.6 from [10] can be applied in the case of radial symmetry, i. e. there is a

positive constant C with ‖∇q‖ 6 C
(
‖div q‖+ ‖q‖

)
, hence∣∣∣∣∫

Ω
gT−1

ij qj|iσkϑ|k dx

∣∣∣∣ 6 C15

(
‖q‖2 + ‖ϑ|t‖2 + ‖∇u|t‖2 + ‖∇ϑ‖2

)
.
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Multiplication of (1.4b) by σkqk yields∫
Ω

cϑ|tσkqk dx +
∫

Ω
gqi|iσkqk dx +

∫
Ω

Bijui|j|tσkqk dx = 0. (3.23)

We will treat these three terms separately. For ε3 > 0 we estimate∣∣∣∣∫
Ω

cϑ|tσkqk dx

∣∣∣∣ 6 ε3‖ϑ|t‖2 +
C16

ε3
‖q‖2 (3.24)

and ∣∣∣∣∫
Ω

Bijui|j|tσkqk dx

∣∣∣∣ 6 ε3‖∇u|t‖2 +
C17

ε3
‖q‖2. (3.25)

It is easy to verify∫
Ω

gqi|iσkqk dx =
∮

∂Ω
gσiqiσkqk dS −

∫
Ω

gqiσk|iqk dx−
∫

Ω
gqiσkqi|k dx + Rc

=
1
2

∮
∂Ω

gqiqi dS −
∫

Ω
gqiσk|iqk dx +

1
2

∫
Ω

gqiσk|kqi dx + Rc, (3.26)

(note qiσk = qkσi and qk|i = qi|k because of the symmetry), hence the combination of the

equations (1.7), and (3.23) – (3.26) gives

g0‖q‖2
∂Ω 6 ε3

(
‖ϑ|t‖2 + ‖∇u|t‖2

)
+

C18

ε3
‖q‖2 + Rc. (3.27)

Finally, for sufficiently small ε1, ε2, and ε3, we can deduce from (3.8), (3.11), (3.15), (3.16),

(3.22), and (3.27)

1
α
‖∇u|t‖2 +

1
4
‖∆u‖2 + C19‖ϑ|t‖2 +

d
dt

H 6 C20

(
‖q‖2 + ‖q|t‖2

)
+ Rc (3.28)

with

H(t) := G2(t) +
2ε2

A0

∫
Ω
(gqi|iσkϑ|k − ui|t|tσkui|k|t) dx− 2ε1

∫
Ω

g
c qiϑi dx. (3.29)

An appropriate Lyapunov functional is given by

λ̃[u, ϑ, q](t) :=
1
ε4

E(t) + H(t)

with some ε4 > 0, because the combination of (3.7), (3.13), (3.14), and (3.28) yields (choose ε4

sufficiently small)

d
dt

λ̃[u, ϑ, q](t) 6 −C21E(t) + Rc. (3.30)

By construction λ̃[u, ϑ, q] and E are equivalent, i. e. for ε4 small enough there are constants

C22 and C23 such that

C22E(t) 6 λ̃[u, ϑ, q](t) 6 C23E(t) (3.31)
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for all t > 0. Therefore, (3.30) leads to

d
dt

λ̃[u, ϑ, q](t) 6 −C24λ̃[u, ϑ, q](t) + C25Λ
3/2(t). (3.32)

Repeating all the calculations also for higher time derivatives, we get for k = 1, 2

d
dt

λ̃[∂k
t u, ∂k

t ϑ, ∂k
t q](t) 6 −C24λ̃[∂k

t u, ∂k
t ϑ, ∂k

t q](t) + C26Λ
3/2(t), (3.33)

since all appearing perturbation terms are cubic in
√

Λ. Now let

Λ̃(t) :=
2∑

k=0

λ̃[∂k
t u, ∂k

t ϑ, ∂k
t q](t),

then

Λ̃(t) 6 C27Λ(t). (3.34)

Differentiating (1.4) adequately many times with respect to t one can see that there are C28 and

C29 such that

Λ(t) 6 C28Λ̃(t) + C29Λ
3/2(t). (3.35)

(Thereto one may also consider the argumentation in the following section about the cubic

terms.)

Now we make a first a priori assumption:

Λ(0) <

(
1

2C29

)2

. (3.36)

Due to the continuity of Λ there is t0 > 0 such that

Λ(t) 6

(
1

2C29

)2

for all t ∈ [0, t0], hence

C29Λ
3/2(t) 6

1
2
Λ(t),

and together with (3.35) this gives

Λ(t) 6 2C28Λ̃(t). (3.37)

Noting (3.34) we get the equivalence

1
2C28

Λ(t) 6 Λ̃(t) 6 C27Λ(t) (3.38)

for all t ∈ [0, t0]. All in all, from (3.32), (3.33), and (3.38)

d
dt

Λ̃(t) 6 −C30Λ̃(t) + C31Λ̃
3/2(t) (3.39)
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follows for the mentioned time-interval.

Secondary we assume now

Λ̃(0) <

(
C30

2C31

)2

.

Then there is t1 ∈ (0, t0] with

Λ̃(t) 6

(
C30

2C31

)2

for all t ∈ [0, t1], and in this interval we conclude from (3.39)

d
dt

Λ̃(t) 6 −C30

2
Λ̃(t),

and so we get there the estimate

Λ̃(t) 6 e−
C30
2

tΛ̃(0). (3.40)

In particular one has due to (3.37) for t ∈ [0, t1]

Λ(t) 6 2C28e
−C30

2
tΛ̃(0).

Let us now make the third a priori assumption

Λ̃(0) <
1

4C28

(
1

2C29

)2

, (3.41)

and

Λ(t) <
1
2

(
1

2C29

)2

(3.42)

follows for t ∈ [0, t1]. Note that since we have (3.38), the condition (3.41) implies (3.36). Now

we can proceed at t = t1 with the same arguments and finally obtain for all t > 0 the inequality

(3.42). Thus, (3.38) as well as (3.40) hold for all times, and we get for t > 0

Λ(t) 6 2C27C28e
−C30

2
tΛ(0),

if Λ(0) < ε0 where

ε0 := min

{
1

C27

(
C30

2C31

)2

,
1

4C27C28

(
1

2C29

)2
}

.

Finally note that there is ε > 0 such that Λ(0) < ε0 as far as

‖u0‖2
H4 + ‖u1‖2

H3 + ‖ϑ0‖2
H3 + ‖q0‖2

H3 < ε.

To conclude the proof it remains to show that the appearing terms Rc are at least cubic.
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4 Cubic terms

In addition to the embedding Theorem 2.4 we still need one more, cf. [1]:

Theorem 4.1. Let Ω ⊂ Rn be a domain satisfying the cone property. Then the following

embeddings hold:

H1(Ω, R) ↪→ L4(Ω, R) and H1(Ω, Rn) ↪→ L4(Ω, Rn).

Combining the theorems 2.4 and 4.1 there are constants CL∞ , CL4 > 0 such that the local

solution (u, ϑ, q) satisfies

‖∂2
t u‖∞ + ‖∂tu‖W 1,∞ + ‖u‖W 2,∞ +

∥∥∂t(ϑ, q)
∥∥
∞ +

∥∥(ϑ, q)
∥∥

W 1,∞ 6 CL∞Λ
1/2

and

‖∂3
t u‖L4 + ‖∂2

t u‖W 1,4 + ‖∂tu‖W 2,4 + ‖u‖W 3,4

+
∥∥∂2

t (ϑ, q)
∥∥

L4 +
∥∥∂t(ϑ, q)

∥∥
W 1,4 +

∥∥(ϑ, q)
∥∥

W 2,4 6 CL4Λ
1/2 .

That the arising perturbations Rc are at least cubic in
√

Λ will be shown with three examples

of the most problematic terms. All the others can be treated entirely in the same way.

As mentioned before a calculation analogue to that presented for λ̃[u, ϑ, q] gives the equivalent

to (3.32) for λ̃[∂2
t u, ∂2

t ϑ, ∂2
t q]. In (3.7) then the following summand appears in Rc due to the

both additional time-derivatives:∣∣∣∣ ∫
Ω

ui|t|t|t|t(Aij|t|t|t∆uj + Aij|t|t∆uj|t + Aij|t∆uj|t|t) dx

∣∣∣∣
6 C

(
Λ

1/2‖∂3
t A‖ ‖∆uj‖∞ + Λ

1/2‖∂2
t A‖L4‖∂t∆u‖L4 + Λ‖∂tA‖∞

)
6 C

(
Λ

∥∥∂3
t (∇u, ϑ, q)

∥∥ + Λ
∥∥∂2

t (∇u, ϑ, q)
∥∥∥∥∂t(∇u, ϑ, q)

∥∥
∞ + Λ

∥∥∂t(∇u, ϑ, q)
∥∥3

∞

+ Λ
∥∥∂2

t (∇u, ϑ, q)
∥∥

L4 + Λ
∥∥∂t(∇u, ϑ, q)

∥∥2

∞ + Λ
∥∥∂t(∇u, ϑ, q)

∥∥
∞

)
6 C

(
Λ

3/2 + Λ2 + Λ
5/2

)
. (4.1)

Thereby C > 0 is a constant independent of (u, ϑ, q) which may change from time to time.

Now let

F̃ := A|t|t∆u + 2A|t∆u|t + (A− αEn)∆u|t|t −B|t|t∇ϑ− 2B|t∇ϑ|t − (B − βEn)∇ϑ|t|t.

Than we have to conider a term similar to∫
Ω

F̃∆u|t|t dx
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in the derivation of (3.9) for λ̃[∂2
t u, ∂2

t ϑ, ∂2
t q]. Only the summands containing on of the factors

(A − αEn) and (B − βEn) cannot be treated as done in (4.1). But since (A,B) is assumed to

be smooth enough one can apply the mean value theorem and conclude∣∣A(∇u, ϑ, q)− αEn

∣∣ =
∣∣A(∇u, ϑ, q)−A(0, 0, 0)

∣∣ 6 C
∣∣(∇u, ϑ, q)

∣∣,
and

∣∣B − βEn

∣∣ 6 C
∣∣(∇u, ϑ, q)

∣∣, respectively.

Thus, we obtain again ∣∣∣∣∫
Ω

F̃∆u|t|t dx

∣∣∣∣ 6 C
(
Λ

3/2 + Λ2
)
.

As a last example we want to estimate a summand of Rc in (3.17) by at least
√

Λ
3
. For

this purpose we will use explicitely the boundary condition ϑ|∂Ω = 0 and succeed with partial

integration:∣∣∣∣∫
Ω

(
c|t|tϑ|t + c|tϑ|t|t + g|t|tdiv q + g|tdiv q|t + tr

(
B|t|t∇u|t + B|t∇u|t|t

))
∇ϑ|t|t|t dx

∣∣∣∣
=

∣∣∣∣∫
Ω
∇

(
c|t|tϑ|t + c|tϑ|t|t + g|t|tdiv q + g|tdiv q|t + tr

(
B|t|t∇u|t + B|t∇u|t|t

))
ϑ|t|t|t dx

∣∣∣∣
6 C

(
‖∂2

t∇c‖ ‖∂tϑ‖∞ + ‖∂2
t c‖L4‖∂t∇ϑ‖L4 + ‖∂t∇c‖L4‖∂2

t ϑ‖L4 + Λ
1/2‖∂tc‖∞

+ ‖∂2
t∇g‖ ‖div q‖∞ + ‖∂2

t g‖L4‖∆q‖L4 + ‖∂t∇g‖L4‖∂tdiv q‖L4 + Λ
1/2‖∂tg‖∞

+ ‖∂2
t∇B‖ ‖∂t∇u‖∞ + ‖∂2

t B‖L4‖∂t∇2u‖L4 + ‖∂t∇B‖L4‖∂2
t∇u‖L4

+ Λ
1/2‖∂tB‖∞

)
Λ

1/2

6 C
(
Λ

3/2 + Λ2
)
.

As mentioned before all the appearing perturbation terms can be bounded by Λ
3/2 or higher

powers of Λ. Thereto, no other techniques than those used above are required.

Finally, all arguments are presented and we can conclude the proof of theorem 3.2.

Remark 4.2. Actually we did not apply the radial symmetry in the sence of Lemma 2.2 which

suggests a transformation of the system to spherical coordinates as done for example in [7] for

the parabolic system of thermoelasticity. In fact we just used that the appearing vector fields

have symmetric gradients in Ω and are orthogonal to ∂Ω, i. e. for n = 3

rotu = rot q = 0 in [0,∞)× Ω, (4.2)

ν × q = 0 in [0,∞)× ∂Ω. (4.3)

This are exactly those conditions which are made in [12]. In this mentioned paper it suffices

to assume that only the initial data satisfy (4.2) and (4.3), for in the linear case then both
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hold automatically for all times. For the nonlinear equations this conclusion is not possible.

Therefore we rather made the assumption 2.3 on the behavior of transformation. Nevertheless,

we presented the proof as generally as possible.
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