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Global Existence in Nonlinear Hyperbolic Thermoelasticity
with Radial Symmetry
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Abstract: In this paper we consider a nonlinear system of hyperbolic thermoelastic-
ity in two or three dimensions with DIRICHLET boundary conditions in the case of
radial symmetry. We prove the global existence of small, smooth solutions and the

exponential stability.
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1 Introduction

The equations of thermoelasticity are used to model the behaviour of elastic and heat conductive
media. Let u = u(t,x), ¥ = J(t,x), and ¢ = q(t,z) (t =2 0, x € Q, Q@ C R™ bounded) be the
displacement vector, the temperature difference to a fixed reference temperature, and the heat

flux, respectively, then the linear differential equations for (u,, q) are first

uy — aAu+ VI =0 1in[0,00) x (0, L), (1.1a)
(O +~ydivg+ fdivuy =0 in [0,00) x (0, L), (1.1b)

where (1.1a) is an equation of motion and (1.1b) describes the conservation of energy. The
positive coefficients «, 3, ¢, v depend on the material. For a physical derivation of (1.1) we refer
to [2].

These two equations have to be completed by a heat equation. We use CATTANEO’s law of

heat propagation
T¢ +q+ kVI =0 in[0,00) x (0,L) (1.2)

with positive constants x, 7. The system (1.1) - (1.2) is purely hyperbolic, but slightly damped,
and it models thermal disturbances as wave-like pulses propagating with finite speed, the so-
called second sound. For a review of recent literature to the system of hyperbolic thermoelasticity

we refer to [4].
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If we use FOURIER’s law
g+ kVY =0 1in[0,00) x (0,L), (1.3)

instead of (1.2) we get the (hyperbolic-)parabolic system of classical thermoelasticity including
the paradox of infinite propagation speed of heat pulses.

The system of nonlinear parabolic thermoelasticity with DIRICHLET boundary conditions
in two or three space dimensions has been investigated in [9] in view of global existence of
small, smooth solutions and exponential decay. Therein, particularly radial symmetry has been
studied. As proved in [13], these results can be carried over to some other boundary conditions.

Tarabek [14] als well as Racke [11] then used CATTANEO’S law of heat conduction instead
of the classical (i.e. FOURIER’s) law and discussed the now purly hyperbolic system in the
one-dimensional, nonlinear case. It is also well known that under certain conditions the linear
hyperbolic system in two or three — actually in all — space dimensions is exponentially stable,
cf. [11, 12]. For the multidimensional nonlinear hyperbolic system there are no comparable
results on the global existence or exponential stability. This work shall close this gap for space
dimensions n = 2,3 in the radially symmetric case.

We do not want to give a derivation of the nonlinear equations. We rather refer to the
mentioned papers and the cited literature therein. Then we want to consider the following

nonlinear differential equations for (u,, q):

uz’|t|t — Aij(Vu, 19, q)uj‘k‘k + Bij(Vu, 19, q)ﬂ‘j =0 in [0, OO) X Q, (1.43)
c(Vu, 9, )9 + 9(Vu, 9, ¢)q;j; + Bij(Vu, 9, q)uj, =0 in [0,00) x €, (1.4Db)
T (Vu, 9) g1 + qi + Kij(Vu,9)9); =0 in  [0,00) x €, (1.4c)

with the initial data
U(O) = uov ut(o) = ’LL17 29(0) = 190’ Q(O) = qO’ (15)
and the DIRICHLET boundary conditions

ulaqg = Y0an = 0. (1.6)

It is self-evident that (1.4a) and (1.4c) hold for all i = 1,...,n. Also note that we use the
EINSTEIN summation convention, i. e. repeated indices are implicitly summed over. This
shortens for example the product of matricies A, B to (AB);; = A, Byj. Finally, we denote the
partial derivative J;(...), and 9(...) = (...); with (...);, and (...)};, respectively.

Remark 1.1. For more generality, one would use Cyjx(Vu, 9, q)u i in (1.4a) instead of the
LAPLACIAN Aij(Vu, 9, q)ujg,- However, this restriction has turned out to be technically very
helpfull in [9] as well as in this paper.



The appearing coefficients are subject to the following conditions:

Assumption 1.2. Let A, B,c,g,T, and K be smooth functions. Assume A,T, and K to be

symmetrical matrices and that there are positiv contants Ag, co, go, 1o, Ko, and o such that

To|€)?, (1.7a)
Kol (1.7b)

A(CaﬁvX)g'g P AO|€|27 C(Cﬂ%X)

€o, T(C’ 77)

=
= 90, K(Cﬂ?)

for all ¢ € R™™ n e R, x € R™ with €], |n],|x|] < o, and & € R™\ {0}.
Furthermore, we want to regard the nonlinear system as a perturbation of the isotropic linear

one, i. e. some constants o, 3,(,v, T, and k exist with

A(0,0,0) = aE,, ¢(0,0,0) = ¢, T(0,0) = 7By,
B(0,0,0) = BE,, 9(0,0,0) =, K(0,0) = KE,.

Hence, we can rewrite (1.4) to

ugp — aAu+ VY = F, (1.8a)
(% + vdivg + Bdivug = G, (1.8b)
Tq +q+ VI =H, (1.8¢c)
with

F = (A(Vu,9,q) — A(0,0,0)) Au — (B(Vu,¥,q) — B(0,0,0)) VY, (1.9a)

G = —(c(Vu,9,q) — ¢(0,0,0))9; — (9(Vu, 9, q) — g(0,0,0))divg
—tr(( (Vu,d,q) — B(0,0, 0))Vut>, (1.9b)
H = —(1(Vu,9) — 7(0,0)) g — (K(Vu,9) — K(0,0)) V9. (1.9¢)

Finally, we introduce for j € Ny according to (1.5) the notation
W= & u(0), ¥ = d9(0).

Already in the parabolic case it has been proved that curl-free data give the exponential
stability, cf. [9]. Therefore, we will now turn over to the radially symmetric case which ensures
the rotation to vanish. Thus we will succeed for the first time in proving the existence of global
solutions of the nonlinear initial boundary value problem (1.4) — (1.6) in hyperbolic thermo-
elasticity.

But the at first view obvious way, i.e. carrying over the results in [9] directly to the mul-
tidimensional case, turned out to be too difficult. To overcome these difficulties we will rather

use an appropriate combination of the techniques presented in [12], and [9], respectively.



2 Radial symmetry and local well-posedness

To begin with, we will characterize the term of radial symmetry:

Definition 2.1. Let Q C R™ be a radially symmetric domain, i. e. for allxz € Q and R € O(n),
the orthogonal group of R™, we get Rx € ().

(i) A function f: Q — R is called radially symmetric, if for all R € O(n) it holds
foR=].
(i1) A wvector field v:Q—R"™ is called radially symmetric, if for all R € O(n) it holds

RT'ovoR=n.

(iii) Let F, and V be a set of functions, and vector fields, respectively. Then

Fi= {f € F: f radially symmetm’c},
V= {U e V: v radially symmetm’c}.

A subset 2 C R” is obviously radially symmetric, if and only if so is the appropriate char-
acteristic function yo: R™ — {0,1}. We get the following characterization (folklore, cf. [8], p.
64):

Lemma 2.2. Let I := {|z|: z € Q}.

(i) A function f: Q — R is radially symmetric, if and only if there is a function ¢y: I — R
with f(x) = g (|z]) for all x € Q.

(ii)) A wvector field v: Q@ — R™ is radially symmetric, if and only if v(0) = 0 (provided that
0 € Q) and there is a function ®,: I — R with v(z) = @v(]x|)|i—| for all z € @\ {0}.

Proof. (i) Take v € R™ with |v| = 1. The function ¢s: I — R is now declared by
pr(r) = f(rv).
For z € Q there is R € O(n) with Rx = |z|v, and we get as asserted
f(@) = f(Rx) = f(jzlv) = ey (la]).

(ii) Let z € Q\ {0}. Then choose z+ € Q with z-2* = 0, and it exists R € O(n) with Rz = x

and Rzt = —zt. Tt follows

v(z)-zt = RTv(Rz) ot = v(Rx) Rzt = —v(z) -zt



1 1

hence v(x) -z~ = 0. Since x

ling{z}, a function f: Q@ — R with

is an arbitrary element of the orthogonal complement of

o(@) = f(2) =

]

for  # 0 must exist. Thus f(z) = v(x)ﬁ holds, and for all R € O(n) we get

f(Rz) = fu(Ra:)-ﬁ = RTv(Rx)

r T
||

() — = f(z).

|z

For this reason f is a radially symmetric function, and according to (i) we have f(z) =

Dy (|z]).
Obviously, the inversion holds in both cases. ]

To develope a theory of radially symmetric solutions of (1.4), the appearing coefficients must

transform as follows:

Assumption 2.3. For all R € O(n), ( € R**", ne€ R, and x € R" we have

M(RT¢R,n, RTx) = RTM(¢,n,x)R for M € {A, B}, (2.1)
and
F(RTCR, 1, RTX) = f(¢mx) for [ € {eg}, (2:2)
as well as
N(RY¢R,n) = RTN(¢,n)R for N e{T,K}. (2.3)

This guarantees that the operators in (1.4) preserve the radial symmetry. For example let

v:=A(Vu,v,q)Au. If u,?, and q are radially symmetric, then so is v:

R"v(Rz) = RT A((Vu)(Rz),9(Rx), ¢(Rz)) RRT (Au)(Rz)
= A(R" (Vu)(Rz)R,9(Rz), RT q(Rz)) R" (Au)(Rz)
— A(Vu(x),9(x), g(x)) Au(z)
= v(x).
Before formulating the local well-posedness theorem, we recall the following SOBOLEV em-

bedding therorem which is important for the proof an can be found for example in [1]:

Theorem 2.4. Let Q) C R", n € N, be a domain satisfying the cone condition. For s € Ny with
s = [n/2] + 1 the following embeddings hold:

H*(Q,R) — CP(Q,R) and H*(Q,R") — CP(Q,RM).



Thus we need at least s = 2 for n = 2,3. Even in the case of radial symmetry this cannot
be improved in general. But if we consider a spherical shell, then we can deduce from Lemma
2.2 and the embedding theorem in one space dimension the following proposition for radially
symmetric functions, and vector fields, respectively. It says that we get the same embedding

theorem for a spherical shell in higher space dimensions as for a bounded interval:

Proposition 2.5 (Embedding theorem for the spherical shell). For the spherical shell
S:=B(0,r,R):={z € R": r < |z| <R}, 0 <r <R, we get

HY(S,R) — CS,R) and H(S,R") — CI(S,R™).

Using spherical coordinates we can now transform the multidimensional, radially symmetric
problem to a one-dimensional one with additionally local dependent coefficients. Hence, we can
directly transfer the local well-posedness theorem, which is given for n = 1 in [11], to the case
of a spherical shell. Note that due to the radial symmetry the existence of div ¢, for example,

immediately gives the optimal regularity ¢ € H'(S,R").
Theorem 2.6. Let s > 3 and S := B(0,r,R) C R" with 0 < r < R, n € N. Assume the
following compatibility conditions:

uk e ﬁs_k(S, R™) N POI(I)(S, R™) for k=0,1,...5—1 and u’€ LOQ(S, R™),

e POIS_I_Z(S,R) ﬂﬁé(S,R) for 1=0,...,s—2 and ¥ le IO/Q(S, R),
as well as ¢° € fofs_l(S, R™). Then, for sufficiently small T > 0, the initial boundary value
problem (1.4), (1.5), (1.6) has a unique solution (u,¥,q) on [0,T] with

s—1

we () C*([0,T), H*7%(S,R") N HY(S,R™), diu € C°([0, 7], L*(S,R™),
k=0
572 o ] [}

9 e () C'(0,7], B~ (K, R) N H)(S,R)), o7~ € ([0, T), L*(S,R)),
=0
8_2 o o

ge () ¢™([0,T], H"™(S,R™), 0;'q € C°([0, 7], L*(S,R™).
m=0

In addition to the one derivative from Proposition 2.5 two more are required to get a local
existence result. If we don’t want to restrict ourselves to spherical shells we may formulate for
arbitrary, radially symmetric domains — in particular for a ball — the following theorem of local

well-posedness:

Theorem 2.7. Let s > [n/2] + 3. Furthermore, assume that the compatibility conditions in
theorem 2.6 hold. Then, for sufficiently small T > 0, the initial boundary value problem (1.4),
(1.5), (1.6) has a unique solution (u,d,q) on [0,T] with

S s—1
we (5 ([0, 1), B H(Q,RY), (9,q) € () C([0,T], U QR) x H¥17H(Q,RY),
k=0 =0



Thus the treatment of the two- ore threedimensional case requires at least s = 4. For the
expansion to a global existence theorem of small solutions we will therefore take all the derivatives
up to order four into account. Before beginning this we still need one more preliminary lemma.

In analogy to lemma 2.3 from [9] we verify the following

Lemma 2.8. Let v with v; solve the equation of elasticity

l7 = Y5l
Vil — AijVjje = hi  in [0,00) x Q,

vlgo =0 fir t>0
with A = A(t,x), h = h(t,z). Then we get
d
Aijvﬂlvi“ ds = 2& Vi|tOkVi|k dx + Vi)t Vi|t O k|k dx + 2 Aijvﬂlakuvﬂk dz
o0N Q Q Q
— / Aijvj|lvi\l0k\k dz — 2/ higkvi\k dxr + R,
Q Q

where o € CY(Q,R™) with o|sq = v is a smooth continuation of the normal into the interior,

and

R = 2/ Aij|lvj|lakvi|k dx—/Aijk'Uj“O'k’U“l dx.
Q Q

Proof. Multiplying the equation by o4v;; and integrating, we obtain

/vz‘|tt0kvik‘ dx — / Aijviwakvi‘k dz = / hiakvﬂk dz. (2.4)
Q Q Q
The first term can be written as
d 1
/ V3|t Tk Vi k dr = dt/ V|t Ok Vj|k dz + 2/ V3| V5[t T k) dx. (2.5)
Q Q Q

For the second integral we get
/ Aijvjmlakvi‘k dz :% Aijvj|la'kalvi|k ds — / Aijvjuok“vi‘k dz
Q o0 Q
— / Aijvj\lakvimk dr — / Aijuvﬂlakvﬂk d.TU, (2.6)
Q Q
and after another partial integration it follows
/ Aijvjpokvig dr = j{ Aijvi1oko1V;) ) dS—/Aijvﬂlak”vﬂk d:n—]{ Aijvjokokvy dS
Q o0 Q a0
+/ Aijvjj ooy do +/ Aijvjpovi de
Q Q
— / Aij|lvj|lakvi|k dz +/ Aij\kvjﬂo-kvﬂl dzx. (27)
Q Q
Due to the assumed symmetry of A
Aijvi kv = Ajivinorvje = Aij vk Vijie

7



holds. Note, that for the last equality the indizes of summation have been renamed. Therefore
we obtain from (2.6) and (2.7)

/ Aijvﬂ”lakv“k dx = 2}4 Aijvjuakalvi\k ds _j{ Aijvjllvi\lds o /Aijvj”'lgkvi'k d
Q 90 o0 Q

-2 /Q A0V do + /Q Aijvjopkvip dor — R. (2.8)

From v|pn = 0 we conclude
ORO;|) = ORORV;|; = Vj1- (2.9)
The combination of (2.4), (2.5), (2.8), and (2.9) yields the assertion. O

3 Global existence and exponential stability

In the following we assume 2 and the initial data to be radially symmetric. Let (2.1), (2.2), and

(2.3) be satisfied. Furthermore we make the following assumption:

Assumption 3.1. For all € R™™"™ and n € R it holds

K(¢nT (¢ mn) =T(Cn)K(n)- (3.1)

Note that in the standard case, i.e. T;; = 76,5, this does not mean any restriction.
Now we can prove that for sufficiently small initial date the local, radially symmetric solution

according to Theorem 2.7 is a global one:

Theorem 3.2. There is € > 0 such that if
[ulgs + llut s + 1907 + 1° s <€

then (1.4) has an unique solution

4 3
we () CM(0,00), HHQRY),  (9,9) € ) C'([0,00), H*(Q,R) x H*/(Q,R")).
k=0 =0
Moreover, the system is exponentially stable, i. e. there are constants C,d > 0 such that for all

t>0
4 3

A(t) =Y (0 V) Fut, DI+ > 10, V) (@, )2, I < cem®A(0).

k=0 1=0
Proof. The following proof combines the techniques from [11] and [12]: According to the first
paper we will use nonlinear multipliers, while the structure is more similar to that one in the
latter work. In essence, we will deduce an a priori estimate which simultaneously gives a uniform
bound on the highest norms of the local solution allowing a continuation-argument, as well as

shows the exponential decay.



First we define

Ey(t) := Elu, 9, q](t) (3.2a)
1

=9 /Q (wapewage + wipp Ay + 9 + G K Timam ) (t, ) dz, (3.2b)

Ey(t) := Eluy, ), ) (1) (3.2¢)

with K# := gK~ !, as well as
E(t) := Eq(t) + Ea(t). (3.3)

According to the assumptions K#7T is symmetric and positive definite, and from the equations
(1.4) — (1.6)

d
—F, = —/ K7 q dr + R, (3.4)
dt o
follows, where
R. = /Q (% (wipp Agyerags + 9% + @i(KJ) Thim ) 6m) (3.5)
— Ui Afiw)e + 9Bkl + 199|iqz') da. (3.6)

The nonlinear term R, contains only summands of at least third order in VA as we will prove in
the subsequent section. In the following we will refer to all these arising perturbations of cubic
type as R..

Differentiating (1.4) with respect to ¢ we obtain

d

aEz = —/ Qi|tK;?EQZ|t dz + R.. (3.7)
Q

The equation (1.4c) gives
IV9I* < Co(llall® + llall), (3-8)

where Cy — as well as C;, i € N, throughout the rest of the proof — is a positive constant
independent of (u, 1, q).

We multiplicate (1.8a) by éui‘k‘k = é“klkli and get after integration
| Aul? = /Q(iuuttukki + gﬁ\kui\j\j) dz + R.
1 3 32
1 2 2
< [ ~Suagede + 3180l + 3 VoI + R

1 3 52
< /Q (= L) + Ewsgewne) do + gHAUH2 + ngVﬁHZ + R,



hence
2||Au||2—|—d/1divu divudm</1(divu )de—|—§f2||V19H2+R (3.9)
3 dt Qa It = Qa It 40&2 < '

Multiplication of (1.8b) by O%UHW yields

/Qi(di\’ up)?de = — /Q(gzgqiuumm + %ﬂ\tuk\k\t) dz + R,
= [ Jqu, dz — 3 vigiugpye dS + [ 250 up do + R
B Qitik|k|t ) apVidiUk|k|t BV k|t Ukt c
Q 00 Q
:/Q((ig(h'uﬂkw)t_%Qi|tui|k|k) dz
+ /Q (259 uge) ) — %ﬂ\kukmt) dr — ?,{99 C:,%Vz’%uk\k\tds + Re,

thus from (1.4a) follows

. d 1
| S ds < =561 + AU + Cillgl? + Call VP

—7{ D viqiurye dS + Re (3.10)
o0
with the energy functional

Gl(t) = = /Q(c?;g’qzuﬂmk + %ﬂ‘kuk“)(t,l') dzx.

From (3.9) and (3.10) we deduce

1 d
2 : 2 2
=(d d —|A —G
| iR de+ S1au + 562
< ClIV9I12 + Cullg ) 72 S dS + R (3.11)
with
Gg@):z(ﬁl@)+l/i;um“umku,x)dx. (3.12)
Q

POINCARE’s inequality for uj, and ¥, as well as (1.4a) give
el + fugel* + 11917 < Cs ([|Aul? + VI + [V |?). (3.13)
From (1.8a) follows (multiply by )
—/ aAu-udx = —/ u|t|t-udx+/5V19-udx+RC,
Q Q Q
hence POINCARE’s inequalitity for u gives

1
2Aawm%x<@mwmﬁwwm%+30 (3.14)

10



Multiplying (1.8b) by %19“ we easily can see
. 1
191 < /qu”?lilt da + C||divuy,|* + §||19|1tH2 + Re
. 1
= [ (Gaet = auedy) do + Coldiv gl + 5191 + Re
and for arbitrary €; > 0 we get
d .
ex]|9l* — 281dt/ Lgi0); da < e1Collg|® + €1C10]| V| + e1Cua [|div g ||* + R (3.15)
Q

For some €9 > 0 the boundary term appearing in (3.11) can be eastimated as follows:

Ci2
$ SGauneas| < L2v-alio +ealVucli (3.16)

Now let 0 € C1(Q,R") be a smooth continuation of the normal into the interior (cf. lemma
2.8). Then the multiplication of (1.4b) by x|, gives

O:—/Qc19|tak19|k|tdx—/ngz‘wfkﬁmudx—/QBij“iljltUkﬁlkltdx

1% 1 d
=—= c1979d5+/cﬂa ﬂdx—/gqiiakﬁ dx
2 P, Ol 3 |, Ok a ), 9okl
+/ngz't|¢0m9|kd$—/QBijuz'|j|t0'k19ktd$+Rc, (3.17)
thus with (1.4c)
1 1 d
0= 5 Cﬁ|t0\tds+§ QCﬁ|tak|k19|t dx — & QQQi|iUk'l9|k dx
—/QgTi;lqjiUkﬁk‘dx_/QgTz;lKﬂﬁllliUk’mkdx_/QBijuiljlthﬁktdx"i_RC' (3.18)

For we have o0, = o10); on I as a result of the radial symmetry of ¥, and due to the

symmetry of T~ K, the following equality holds:
/QgTileﬂﬁwakmkdx = fm 9T, Kb oi09), dS — /QgTilejlﬁ“akMkdx
— /QgTi;lKﬂﬁlakﬁﬂm dx + R,
_ éﬂ g7 K )0, dS — /QgTiglijlakimkdx
1

. 1 .
— 7{ gTilejlﬁ\lﬁﬁ ds + = /gTilejlﬁﬂakmﬂﬁ dz + R..
2 Joo 2 Jo

This gives in combination with (3.18)

d
OZf Cﬂ‘tﬁ“ dS_/CﬂtUk|kQ9|tdx+2/gqmakmk dx
o0 Q dt Jo
—I—Q/QgTijlqﬂiakf}wdx—I—?gQgTilejlﬁll?HdS—2/QgTilejl191crk|i19kdac

+/ gTiglKjl’ﬂ“UMk’ﬂ“ d$+2/ Bijui‘j‘takﬁ‘k‘t dz + R.. (3.19)
Q Q

11



Defining

Ui = Wit

hi := —=Bij0jis — Bijie0); + Aijpetjps
the time-differentiated equality (1.4a) is equivalent to

Vijee — Aijvjun = hi,

U‘@Q = Oa
and lemma 2.8 yields

d
j{ AijujsugdS =24 /ui|t|t0kui|k|td90 +/|ut|t|20k|kd$ + 2/Aijuj|l|t0kzluiktd33
o0 Q Q Q
— /QAijujUto'kkuilt dz + 2 /Q Bij'ﬁ|j|t0'kui\k|t dz + Re. (3.20)
By partial integration we get
/QBijﬁ|j|t0'kui|k|t de = — /Q Bijﬁ|to'k|jui|k|t dx — /QBijﬁ|t0'kui|j|k|t dz + R,
=— /Q B0 10wk AT + /Q Bij0 ok uy) ) Ao
- /QBz‘jﬁ|tUk|kui|j|t dz + R,
thus
/QBijﬁ|j|tUkui|k|t dxr = /QBijui|j|tak19|k|t dr + /QBij19|t(Ukkui|j|t — Jk|jui|k|t) dx. (3.21)
From (1.7) and (3.19) — (3.21) follows
%@Q 0(29‘92 ds + ig ngglKﬂﬁuﬁﬁ ds + A()HVUHH%Q
+ 5 ) 2990k — Wil OrUij)) A
< Cus(llall? + 196l + IVIIP + [ Vegel® + | Aull?) + Re. (3.22)

Thereto one has to note that (1.4b) gives

divgl|* = llg™ ety + g~ B-Vy|)?
< Coa ([0l + IV ulI?),

and that theorem 8.6 from [10] can be applied in the case of radial symmetry, i. e. there is a

positive constant C with ||[Vg|| < C(||div¢|| + ||g||), hence

‘/QgTijlquk% dz| < Crs(llall® + 1917 + [ Vayel|* + [[VO)%).
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Multiplication of (1.4b) by oxqy yields

/ ciorqr dz + / 940k qr Az + / Bijuji0kqr dz = 0. (3.23)
Q Q Q

We will treat these three terms separately. For €3 > 0 we estimate

Cio

‘ [ o] < ol + S2jgl? (3.24)
(9] €3
and
2 Cl? 2
[ Byugeorands| < ol Ful? + gl (3.25)

It is easy to verify

/ 991i0kqk AT = y{ 90iqiokqr dS — / 94i0k|iqk AT — / 990k gk dr + Re
Q 09 Q Q
1 1
= f 99iq; dS — / 990k qr Az + / 990k qi AT + Re, (3.26)
2 Jaq Q 2 Jo

(note giox = qro; and qi; = g, because of the symmetry), hence the combination of the
equations (1.7), and (3.23) — (3.26) gives

Cig
gollallza < 53(||19\t||2 + ||Vu|t||2) + gHQH2 + Re. (3.27)

Finally, for sufficiently small €1, €2, and e3, we can deduce from (3.8), (3.11), (3.15), (3.16),
(3.22), and (3.27)

1 1 d
EHV%HQ + ZHAUH2 + Col| 9% + i< Coo(llgl? + llgl?) + Re (3.28)
with
2¢e
H(t) := Gat) + Aij / (991i010 ) — Wit TrUs|k)e) AT — 267 /Q 24;0; de. (3.29)
Q

An appropriate LYAPUNOV functional is given by

~ 1
4
with some €4 > 0, because the combination of (3.7), (3.13), (3.14), and (3.28) yields (choose 4

sufficiently small)

S, 0.4)(1) < ~CnB(1) + Re. (3:30)

By construction S\[U,ﬁ, q] and E are equivalent, i. e. for ¢4 small enough there are constants
(99 and Ca3 such that

CaE(t) < Mu, 9, ¢](t) < CosE(t) (3.31)
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for all ¢ > 0. Therefore, (3.30) leads to

%X[u, 9, q(t) < —Cosd[u, 9, g](t) + CasA°2 (1), (3.32)

Repeating all the calculations also for higher time derivatives, we get for k = 1,2

%X[afu, 09, O ql(t) < —CoaA[OFu, 949, 0gl(t) + CasA°2 (1), (3.33)

since all appearing perturbation terms are cubic in v/A. Now let

2
k=0

then

A(t) < CorA(2). (3.34)

Differentiating (1.4) adequately many times with respect to ¢ one can see that there are Cag and
029 such that

At) < ng[\(t) + 029A3/2 (t). (3.35)

(Thereto one may also consider the argumentation in the following section about the cubic
terms.)

Now we make a first a priori assumption:

A0) < <2 c1*29>2‘ (3.36)

Due to the continuity of A there is tg > 0 such that

Al < <20129 > 2

CooAP(t) < %A(t),

for all ¢ € [0, o], hence

and together with (3.35) this gives

A(t) < 2Co8A(2). (3.37)
Noting (3.34) we get the equivalence
LA < A(t) < CorA(®) (3.38)
2028
for all t € [0,%p]. All in all, from (3.32), (3.33), and (3.38)
S R80) < ~Cuk(t) + Cnk () (339)
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follows for the mentioned time-interval.

A0) < <2C§’;1>2 .

. C30 \ 2
A(?) <
<t) (2031)

for all ¢ € [0,%1], and in this interval we conclude from (3.39)

Secondary we assume now

Then there is ¢t; € (0, o] with

d Cso +
—A(t) < —=2A(0),
S < -4
and so we get there the estimate
- _ O30, %
A(t) < e 72 "A(0). (3.40)

In particular one has due to (3.37) for ¢ € [0, t1]
A(t) < 2C5se~ MR (0).

Let us now make the third a prior: assumption

" 1 1 \?
£(0) < 4o (2029> , (3.41)
and
2
A < % (20129> (3.42)

follows for ¢ € [0,¢;]. Note that since we have (3.38), the condition (3.41) implies (3.36). Now
we can proceed at t = t; with the same arguments and finally obtain for all £ > 0 the inequality
(3.42). Thus, (3.38) as well as (3.40) hold for all times, and we get for ¢ > 0

30

A(t) < 2027028670T

nics (se) iomcs (20m)
€0 :=min{ — , )
0 Cor \2C31 )~ 4C97Ca8 \ 2Co9

Finally note that there is € > 0 such that A(0) < gq as far as

"A(0),

if A(0) < g9 where

11 Zra + Nl 17 + 19°0 s + 1d° 17 < e

To conclude the proof it remains to show that the appearing terms R. are at least cubic.
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4 Cubic terms

In addition to the embedding Theorem 2.4 we still need one more, cf. [1]:

Theorem 4.1. Let Q C R” be a domain satisfying the cone property. Then the following
embeddings hold:

HY(Q,R) — LYQR) and HY(Q,R") — LYQ,R").

Combining the theorems 2.4 and 4.1 there are constants C're,Cra > 0 such that the local

solution (u, 1, q) satisfies
1070 + [Orullrce + llullwzoe + [|000, )| o + (19, @) ||y, < Croe A
and

107l o + 107 ullwra + | Opullyza + [fullys.s
1
+ H8t2(197 q) HL4 + Hat(ﬂv Q) le,él + H (’197 Q) Hw2,4 g CL4A /2‘
That the arising perturbations R, are at least cubic in v/A will be shown with three examples
of the most problematic terms. All the others can be treated entirely in the same way.
As mentioned before a calculation analogue to that presented for X[u, Y, q] gives the equivalent

to (3.32) for A[Q2u, d?9,02q]. In (3.7) then the following summand appears in R. due to the

both additional time-derivatives:

’ /Qui|t|t|t|t(Aijt|ttAuj + Agjje A + AgjAug)) do

1 1
< O(A |0 A] | Ay loc + A2 0P A] L4110 Aut] 1 -+ AJJ Ao

< C(A|63(Vu, 0, )| + A 03T, 9, )| |0:(T, 9, )| + AT 9, 0)|[2,
+AH8§(VU,19,Q)HL4 +A||8t(vuv’l97Q)Hio +AH8,5(VU, Q9a q)Hoo)
< C(N2 + A2 4 A7), (4.1)

Thereby C' > 0 is a constant independent of (u, ¥, ¢) which may change from time to time.

Now let

Than we have to conider a term similar to

/ FAUMt dx
Q
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in the derivation of (3.9) for X\[0?u, 29, d7q]. Only the summands containing on of the factors
(A — aF,) and (B — fE,) cannot be treated as done in (4.1). But since (A4, B) is assumed to

be smooth enough one can apply the mean value theorem and conclude

|A(Vu,9,q) — aB,| = |A(Vu,9,q) — A(0,0,0)| < C|(Vu,d,q)

)

and |B — BE,| < C|(Vu,7,q)

Thus, we obtain again

, respectively.

< CO(A7 + A?).

’/ FAth dx
Q

. . 3
As a last example we want to estimate a summand of R, in (3.17) by at least v/A". For
this purpose we will use explicitely the boundary condition ¥|sq = 0 and succeed with partial

integration:

’/Q <C‘t|t19‘t + C\tﬁmt + g‘t|tleq + gltdlv Q|t + tI'(B|t|tVU|t + B‘tVu|t‘t)>V19|t‘t|t dx

= ’/Q \Y (C\t|t19\t + e + gpeediv g + gediv gy + tl"(BmtVU\t + B|tvu|t\t)>’l9|t\t|t dx

< O(102Vell 0101 + 07l al| oV 9l s + 19, Vel 379 11 + A el
110299 v alloc + 107914 |1 8] 2 + 10V gl 2 |9civ gl s + A 1219/
10V BI 0Vl + 107 B 4|09 ull s + 1057 B 1407 V| .
+ AP 0uB o ) A

< C(A + A?).

As mentioned before all the appearing perturbation terms can be bounded by A2 or higher

powers of A. Thereto, no other techniques than those used above are required.

Finally, all arguments are presented and we can conclude the proof of theorem 3.2. O

Remark 4.2. Actually we did not apply the radial symmetry in the sence of Lemma 2.2 which
suggests a transformation of the system to spherical coordinates as done for example in [7] for
the parabolic system of thermoelasticity. In fact we just used that the appearing vector fields

have symmetric gradients in €2 and are orthogonal to 912, i. e. for n = 3

rotu =rotg=0 in [0,00) x €, (4.2)
vxqg=0 in [0,00) x 0. (4.3)

This are exactly those conditions which are made in [12]. In this mentioned paper it suffices

to assume that only the initial data satisfy (4.2) and (4.3), for in the linear case then both
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hold automatically for all times. For the nonlinear equations this conclusion is not possible.

Therefore we rather made the assumption 2.3 on the behavior of transformation. Nevertheless,

we presented the proof as generally as possible.
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