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GLOBAL EXISTENCE, LARGE TIME BEHAVIOR
AND LIFE SPAN OF SOLUTIONS

OF A SEMILINEAR PARABOLIC CAUCHY PROBLEM

TZONG-YOW LEE AND WEI-MING NI

Abstract. We investigate the behavior of the solution u(x, t) of

|f=Aw + «"      inR" x(0, 7*),
u(x, 0) = tp(x)   inR",

where A = £/L] ^2/9^ is the Laplace operator, p > 1 is a constant, T > 0 ,
and tp is a nonnegative bounded continuous function in R" . The main results
are for the case when the initial value tp has polynomial decay near x = oo .
Assuming tp ~ A(l + \x\)~" with I, a > 0, various questions of global (in
time) existence and nonexistence, ¡arge time behavior or life span of the solution
u(x, i) are answered in terms of simple conditions on X, a, p and the space
dimension n .

1. Introduction

In this paper we shall consider the following Cauchy problem

(%=Au + up      inR" x (0,7/),
[ ' ' \u(x,0) = tp(x)    in R" ,

where A = Ym=\ ̂ 2I^x¡ 1S the Laplace operator, p > 1 is a constant, T >
0, and tp is a nonnegative bounded continuous function in R" . Due to the
possible nonuniqueness of solutions of (1.1), we shall restrict our attention to a
certain class of solutions u(x, t; tp) of (1.1); namely, those with the following
properties:

(i)  u(x, t;tp)>0 in R" x (0, T),
(ii) u satisfies the integral equation in R" x [0, T),

(1.2) v      ,       R

+ /  /  i^tt l v,W2e-]x-yl2/4{'-s)up(y,s;<p)dyds.Jo Jw (4n(t - s))"'z
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On the other hand, it is proved in [F, Proposition A.4] that if u satisfies (1.2)
and is bounded in R" x [0, 7") then u is unique and is a classical solution of
(1.1); i.e. u£ C2>x(Rn x (0, T))nC(Rn x [0, T)) and u satisfies (1.1). Since
all the solutions we are concerned with in this paper will be bounded in [0, V]
for all T' < T[tp] where
(1.3) T[tp] = sup{T > 0|(1.2) possesses a nonnegative solution in R"x[0, T)}

is the life span of the solution u(x, t; tp), we shall not distinguish the solution
o/(l.l) and (1.2).

In 1966, Fujita [F] proved that if p < (n+2)/n , then T[tp] < oo for all tp > 0
and ^ 0 in R" , and in case p > (n + 2)/n then T[tp] = oo (i.e. global existence
in time) if tp is bounded by eexp(-|x|2) where e is a small positive number.
The case p — (n + 2)/n belongs to global nonexistence and was settled later by
Hayakawa [H], and Kobayashi, Sirao and Tanaka [KST]. Different proofs have
been given by various authors including, for instance, Aronson and Weinberger
[AW] and Weissler [We]. Weissler also treated (1.1) in L^-spaces. We refer the
interested readers to a recent survey by Levine [L] for other related results.

In this paper an attempt to understand the behavior of the solution u(x, t; tp)
while the initial value tp is not so small near x = oc is made. For instance
in case tp has polynomial decay near x = oo, say, tp ~ X(\ + \x\)~a where
both X and a are positive, we are interested in the question of global existence
and nonexistence, large time behavior or life span of the solution u(x, t; tp) in
terms of X and a. Theorem 3.2 below gives a necessary condition for global
existence in terms of a and p and a sharp estimate of T[tp] in terms of X
and p as X —► oo. In Theorem 3.8 a precise large time behavior, in terms of
a and n, of the solution u(x,t;tp) is obtained for X sufficiently small when
global existence prevails. Finally, the behavior of T[tp] as X — 0 is obtained
in terms of p, n, a and X in case of finite time blow-up. We hope that with
the aid of those results the "transition" from fast decay (in time) of u(x, t; tp)
to slow decay as t —> oo, from global existence to finite time blow-up, and from
long life span to short lift span, is better understood.

Our main results are stated and proved in §3. Notations and technical lemmas
are included in §2, and §4 contains some concluding remarks.

2. Preliminaries

The following notations will be used throughout the rest of this paper. First,
we denote by pr the first eigenvalue of -A in BR, the ball of radius R in
R", with zero Dirichlet boundary value, and pr the corresponding positive
eigenfunction with JB pR = 1. Then we set Cb(Rn) to be the space of all
bounded continuous functions in R" and, for a > 0,

Ia = lip £ Cb(R")\ip > 0 and limsup|.x|<>M < oo \ ,
{ 1*1-°° J

Ia = ¡w e Cb(Rn)\\p > 0 and liminf \x\ay/(x) > ol .
I 1*1—oo J

For two functions f(r) and g(r), we say that / ~ g near r = 0 (oo respec-
tively) if there exists two positive constants Cx, C2 such that Cxf(r) > g(r) >
C2f(r) near r = 0   (oo respectively).   (Note that the variable r could also
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SEMILINEAR PARABOLIC CAUCHY PROBLEM 367

represent either x £ R" or t > 0.) The letter C denotes a positive generic
constant which may vary from line to line. We shall also use the usual notation
etAq> to represent the solution of the heat equation with initial value tp ; i.e. if
K(x, t) = (4ntYnl2e-^x-y^lM denotes the heat kernel, then

(e"<p)(x)= I K(x-y,t)tp(y)dy
(2.1) h\        ,

= j4nW2Le~^'M<P{y)dy-
Then (1.2) takes the following form

(2.2) u(x, t) = etAtp + [ e('-s)Aup(y ,s)ds.
Jo

The first preliminary result we need is a standard comparison principle which
will be used frequently in this paper.

Lemma 2.3. Suppose that f e C1 (R) and u(x, t), u(x,t)£C2-x(W x(0,T))
n C(R" x [0, T)) are bounded in R" x [0, V] for all V < T. If u(x, 0) >
zz(x, 0) for all xel" and

üt-Aü>f(u)   zzzR" x (0, T),
(2.4) ut-Au< f(u)   in R" x (0, T),
then u(x, t) > u(x, t) for all (x, t) £ W x [0, T). Furthermore, for any
tp £ Cb(W) with u(x, 0) > tp(x) > u(x, 0) z'zz R", there exists a unique solution
u(x, t) £ C2'x(Rn x (0, T)) n C(R" x [0, T)) of the problem

(ut = Au + f(u)    inR"x(0,T),
' 1 u(x,0) = 9(x)   inW,

with the property that u> u>u in R" x [0, T).

Remark 2.6. Lemma 2.3 is well known (see e.g. [AW] for the first half of this
lemma). It also holds in a more general setting allowing / to depend on x, t
and u, and for weak super- and sub-solutions of (2.4) which are unbounded but
satisfy certain growth conditions near x = oo . We refer the interested readers
to [W] in which Lemma 2.3 is proved as a special case by using a maximum
principle in [Fr, Chapter 2, Theorem 9] and the monotone iteration method in
[S, Theorem 3.1].

Our next lemma is a variant of a well-known result of Kaplan [K]. The dif-
ference here is that we impose no boundary condition on zz.
Lemma 2.7. Let u(x, t) be a nonnegative global solution of the equation ut =
Au + up in Í2 x [0, oo ) where Q is a bounded smooth domain in R" . Suppose
that p > 0 and p(x) > 0 z'zz Q are respectively the first eigenvalue and the
first normalized (i.e. Jap = 1) eigenfunction of -A on £2 with zero Dirichlet
boundary condition, then

(2.8) ( u(x,t)p(x)dx<pxl{p-X)   forallt>0.
Ja

Proof. The proof is almost identical to the original one. We include a sketch
with the necessary modifications here. As in [K], we set

w (t)= [ u(x,t)p(x)dx.
Jn
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Then by Green's identity and Jensen's inequality we derive
(2.9) w,>wp-pw   ini>0.
Note that we have used the normalization of p, the nonnegativity of u and the
fact that dp/dv < 0 on the boundary dQ. (where v is the unit outer normal
of dQ,). Then simple arguments show that global existence of w(t), hence that
of u(x, t), requires that (2.8) holds for every t > 0.   Q.E.D.

We shall also need the following estimates for the solution of the linear heat
equation. To simplify the notation we set
(2.10) l(f,V) = \\et&y/\\L°°(R°)
and

(2.11) q(t;a,n) = \ -fI t i log t       if a = n.
Lemma 2.12. (i) l(t ; y/) = 0(q(t ; a, n)) near t = oo for every y/ £ Ia .

(ii) q(t ; a, n) = 0(l(t ; y/)) near t = oo for every y/ £ Ia .
(iii) t~"'2 = 0(l(t; y/)) near t = oo for every nonnegative y/ ^ 0 z'zz C¿,(R").

Proof. Since l(t; y/) is bounded in / > 0 if y/ £ Cb(W), the comparison
principle Lemma 2.3 applies. To prove (i), we may assume, without loss of
generality, that y/(x) = (1 + \x\2)"a'2. It is then not hard to see that etAyi is
radially symmetric in x and (e'Ay/)(0) = l(t; y/) for t > 0. (The last asser-
tion follows from a symmetric rearrangement argument.) Thus straightforward
computation shows that

l(t; y/) = (etAy/)(0) = (4^Z)""/2 / e-^IM(\ + \y\2)~al2dy
Jr"

/»OO
= Cr"12 /    í>-''/4'(l+z-)-a/V/2-líir~í7(z';a,zz)

Jo
as t — oo , where the last estimate is obtained by decomposing the integral from
0 to oo into two integrals—one from 0 to 1 and the other from 1 to oo—and
estimating them separately.

To establish (ii), again by a simple comparison argument, it suffices to con-
sider, for some R large,

^./(.♦wr-. m*m._u
and y/(x) = y/(\x\) is linear in (R - 1, R) so that y/ is continuous in R" .
Observe that by a similar computation as above, it holds that

(2.14)

/■OO

/(/; y/) > (e'Ay/)(0) > Cr"12 \    e~r/4!(l + r)-a'2r"'2-x dr
J&

/•OO

~ r"/2 /    e-r/4lrn/2-a'2-x dr~q(t;a, n)
J&

as t —> oo.
To prove (iii), observe that after a translation we may assume without loss

of generality that y/ > 0 in a neighborhood of the origin, say, in B2ä(0). Then

l(t ; y/) > (etAy/)(0) > Cr"'2 [     e'^2'4' dy > Cr"'2
Jb0(0)

for t large.   Q.E.D.
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Lemma 2.15. Let y/ £ Cb(R") be nonnegative and not identically zero. Then
there exists a positive constant S such that
(2.16) (e2Ay/)(x)>SK(x, 1)
for all x £ R" . Moreover, for y/ £ In, there exists a positive constant ô such
that

(2.17) (e{l+2)Ay/)(x)>ÔKÎx, ~~\ log(l + t)

for all Z > 0 and x £ R" .
Proof. First we prove (2.16). Suppose that y/ > ôx > 0 in Be(xo), a ball of
radius e > 0 centered at xo , for some xç, £ R" . Let

Ó2 = in{{^KA~rw~xeRn' y€B*^}-

It is easily seen that 62 > 0, and that for every x £ R" , we have

(e2Ay)(x)>ôx [      K(x-y,2)dy>ôxô2K(x, l)\Bc(x0)\,

where \Be(xo)\ is the measure of B£(x0). Thus (2.16) holds.
We now turn to (2.17).  For y/ £ In, by a comparison argument we may

assume without loss of generality that for some R > 0 large
_ J |jc|-"   for |jc| >R,

W^X' = I 0 for \x\ < R - 1,
and, y/ is radially symmetric and is linear in (R-\,R) so that y/ is continuous
in R" . Using a similar computation as in (2.14) in the proof of Lemma 2.12(h)
we conclude that there is a positive constant ô such that (2.17) holds for all
t > 0 and for all \x\ <2R. It remains to consider (2.17) for \x\ > 2R. For
|x| > 2R we have

(e«+VAy/)(x) = [4n(t + 2)]~"'2 if + [       ) (^-'^-^l2/4^+2> |>^| ~" dy)
Vy«<M<M    J\x\<\y\J

> C(t + 2)-"'2 (e-^2'{t+2) [
V ^<iyi<i

+ /       e-W2Kt+V\y\-"dy

\y\~ndy
l\x\

\*\<\y\

-nl2p-\x\21(1+2)> C(t + 2)-"'2e-M '{t+1> \ / \y\~" dy
>R<\y\<\x\

rt+2 \
+        e-r'^^r + lxf^dr

Jo j
where r = \y\2 - \x\2 . Since e~rl(t+2) > e~x for r £ (0, t + 2), we obtain

(<?('+2'V)W > C(t + 2)-"'2e-W2'('+2l flog ^ + log t + ]^}X^

> C(t + 2)-"'2e-W2'^log (4 + l-±^\
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since |x| > 2R. Our assertion then follows from the observation that there
exists a positive constant y such that 4 + (t + 2)/R2 > (t + l)y for all z >
0.   Q.E.D.

We shall conclude this section by two technical lemmas. Let p > 1, a > 0
be two constants. We define ak and Ak(x, t), k = 0, 1,... , recursively as
follows: flo = 1 •
(2.18) ak+x = apk(4n)-xpk^"'2)-"(p - \)(pk+x - \)~x,

and
(2.19) Ak(x, t) = akapkK(x, (t + \)p~k)[\og(t + l^'-Dd»-!)-'.

Lemma 2.20. (i) There exists ß > 0 such that ak > ßp  for all k > 0.
(ii) If p - (n + 2)/n then we have

(2.21) /  [ K(x-y,t-s)Apk(y,s)dyds>Ak+x(x,t).
Jo Jr"

Proof, (i) First observe that ak < 1 for all k > 1. Setting t,k - p~k(- \o%ak),
we assert that supfc>0 £,k < oo. Since

-logfl*+1 = -Jplogflyt + log[47rp"+('!/2-1)fc(/+1 - 1)0- I)"1],

it follows that
&+, -4 ^^log^"^/2"^*^1 - 1)0-1)-'].

Thus there exist two positive constants  Cx, C2  such that 0 > £,k+x - Çk <
p-(k+x\Cxk + C2) for all k > 0. This implies that

k oo

w=0 m=0

and our assertion is established.
(ii) Straightforward computation shows that for k > 0 we have

/ K(-,t-s)*Apk(.,s)ds
Jo

= apapM ( K(-,t-s)*Kp(-,(s+l)p-k)[\og(s + \)]p{pk-X){p-xrlds
Jo

= (4n)-xpk-n'2apapk+' [ K(-,t-s)
Jo

„(    s+\\ [log(s + 1)]pCp*-i)(p-i)-'
* A I • ,      , , .       -;-as.V     Pk+X J 5+1

Next, note that
t + p-k~x >t-s+p-k-x(s+l)>p-k-x(t+l)

holds for s £ [0, í], it follows that
K(-,t-s)*K(-, (s+ l)p-k-x) = K(-,t-s+p-k-x(s+ 1))

>
,-k-i {t+l)i"/2

K(-,(t+l)p-"-1)L  t + p-k~x
>p-n(k+l)/2K,^ ,t+ljp-k-\)
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Therefore

/ K(-,t-s)*Apk(-,s)ds
Jo

> (4n)-xpk(x-"'V-"apkapk+lK(-, (t + \)p

(s + lT'ilog^ + l)f (^-1)(p-1)-' ds

-k-U

■
Jo

= (4nTxpk(x-"'V-"apapk+]K (-, *-±^ (p - l)(pk+x - l)"1

.[lo^i+l)]^'-1^-1)"'

= Ak+i(',t).   Q.E.D.
Our second technical lemma is similar to Lemma 2.20. Again, let p > 1,

a > 0 be two constants. We define dk and Dk(x, t), k = 0, 1, ... , recursively
as follows: do = 1,
(2.22) dk+x = dp4-"'2n-xpk(x-"'V-n(p - l)(pk+2 - I)""1,

and

(2.23) Dk(x, t) = dkapkK (x, (L^-) P~k) [log(/+ l)]^'-1^-»"1 .

And, we have

Lemma 2.24. (i) There exists n > 0 such that dk > np   for all k > 0.
(ii) If p - (n + 2)/n, then we have

(2.25) /   [ K(x-y,t-s)Dp(y,s)dyds>Dk+x(x,t).
Jo Jv>0   JR<

Proof. The proof of (i) is almost identical to that of part (i) of Lemma 2.20,
hence is omitted here. Part (ii) can also be proved in a similar fashion as we
did in Lemma 2.20(h). We shall include a sketch below. Since p = (n + 2)/n ,
straightforward computation gives that

' K(>, t-s)*Dp(-,s)dsiJo

-^<«-'->-FF*(-.&)
[log(5+l)]

5+1
t+\

p(pm-\)(p-\T
ds

>-'",4P-^-[*-,2P'"'t"'^{:^)

I
p^,PPkiX-"'2)-"(p-l)K

k  4"'2n(pk+2 - 1)

.[logtz+l)]^2-1^-1'-'

= Dk+x(-,t).

'[lQg(5+l)]
5+1

t+\ \
' 4pk+x )

p(/+1-l)(p-l)
ds
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Note that in the above derivation we have used the following estimates.
K(>, t - s) * K(-, 4~xp-k~x(s + 1)) = K(-, t - s + 4-xp-k~x(s + 1))

4-xp-k-x(t+l)\nl\r   A,k_h

> 4-"'2p-n(-k+x)'2K(-, 4~xp-k-x(t + 1))   for 5 € [0, t].

This completes the proof of (2.25).   Q.E.D.

3. Main results and their proofs
In this section, we consider the following Cauchy problem

ut = Au + u" in R" x (0, T),
(3.1) u(x, 0) = Xy/(x)   in
where p > 1, X > 0 are two constants, y/ > 0 and y/ ^ 0 is in Cb(R").
As stated in the Introduction, we shall only consider the nonnegative solution
satisfying (1.2) and denote it by u(x, t ; Xy/). Our main concerns are the global
existence or nonexistence, large time behavior, and life span T[Xy/] (defined by
(1.3)) of the solution. The first result contains a sufficient condition for finite
time blow-up in terms of the behavior of y/ at x = oo and a sharp estimate
for the life span T[Xy/] as X —► oo.
Theorem 3.2. (i) T[y/] < oo (i.e. setting X = 1 z'zz (3.1)) if

liminf\x\2'{p-X)y/(x)>p\/(p~l).
x—>oo

(ii) There exists A > 0, depending on p, n and y/, such that T[Xy/] < oo
for X > A and T[Xy/] ~ X~^-x) as X — oo .
Proof, (i) We shall apply Lemma 2.7 with Q = BR . To this end, we assume
that T[y/] = oo . By the scaling property of eigenvalues and eigenfunctions we
see that pR — pxR~2 and Pr(x) = R~"px(xR~x), x £ BR. It then follows
from (2.8) that for every 0 < e < 1,

ßmP-x)R-2,(P-x) > r    WPr> ff ¥{x)\ r    Pr
JßR\BtR \R>M>eR } JBr\BsR

inf    y/(x)    I       px.
R>\x\>eR ) JBABc

Thus

(3.3) p\'^(    inf*    \x\W-Mx)) f      Pi
\R>\x\>cR j JBl\Be

for every R > 0 and e £ (0, 1). Now, for a fixed integer k, let R > k and
e = k/R. Then letting R — oo we obtain from (3.3) that

p\'{p-X) > ( inf Ixl^-'Vwl / P\ - inf \x\2'(p-x)y/(x).
\\x\>k J JB] \x\>k

Since this holds for every k , (i) is established.
(ii) It is clear that the existence of A is an immediate consequence of the

estimate T[Xy/] ~ A-^-1' whose proof we now turn to.  The lower estimate
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T[Xy/] > CA_(p_1) is easily obtained by applying Lemma 2.3 to the pair of sub-
and super-solutions u(x, t) = 0 and

(3.4) u(x, t) = [(AII^Hicc^))-^1) - (p - l)/]-1^-" .
To derive the upper estimate, we first choose R so large that y/ =á 0 in
Br . It then follows from Lemma 2.7 (with Q = BR) that T[Xy/] < oo if
X > Pr/{p~1)(JBr WPr)'1 . (Thus we may choose A = PR/iP~l)(fBR WPr)~x for
instance.) Next, we set

w(t) = I   u(x, t; Xy/)pR(x)dx= /   u(x, t;
Jbr

for 0 < t < T[Xy/]. By Green's identity and Jensen's inequality (as in the proof
of Lemma 2.7) we obtain

(3.5) {
wt>wp- pRw   for / < T[Xy/],
w(0)=XlBRy/pR>0.

Since it is clear that wt > wp - pRw > 0 for all t £ [0, T[Xy/]) if X is large,
we deduce from (3.5) that

JW\<   rwmwP)      dw C CÍM0) wp-pRw - wp~x(0)     Xp-^

This finishes the proof.   Q.E.D.
Remark 3.6. (i) If p < (n + 2)/n, then we may take A = 0 in part (ii) of
Theorem 3.2 by previous works of Fujita, and others (see for instance [We]).

(ii) As a consequence of part (i) of Theorem 3.2 we see that all positive self-
similar solutions t~x'ij'~x'>v(xt~xl2) of the equation in (3.1) (see [HW] for the
existence) must satisfy

(3.7) lim inf \x\2'^p-x)v(x) < /z,1/(p_1),
X—»oo

and so do all the positive steady states of (3.1).
Our next result concerns the large time behavior of solutions of (3.1).

Theorem 3.8. Suppose that p > (n + 2)/n and a > 2/(p- 1). Then the following
conclusions hold.

(i) For every y/ £ Ia, there exists Aq > 0, depending on p, n and y/, such
that T[Xy/] — oo for every X < Aq . Moreover, for X < Aq we have

(3.9) \\u(-,t; Xy/)\\Loo{Rn) = 0(q(t; a, n))   ast-^oo.

(ii) For every y/ £ Ia with T[y/] — oo, we have

(3.10) q(t;a,n) = 0(\\u(-,t;y/)\\L<x>m)   así —oo.
Proof, (i) We shall construct u = 0 and zz with the following property

{Ü, > AH + Tf in R" x (0, oo),
U(x, 0) > Xy/(x) inR",
||w(-, 0IIl°°(r») = 0^(1 ;a,n))   as / -> oo.

Then Lemma 2.3 will guarantee that ïi(x, t) > u(x, t ; Xy/) > 0 for all (x, t) £
R" x [0, oo) and the proof will then be complete. To construct such a 17, we
need to distinguish two cases: a > 2/(p - 1) and a = 2/(p - 1).
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Case I: a = 2/(p - 1). Since p > (n + 2)/n, we have n > 2/(p - 1) = a.
Thus q(t; a, n) ~ z-1/^-1) near r = oo. It was proved in [HW, Theorem 5]
that the equation in (3.1) possesses a positive self-similar solution u(x, t) =
ri/(p-i)v(xri/2) with v<x) > o on R" and limx^œ \x\2Hp-i)v(x) > 0. Let
Arj be a positive constant such that v(x) > Aoí¿/(.x) on R" . Then for X < Ao,
we have u(x, 1) = v(x) > Xy/(x) and it follows that u(x, t + 1) > u(x, t ; Xyi)
for all x £ Rn and t > 0. Since

||«(-,i+l)||Loo(Rn) = (Z+l)-1^-1)-z;(0)~r1^-1)   for / large,

we only have to set ü~(x, t) = u(x, t + 1) and zz solves (3.11).
Case II. a > 2/(p - 1). In this case u(x, t) takes the form ü~(x, t) =

hx(t)etAy/ where
1/U-P)

(3.12) hx(t)
L ^0

Since min{zz, zz} > 2/(p - 1),

xx-p-(p-i)Jo n^Vlli^)^

e^y/fr^^ds < oo
/'0

in view of Lemma 2.12(i). Therefore, for X < A0 where
i/(i-z

li°°(E") ^°Ao =
/•OO

/ ll^Vllic
^0

20-1)/    \\esAy,\\p-xds

hx(t) is well defined in [0, oo) and there exists a constant e such that hx(t) >
e > 0 for all Z > 0. This implies that u(x, t) is defined on R" x [0, oo) with

||w(-, r)||z.=°(K") ~ ||e'V||z.oo(Rn) = 0(q(t;a, zz))

near t = oo . It is clear that ü(x, 0) = Xy/(x). Finally, the conclusion that zz
satisfies the differential inequality in (3.11) follows immediately from the fact
that

^ = Ik'Vlli^)^   in/>0,
which in turn may be verified by straightforward computation.

(ii) We set ~ü(x, t) = u(x, t; y/) and u(x, t) = etAy/ in R" x [0, oo). Then
Lemma 2.3 implies that ü > u in R" x (0, oo), and our assertion (3.10) follows
from Lemma 2.12(h).   Q.E.D.

Finally we come to the estimates of the life span T[Xyi] as X approaches 0
in case u(x, t; Xy/) blows up at finite time for arbitrarily small X > 0. First
we make the following observation for general initial value y/ > 0 in Cb(R").

Remark 3.13. Let 0 < y/ £ Cb(R") and y/ ¿ 0. Then from (3.11) it is clear
that T[Xy/] > Tx where [0, Tx) is the maximal time interval for the existence
of û, i.e. that of hx in (3.12). Thus 7¿ is given by

(3.14) (p - l)~xXx~p = J Á \\esAip\\pL-Jmn)ds.

Since
\\esAy/\\L°°(R») < ||v||l~(r-)

for all s > 0, we deduce that Tk > CXX~P —» oo as X — 0.
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Theorem 3.15. (i) Suppose that p = (n + 2)/n and a > 2/0 - 1) = zz. Then
for every y/ £ Ia , there exists a constant C > 0 such that

(C(l/Xy~l,        ifa>n,3.16 logT[Xy/]< I     w '      ' \
K      ' 6   ini C(\/X)(p~xVp,    ifa = n,
as X —► 0.

(ii) Suppose that p < (n + 2)/n or a < 2/0 - 1) • Then for every yi £ Ia,
there exists a constant C > 0 such that

{ c(l/A)(1A*-1HminKn»"1,    ifain,

(iA1)    ™Mc(ä)<"<'-w'.  '/*=»■
íü A —» O .
Proo/. (i) First we treat the case a > n. Let yi £ Ia and m(x, / ; Xyi) be
the solution of (3.1). Setting u(x, t) = u(x, t + 2; Xy/) for t > 0, we see
that ü(x, 0) = u(x, 2;Xyi) > (e2AXy/)(x) > XSK(x, 1) for some ô > 0 as
guaranteed by Lemma 2.3 and (2.16). Thus if we set u(x, t) = XSK(x, t + 1)
for t > 0, then it follows from Lemma 2.3 again that u(x, t + 2; Xyi) >
X8K(x,t+\) in R" x [0, T[Xy/] - 2). Note that A0(x, t) = XSK(x, t + 1) if
we choose a — X6 in (2.19). From the integral representation of ü and (2.21)
we obtain

u(x, t + 2; Xyi) > /   /   K(x -y, t -s)up(y, s + 2; Xy/)dyds
Jo Jr"

> K(x-y,t-s)Al(y,s)dyds
Jo Jr"

>Ap(x,t).
Iterating this argument yields that

u(x, t + 2 ; Xy/) > Ak(x, t),    for k = 0, 1, 2, ... ,
and therefore by Lemma 2.20(i) it follows that

u(x, t + 2; Xyi)
(3-18) >s\^{(X6ß)pkK(x, (t + l)p-k)[\og(t + l)](pk-X)(p-x)~'}

k

for (x, t) £ R" x [0, T[Xyi] - 2). For the right-hand side of (3.18) to be finite
at x = 0 it is necessary to have

Xöß\og(t+\)x'(p-X) < 1,

that is,
/ 1 \p~x ( l \p~x

log(f+l)<

and (3.16) is established in the case a > n .
In case a = n - 2/0 - 1), we set u(x, t) = u(x, t + 2; Xyi) and u(x, t) =

(Xe^+2^Ayi)(x). Then Lemma 2.3 and (2.17) together imply that

u(x, t + 2; Xyi) > (Xe{l+2)Ayi)(x)

> XÖK (x, *-^\ log(Z + 1) = DQ(x, i)
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in R" x [0, T[Xyi]-2), since yi £ I„ . Applying Lemma 2.24 instead of Lemma
2.20 in argument above leading to (3.18) yields

(3.19)
u(x, t + 2 ; Xyi) > sup < (Xôn)p K Í x, —j—P'

[logti+l)]^1-1^-1)"1}

Similarly the finiteness of the right-hand side of (3.19) at x = 0 implies that
XSn\og(t + íy/^-1) < i which in turn implies (3.16) in the case a = n . This
completes the proof of part (i).

(ii) The proof of this part is easier. By Lemma 2.3, we may assume without
loss of generality that yi is given by (2.13). Setting M = T[Xyi]/2, we define

w(t)= i K(x, M - t)u(x,t;Xyi)dx   for t£[0,M].
Jr"

Since u must be radially symmetric and bounded, we have, for each t £ [0, M],
there exists a sequence rm —► oo such that

max{K(x, M - t)\Vu(x, t ; Xyi)\ \ \x\ = rm} -> 0
as m -* oo. This, combined with Green's theorem and Jensen's inequality,
implies that
(3.20) wt>wp   in[Q,M],
and, by the computation in (2.14),

w(0) = X [ K(x,M)yi(x)dx = (XeMAyi)(0)>XCq(M;a,n)

for some constant C > 0. (Note that M —► oo as X — 0 in view of Remark
3.13.) Integrating (3.20) from 0 to M, we deduce that

M <(p- l)-xwx-p(0) < c(j\      qx~p(M;a, zz).

Now (3.17) follows from the explicit form of q(M; a, n) in (2.11 ) and the fact
that the function Z(logf)-1 is increasing for t large.   Q.E.D.

We should point out that the method used in handling part (i) of Theorem
3.15 is similar to the one in [H].

Our last result establishes a converse of Theorem 3.15.

Theorem 3.21. (i) Suppose that p — (n + 2)/n and a > 2/0 - 1) = zz.  Then
for every yi £ Ia, there exists a constant C > 0 such that

(C(l/X)p-X,        ifa>n,(3.22) \ogT[Xyi]> I     w '.    ,' J
K       ' h   L Vi~ I C(l/X)(p-xyp,    ifa = n,
as X —* 0.

(ii) Suppose that p < (n + 2)/n or a < 2/0 - 1) • Then for every yi £ Ia,
there exists a constant C > 0 such that

[ cO/A^p-iHminKH})-^    ifa^n,
<3'23)        T['■V]>-\c(^T>)^-,,-"'lr■■      V-'.
as A -+ 0.
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Proof. From Remark 3.13 we know that (3.14) holds.   Since  yi £ Ia, and
Tx -> oo as X —> 0, by Lemma 2.12(i), we have

[" \\es^\Vmds

<C + C       qp~x(s;a,n)ds

l\p-1 <c + c _
'l

(3.24) f cr;-((p-1)/2)min{a'"},        if min{a, «} < 2/0 - 1)
and a ± n,

CTl~n(p-x)'2(\ogTx)p-x,    if zz = zz < 2/0 - 1),
ClogrA, iffl>n = 2/0-1),

lC(log7^, if a = n = 2/0-1),
where C represents generic positive constants independent of X. (Note that
the first two cases in the last inequality correspond to (ii) while the last two
correspond to (i).) Since T[Xyi] > 7¿ (by Remark 3.13), our conclusions follow
from (3.24) by straightforward computations.   Q.E.D.

4. Concluding remarks
In this paper we have only considered global existence or nonexistence, large

time behavior and life span of the solution u(x, t; Xyi) of (3.1) for yi with
polynomial decay and, for X sufficiently large or sufficiently small. Due to
the (possible) presence of steady states of (3.1) and their complicated structure
which depends on p and zz, the same questions considered here for X of in-
termediate sizes are extremely interesting and must have very different answers.
Good progress has been made recently by X. Wang [W].
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