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Abstract. We discuss the global existence of small solutions to the Cauchy
problem for systems of quasilinear wave equations in three space dimensions,
when their nonlinear terms have quadratic nonlinearity. A global existence
theorem is established on the null condition which is extended to the condition
for systems of wave equations with different propagation speeds.

1. Introduction.

We consider the Cauchy problem for systems of quasilinear wave equations
o' = F'(0u,0*u) in [0, 0) x R, (1.1)
u'(0,)=ef', 0u'(0,)=eg’ in R, i=1,...,m, (1.2)

where 0; = 07 — ¢? ].3:1 81-2, ci>0,0,=0/0x* t=x" x=(x",x*,x*). u' =u'(t,x) are
real-valued unknown functions, and F’, f*, g' are given functions. We denote by & the

space-time derivatives, i.e.

ou = (O,u’) 0*u = (020pu"), 5 1

o, 17

where o, f range over 0,1,2,3 and i over 1,...,m. Assume that f’ and ¢’ belong to

CZ(R%) and ¢ is a positive small parameter. We also assume that each F'(u, 0%u) takes

the form
m 3
(Ou,0u) =Y Y Cl(0u)d,dpu’ + D'(0u), (1.3)
j=1 a,p=0
Cyly(0u) = CJ,(0u), (1.4)
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oD’

;
¢ (0pul)

up

(0)=0, D(0)= (0) =0, (L.5)
where CO’{/} and D' are C*-functions near du = 0.

We give a condition to assure global existence for the Cauchy problem (1.1)—(1.2) in
three space dimensions. Small solutions exist globally when Fi(du,d*u) do not have
quadratic parts. But in general we cannot expect global solutions when they have
quadratic parts even if ¢ is small (see, e.g., [5]). However, S. Klainerman [8] introduced
the null condition to deal with the quadratic parts of single wave equations (or systems
of wave equations with the same propagation speeds) and proved a global existence
theorem on that condition. We extend the Klainerman’s null condition to the case
where the propagation speeds are different. In two space dimensions, it was shown in
that the null condition for the systems with different propagation speeds could be
derived by applying John-Shatah observation, provided D(du) = 0. We can derive the

following null condition to our case, by applying the similar argument. That is,

3 3
Y CHXIXiX] =0, > DEXIXj=0 (i=1,...,m)

O(,[)),y:() 0(,[5,:0

for all real vectors X' = (Xj, X{, X;, X]) satisfying (1.6)

3
(X{)? -2 (x))? =0,
j=1

Here we have set

) acy , o’Di
jk _ o ijk

We remark that the null condition for the systems with different propagation speeds is
partly suggested in [2]. The aim of this paper is to prove a global existence theorem

under the null condition (1.6).

THEOREM 1.1. Let propagation speeds c; be different from each other. Assume that
the nonlinear terms F'(0u,d*u) given by (1.3)~(1.5) satisfy the null condition (1.6) and

Clly(0u) = CJy(0u). (1.7)

Then there exits a positive constant & such that the Cauchy problem (1.1)—(1.2) has a

unique C*-solution in [0,0) x R for & with 0 <& < &.

In order to prove the theorem, we use the invariant Sobolev norms. Unlike one-

speed cases where we can fully use generators of the Poincaré group, the boost operators
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are unavailable for systems with different propagation speeds, since they do not have
good commutation relations with 0;. To avoid this difficulty, some estimates with the
use of only generators of translations, rotations and dilations are proved ([3], [9].
Especially in [3], A. Hoshiga and H. Kubo proved a global existence theorem cor-
responding to in two space dimensions. However, comparing with the two
spatial dimensions, we have more trouble with time decay estimates. In fact, even in the
simple case where Cj = D[ = 0, our weighted L*-estimates involve log ¢ ([Proposition]
3.1; see also [3], Proposition 4.3). We show that the null condition enables us to remove
logt from our estimates (section 3.2). Further, by virtue of the null condition, we can
prove L2-boundedness of the derivatives of the solution (section 4), which leads to the

global existence theorem.

2. Notation.

Set
0, =0/0x*, x"=1,

0= (80761762783)7
V= (81762763)7
r=|x| for xeR>.

We denote by I' = (Ip,...,I7) the collection of differential operators 0,0, S where

Q=x AV, (2.1)
I =8 =10, + ro,, (2.2)
0, = ’_: V. (2.3)

Then we find that the bracket [I5,I;] of any I, and I is written by another I.

Moreover, we have

[I,,00]=0 for 0<a<6 and [I7,0]=-20O;. (2.4)
We also note that
X X

For a = (ay,...,ar) (a;€{0,...,7},1 <i < k) we define

r‘=r,---1, and |a=*k. (2.6)



612 K. YokovyAamMaA

Let u=‘(u',...,u™) be a vector and set
wi(t,r) =1 +r)(1+|ct—r]) (I=1,...,m). (2.7)
Then we define
m 3 ‘
Oul, =Y ) > sup sup |wils, |x) T, (s, x)], (2.8)
laj<k i=1 a=0 0<5<f xeR’

3

loule = 3= 50 S 170 (6, ), (29)

la|<k i=1 a=0
[Oully,, = sup [[Ou(s)][- (2.10)
0<s<t

3. Weighted L™ -estimates.

3.1. Estimates for solutions of scalar wave equations.

Let v =v(¢,x) be the smooth solution of the Cauchy problem
0*v—ciAv=F in [0,T) x R®, (3.1)
v(0,-) = 0,;v(0,-) =0 in R (3.2)

where F e C*([0,T) x R*) and F(t,-) e CZ*(R®) for each t. In this subsection we

present the decay estimates for v that we will use later on.

PROPOSITION 3.1.  Let v be the solution of (3.1)—(3.2). For 1 <u, 0 <vand 0 <c,

we set

Zuv(8,4) = (L + |es— A" (1+s4+2)",

U 3.3
My (F) =) sup sup |ylz(s [YDITF (s, ). (3.4)

\a|§k 0<s<t yeR3

Then we have

() Jo(t,x)] < C(L+ 1+ [x]) 7 Bt ()@t (1) My c0(F) (3-5)

for 1 <u, 1 <v,

(i) [oo(t, )] < C(1+ )™ (1 + ot = x| )™ Byt () My w1 (F) (3.6)
for 1 < pu,0<v,c#cy, and
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(iii)  00(t, )| < C(1+ [x]) ™ {(1 + [eot = |x] ) Bua (1)
+ (1 + ot = [x] ) " Do ()} My 1 (F) (3.7)
for 1 <u,1 <v,c=cy.
Here, the constant C depends on cy,c,u and v.

Proor. By a change of coodinates, the proof can be reduced to the case where
co=1. So we let ¢o=1. Set |x| =r. In appendix in [4], F. John showed that the
solution of (3.1)—(3.2) could be expressed in the form

t r+t—s 2
b(t,x) = (4mr)”! J dsJ MJ F(s,40) do, (3.8)
0 [r—t+s| 0
where
O = O(s, 4,p) = R(sinyy cos ¢, siny sin ¢, cos ),
R is an orthogonal transformation with R(0,0,r) = x, (3.9)

cosyy = (2 ) (PP + 22 = (1—9)%), siny = (1 —cos’y)"/%.

Thus, v can be written as

2n
/ldxldsJ F(s, 10) dg, (3.10)
0

v(t,x) = (4nr) ! J

D

where

D={(s,A)|0<s<t,di <A<},

(3.11)
M=lr—t+s|, h=r+t—s.
We first prove (3.5). By (3.10),
lu(t,x)| < ClgM .0 (F)
where
Iy = r—1J Zuv(8, )" dids. (3.12)
D
We obtain (3.5) from
L <C+t+r"'® ()P, (1), (3.13)

which we will prove now. In order to prove (3.13), four cases
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1. r<l1,
2. 1<rand 2+c)t<r,
3. I<rand 27t<r<(2+o),
4. 1<rand r<27't
are considered separately.

In the first case, we have
Jo— A <2r (L£2),

and hence

t o
Iy < Cr_lj dSJ ZMV(S, /12)71 d
0 ya

t
< CJ (14 Jes — 2a]) (1 + s+ o)~ ds
0

<C(l+t+r)"® (1)

Therefore, (3.13) is proved for the case 1.

In the second case, the inequalities
A—cs>min{r—t,r—ct} > (2+¢)" (1 +min{1,c})r (3.14)
hold for (s,A) e D. Hence it follows from
Zin(s, )< Ccl ) (3.15)

that

Iy<Cr! J (1+r)*"dids
D

<C(+t+r)'"+

Consequently, we have (3.13) for the case 2.

In the third and the fourth case, we introduce the new variables of integration
o I 1 S

= . 3.16

(5)= ()G 619

ay = 27(1 = )+ (1 +¢)(r— 1)) (3.17)

Set
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If [t—r|<a<t+r, then —co < oy < a. Hence,

r

J Zun(s, ) Vddds < | (14 |es— A H(1+ s+ 2) " dads
D JD

r+t o
< (1—|—oc)vdocJ (14 |p) “dp

[r—1 o

rr+t

A
=
_|_
=

i
T
&
Q
K

Therefore in the third case, it follows that

r+t
Iy < C(1 +r)1qs,,_1(z)J (1+0) " du

lr—]
<C(l+t+r) "D (D, (1),
and in the fourth case, it follows that

t+r
Ih<Cr\(141— r>—V¢ﬂ_1(z)J do

t—r
<C(l+t+r)"® ().

Hence we have proved (3.13) in all cases.

We next prove (3.6) and [3.7). In order to prove (3.6) and ((3.7), we give rep-
resentation formulae for d,v.

Let (s,4) e D and 0 < ¢ <27 By (2.5),
(VF)(s,10) = O(0,F)(s,20) — 2@ A (QF)(s,.0). (3.18)
Since 8,0 - @ = 0, it follows that
(0,F)(s,20) = 0,{F(s,20)} — 10,6 - (VF)(s, 1.0)
= 0,{F(s5,20)} — 20,0 - {O(3,F)(s,40) — 1710 A (QF)(s,20)}
= 0,{F(s5,40)} + 8,0 - (6 A (QF)(s,10)). (3.19)
In a similar manner,
(0,F)(s5,20) = 0,{F(5,20)} + 0,0 - (6 A (QF)(s, 10)). (3.20)

If we substitute (3.19) into (3.18), we have
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(VF)(s,10) = O0;{F(s5,1.0)} + ©{0,0 - (0 A (QF)(s,20))}
—27'0 A (QF)(s,70). (3.21)

We use these expressions in

2n
A dlds J (0,F)(s,20) dg,
0

Outlt, ) = () |

D

which are obtained from (3.10). We split the domain of integration D into D; and D»,

where
Dy ={(s,2)€D| 1 <A<ii+6 or }—d <A<},
D, = D\Dy, (3.22)

0 = min{l,r}.

Using (3.20), (3.21) and integrating by parts on the domain D,, we obtain the following

representation formulae.

2n 2n
dnrdn(t, x) = J ).dxldsj (0,F)(s,20)dg —I-J ng dJJ AF(s,20)dg
D 0 D, 0
2n
+ J ﬂd/ldsj 0,0 - (0 A (QF)(s, 10)) dp (3.23)

D; 0

2n 2n

dnrVo(t, x) = J ididsJ (VF)(s,20)dp + J n do‘J LOF (s,A0) dg
D 0 D, 0

2n
_ didsJ (OF(s,70) + 0 A (QF)(s,40)} dp
JD; 0

+ ididstn[—ai@F(s,}t@)+@{6i@-(@/\(QF)(S,E@))}]d(p (3.24)
D, 0

Here, (ny,n,) is the unit outer normal vector field on 0D, and do is the line element on
0D;.
Note that D, = & if r < 1. Therefore it follows from and (3.24) that

4
0v(2,x)] < CY LMy, 1 (F) (3.25)
=1

1
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where
I =" J Zuv(s, )" dids, (3.26)
D,

L=>0+r" z.(524) " do, (3.27)
JoD,

L=>0+r" (142201 dids, (3.28)
J Dy

Li=1+r" sup 00|z,.,(s, 4) " dids. (3.29)

D, 0<¢p<2rn

By the definition of the domain D;, we can easily see
I, < CL. (330)

Concerning I, I3 and Iy, we will prove

L<C+n) 0 +t—r)""® (1) (3.31)
for 1 <u O0<v, c#1,
L<CA+r) U +t=r)7Bu i (1) + (1 + |t — ) D,_1 (1)} (3.32)
for 1<u 1<v, c=1,
L<CA+n) " 1+]t—r)"Dui(2) (3.33)
for 1 <u, 0<v, and
L<CO+r) " 1+]t—r)"®, (1) (3.34)

for 1 <u, O0<v,c#1lorl<p 1/2<v, c=1. If we have proved (3.31)—(3.34), then
(3.6) and are obtained through (3.25), (3.30) and these estimates.

(a) Proor oOF (3.31) anD (3.32).

If r>2+c¢)t, (3.31) and (3.32) are easily obtained from (3.14). So we let
r<(2+ot.

By the definition of I, we have

(1+nhL<CL+5L'+ 1",

where
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ot

L= zu,v(s,/ll)fl ds,
JOo

ot

L= zu(s, /12)71 ds,
JOo

t+r

=\ z..00"d

Jt—r|

If ¢ #1, it follows that

Z'SJ L+les— ) “(1+s+4) "ds

C+ [t =r)) "B (2),

because s+ A, > |t —r|. However, if ¢ =1,

t
L< J (I ls =A™ (1 +s+41) " ds
0

(l‘*l‘)Jr
_ J (Lt ls =) (1 +1—r)" ds
0

t
+J (=) (0 + 54 4) " ds
(tfr)-p

< 1+t =) "By () + C(1+ |t — 1)) "y ().

As for 1) and I,)”, we obtain, straightforwardly,
L'<sCl+t4r)"d(),
L' < C+e—r)

for 1 <u and 0 <v. Thus we have proved (3.31) and (3.32).

(b) Proor oF (3.33).
In case r > (2 + )¢, (3.33) results from (3.14).
Let r < (24 ¢)t. If ¢ =0, by the change of variables (3.16),

t+r

(1+ 1)l < J (1 —f—oc)_vdocr(l LB ap

|t=r]|

t+r

1=

C(1+ |t = r]) "By (0).
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If ¢ >0, set
Ao ={(5,2)]0 <A <27 'es},
(3.35)
A; ={(s,2)]0 <27'es < 2.
Since
(M) edo= (14D 250 <CU+ A +s5+ 1), (3.36)

(s, 0)ed; =14+ 2050 ' <CU+es—A) A +s+ 47", (337
the inequality

T+ "z ) < C{U+ )"+ (I +les—A) YA +s+ )" (3.38)
holds. Hence, adapting for each term of (3.38), we obtain (3.33).

(c) ProoOF oF (3.34).
We first need estimates of |[0@|. By the definition (3.9) of ©, we have

0:0] = |47 + Lo A H(AF = 20) (35 = 27} 2,
0,0] = (7 + 22){(2* = 2D) (23 = 1)} 2,
where A; =¢—s—r. Noting

- {—/11 for (1—r), <s<t
A forO<s<t—r,

it follows from

APt ddy =2+ 1)+l = 2),
A=+ )+ (Ja—2)

that
(t—r), <s<t=00] < (A=) 2+ -2 (3.39)

0<s<t—r=100| <=3V {(h-)0— 2}V (3.40)
As before, the case r > (24 ¢)t is easy. So we consider r < (24 ¢)t. Set

D) = {(s,)) e Dy|(t—r), <s<i},
(3.41)

DY ={(s,)) eD,)|0<s<i—r}
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Then from (3.39) and (3.40),

(s, )eDV) = 100 < C{(1+ A= 21) P+ (14 20— 27231+ 2712

(5,2) e DY = 00| < C{(1+ )P+ (14— D70+ 4= a) 72

Hence, noting (3.36) and (3.37), we obtain the following estimates:

where

(5.4) € DY = 100z,,(5,2) " < C{p0(s.2) + ¢, 2)}, i=12  (3.42)

P(s.2) = 5},{>;1(s, A) + 5},?;2(5, A), i=1,2, (3.43)
g0, (s,2) =0 (s, 1) + 002 (s, ), i=1,2, (3.44)

ENNs,2) = (L A=) P+ 07 (1454 2) 7,
EN(s, ) = (=2 A+ )P (1 s+ 2)7,
nO s, A) = (L4 2= 4) P+ Jes = AN (1 +s+4) 7127,
N2, 2) = (L+ 20— 27 P (L Jes = AN (L +s+2) 7127,

Govt(s.4) = (L4 )7 U4 A= 2) P (ks +2) 7,

E02(5,2) = (14 2o — 71+ 2= i)+ (U s+ )7,

We change the variables of integration by [(3.16). Here, we let ¢ = 0 to adapt for

(1)

(2)

Punv(s,4) and p,;y(s,4). Then we can prove

J G (s, 2) dads < C(1+ |t = 1) "D (1) (3.45)
oy

2

for I <u, 0<v,

J s A dids < CQ [ rl) B0 (1) (3.46)
o
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for 1 <pu, 0<v, (i,j) #(1,1), and

J ()”ﬂlv’l(S, A)dids < C(1+|t—r]) " ®,_1(2) (3.47)
pV

2

forl <u, O0<wv,c#1lorl<u 1/2<v, c=1. We show the estimate of the integral of
fl(j)v’l(s,/l) and n,(l{)v’l(s, /) here. The others are easy to treat.
We first prove

r (148 —a0) (1 +|B)) " dp

< C{(1+ Joo]) > + x(a0) (1 + o) ™2 Dy (), (3.48)

for t>1 and |t —r| < a < t+r, where y is the characteristic function of the interval
(—00,0). Let (a,b) = (29,) to be the interval where 1+ —op <1+ |B]. If o9 >0,
then (a,b) = (9, ), and if oy < 0, then (a,b) = (a9, %/2). Integrating by parts,

b
j (14— 00) (1 4 |B) " dp

a

b
= [(opt201+ 5 00) P31+ 1p) " ap

a

<2(1+ b)YV + zfru +18) A dp

< C{(1+]a))"* "+ (14 [p)"*7}
< C(1+ |ao) 27

Hence,

[+ p a0 20+ 1) ap

b o
- Ja +Jb
< C(1+ o) > + Clon) J:u T Jaal) 201+ 1B) " dp,

and we obtain [3.48).
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Since 4 — Ay =2(1+¢)"'(f— o) in Dgl), it follows from that

J L Gt (s.2) dads
pV

cl+r o

<c (l+oc)_vdocJ (14 B —a0)” (1 4+ p)" 2+ ap

Jt—r| ol

t+r
<C (1+0)"(1 4 o) “do

|t=r]

< C+[r=r) 7D (),

which proves (3.45) for i = j = 1. Concerning n,(,{)v’l(s, 1), we have

(1,1
JDW My (s, 4)dAds

2

t+r o

<cC <1+a>”“docj (4B —o0) ™21+ |B) " dp

[t—r| o

t+r

<C|l A+ + ) 2 dad, 1 (2). (3.49)
J|t—r]
If ¢=1, we note that op =r—1¢t. If ¢#1, let h(z) be a primitive of (1 +|o¢o|)_l/2.
Integrating by parts, it follows that
t+r
J (1 +0) 271+ Jaol) ™ de
|t—r]
t+r
< (142 i(a) L1240 | (14 b)) d
o=|t—r|, t+r [t—r|
<Cl+|t—r)",
since |h(x)| < C(14«)"/%. Hence we obtain (3.47).
3.2. An estimate for the quasilinear system with the null condition.
PROPOSITION 3.2. Let u= (u',...,u™) be the smooth solution of
ou' = F'(0u,d*u) in [0,T) x R?, (3.50)
u'(0,-) =ef’, 0u'(0,:)=eg’ in R, (3.51)

i=1,...,m.
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Assume that F' satisfy (1.6) and ¢; are different from each other. If e¢<1 and
[0uli(n16)/2,0 < 1, then there exists a constant Cy, depending on N,c; (1 <i<m) and

given functions, such that
(Ol < Cyle+ 0ully4s,)- (3:52)

PrOOF. Let u) be the solutions of the homogeneous equations

oub =0 in [0,0) x R?, (3.53)
ud(0,-) =ef’, Oui(0,-) =eg’ in R (3.54)
i=1,...,m.

From (2.4), each I'“u] satisfies (3.53). Hence by the proof of Theorem 1 in [7] we have
1Tl (1, %) < Cxe(1 4+ 1) (1 + |eit —r]) 7!

< Cye(l+t41)7", (3.55)

0T “ul(t,x)| < Cye(1+7) "' (1+|cit—r]) 7", (3.56)

for |a| < N. Here and hereafter, we denote by Cy a various constant depending on N, ¢;
and given functions.
Set

Uy = u— u. (3.57)

Then, each I"“u{ satisfies the equation of the form

ol uf = > CyTPF(0u,0%u) in [0,T) x R, (3.58)
b/ <lal
ruj(0,-) = o,/“uj(0,-) =0 in R’. (3.59)

We apply [Proposition 3.1 to a solution of (3.58)—(3.59) by replacing the weight z, ,(s, 1)
with

m+1 0 | -1
Z(S,i) = {Zzll,l(s,/l) } s
i=1

where

20 (5,0) = (14 |es— D" +5+2)", e =0. (3.60)

Hn,v
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If we replace the weight z, ,(s,4) in with z(s,4), then each z,,(s,2)”" in (3.12),
(3.26)—(3.29) is also changed for z(s, )~ = S /! zgi)l (s,4)"". Hence we have

\Fui (1, x)] < Cy(1 4 t47r)"{log(2 + 1)}* My (F'), (3.61)
00 “ui (1,x)] < Cy(1+7) " (1 + |est — r]) ' log(2 4 t) My 1 (F), (3.62)
for |a| < N, where

Mi(F') =Y sup sup |y|z(s,|y])|1“F'(du, 0*u)(s, y)|-

la| <k 0<s<t y€R3

In order to estimate M (F'), we use the Sobolev inequality (Lemma 4.2 in [9]):

la] <2 la] <1

BIAVAGDIES C{ D12 ey + D 102 poim) } (3.63)
If |p|+ |c| <k and 0 <s <t we have

| yIz(s, [yDIOTu/ (s, p)[ |07 u'(s, p)| < Ci[ouly oy [0l s,
since z(s,|y]) < Cwi(s,|y|) (i=1,...,m). Therefore,

M (F') < Cilou)(ei1y ) 0l s (3.64)

provided |du|, |0*u| < 1. Therefore, it follows from (3.55), (3.56), (3.61), (3.62) and [3.64)
that

[Tu'(6,x)] < Cy(1+ 14 1r)" {log(2 + 1)} (& + [l g1y ULy 15.), (3.65)
07 “u' (1, )| < Cy(1+7) " (1 + et = 1)~ og(2 + 1) (e + [0ulyy 2 100l g ) (3.66)

for |a| < N.
Next, we estimate the nonlinear terms by making use of (3.65), (3.66). We separate

F' into three parts:

F'(0u,d*u) = N'(0u, 0*u) + R'(0u, 0*u) + G'(du, 0*u), (3.67)
where
N'(ou,0’u) = > Cliou'd,dpu'+ Y Dijou'op, (3.68)
0<o,p,7y<3 0<o,f<3
(0w, %) = ) < Yoo clrouta.opl + Y D%@uu-iéﬁuk>, (3.69)
(j, k) #(i,i) \0<a,f,y<3 0<o,p<3
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and G'(du,0’u) are higher order terms. Moreover, by the null condition (1.6),

N(du,0*u) can be expressed in the form

Ni(ou,*u) = Z T, 0'(u', 0.u") + Z %%yQaﬁ(“iﬁy“i)

0<u<3 0<af,y<3
+ Z T;@otuilj,-u" + T'0'(u', u'), (3.70)
0<a<3
where
Q' (u,v) = dudw — c*Vu - Vv, (3.71)
Qup(u,v) = 0yudpv — Opudyv. (3.72)

These forms gain good decay near ¢;t—r=0 (1 <i<m). Indeed, the following es-

timates hold for |c;t —r| < ¢;t/2:
|0 (u,v)| < Cleit —r|(1 + ¢+ r)_1|6u| |ov| + C(1 + 1+ r)_1(|Fu| |0v| + |0u| | T'v]), (3.73)
10,5 (1, 0)| < C(1+ 1+ )" (|0u] |Tv| + |Tul |0v]), (3.74)
\Ou| < Cleit — r|(1+ 1+ 1) 0%u| + C(1+ t 4 )" (|0u| + |0Tul). (3.75)

Let us give a proof of (3.73)—(3.75). They trivially hold for r < 1, so we suppose
r > 1. Following [3], we define
S* =0, + i, (3.76)

Noting

Stu=1t"(eit —r)ou+t'Su,

r'Qu| < C|Vul,
(3.73) follows from the identity

Q' (u,v) =271 (S uS; v+ Sy uSTv) — 2r (% A Qu) - (% A Qv), X =x/r,
which is derived from (2.5). If we rewrite Q,(u,v) by using (2.5) and
du = —rt 0+t Su,

we can prove (3.74). Finally, (3.75) is the consequence of

O = S; ST u— ¢ (2r '6,u+r2Qu- Qu).

Hence, it follows from [3.70), (3.73)—(3.75) that
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(PN (0u,0*u)| < Clest —r|l(1+4+7)"" Y |orPu'||or<u’|

|b]+]c| < al+1

+C(1+t+n)" Y [rhdljord] (3.77)
|b]+|c| <|al+2
|b] £0

for |¢;t — r| < ¢;it/2. Here we have used Lemma 1.2 in [8]. Therefore, if |c;r — r| < ¢;t/2,
the estimates (3.65), (3.66) and yield

TN (0u, 0%u)| < Cy(1+ 14 1) (14 et — ) {log(2 + )} (& + [0ul ). 100l 31 5.,)
(3.78)

for |a| < N, since ¢ <1 and [0u]jy. 35, <1. In case |¢;t —r| > ¢;t/2, we find from
(3.66) that

ITN'(0u,0%u)| < Cy > [oru’||or<u’|
|b|+|c| <N+1

< Cn(1+ )21+ 1+ {log(2 + 1)} (e + [0ul) v 4321, I 0ull 3 15..)-
(3.79)

Similarly, by (3.66)

[T“R'(0u,0%u)] < Cy ) | > ortul||orcut|

(k) # (i) |bl+c[<N+1
<CV{(1+nN A +1+1r)72

+ > (141417 (1 4 |t — 1)) *Hlog(2 + 1)}
i

(& + [0u] [(N+3)/z],z||5“||12v+5,z)a (3.80)

TG (0u, 0u)| < Cy ) | Yo lertul||orcut|jortu|

1<), 1<m |Bl+]c|+]d] <N+1
<C{+n) 0 +1+0)7°

+ > (U441 (1 [t — ) Hlog2 + 1)}

(& + [0ulj 31, 10l 3 45,0 (3.81)

for |a| < N.
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Therefore, it follows from (3.78)—(3.81) that

ITOF (0u,0%u)| < Cy{(1+ 14172 L (6,0

Zl+y,1+ic

-1
—l—t—l—r 2221 ptr
J#i

_ 1 _
+ (L) 2 () e+ [0y 3y 0l s ) (3.82)

for0<y<1,0<rx<l—790<p<1and |af <N. (3.82) gives estimates of the right-
hand side of the equations (3.58), and hence by [Proposition 3.1 and (3.56),

o (1,2)] < Cx(1 4+ 1) (14 Jeat = )™ (o 4 00 gy gy, 0l ). (3.8)

Using (3.83), we estimate I'“R’(du,d’u) again. Then
IT“R(0u, 0*u)| < Cy{(1 4+ 1) 2(1 4t 4r) 2%

—242 6
+ > (L4407 (1+ gt = ) e + [0u) v 51, 190l N 17, )
i

(3.84)

for |a] < N. We take p < 1/2 and replace the estimate [(3.80) with (3.84). Then we have

[PF (0w, 0%u)| < Cy{(1+ 1+ ') | (607

-1
+t—|—r ZZHyl tr
J#i

—1 _(m+1 —
+ (L) 2 ) T e+ [0l sy, Ol 17 ) (3.85)

for some 0 <y, k < 1. Then, applying [Proposition 3.1 again, we have

or“w' (1, x)| < Cn(1+ 1)~ (14 et = )™ (& + [0ul i), 100l ss, ). (3:86)

Consequently we have finished the proof.

4. Energy estimates.

PROPOSITION 4.1.  Let u be the solution of (3.50)—(3.51). Assume that F'(du,d*u)
satisfy (1.6) and c; are different from each other. Assume moreover that C;Jﬂ(éu) satisfy
(1.7) and [0uy )5, < N, where wy <1 is a small number depending on N,c; and

given functions. Then there exists a constant Cy, depending on N,c; and given functions,
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such that
[0ully,, < Cye. (4.1)

The proof of Theorem 1.1 is now easy. Since the Cauchy problem (1.1)—(1.2) can
be converted to a Cauchy problem for a symmetric hyperbolic system, we know the
local existence of the smooth solution to (1.1)—(1.2) (See Kato [6], Majda [11] Chapter
2). Uniqueness is proved by the application of the method in John [5], Appendix.
Moreover, u(t,-) has compact support.

Take C > max{Cj,;, C3s} large enough, so that [du],; ,[,_o < Ce. Then there exists
T > 0 such that the solution to (1.1)—(1.2) in [0, T] x R® satisfies [0uly7 7 < 2Ce (Kato
[6], Majda [11] Chapter 2). Set & = w»5/2CS. Suppose that T,, the maximal of T
above, is finite for 0 <& <eg. Then [du]};, T 2Ce as ¢ T T.. However, since [0u],; , <

wys for t < T, it follows from [Proposition 3.2 and |Proposition 4.1 that

[0u),; , < Ce+ CTe

< Ce+ CeCl%,
< (3/2)Ce

for t < T,. This is contradiction, and hence T, cannot be finite. Therefore, by the

corollaries to Theorem 2.2 in [11], the proof is complete.

PrROOF OF PropoSITION 4.1. If v = (v!,...,0") satisfies

Z Z agkﬁaaﬁvj =b', i=1,....m (4.2)

0<o,f<3 1<j<m
with
yo_ g _ i
op = Ay = o (4.3)

then we have the energy identity

Z Z {8“(agbﬁovi8/gvj) — ﬁaagkﬁoviﬁﬁvj

0<o,f<3 1<ij<m

— 2700 (aly0,v'dpv") + 27" Boally 0,0 0pv'}

= > blogy, (44)

I<i<m

by multiplying both side of (4.2) by dov’. Integrating (4.4) on [0,7 x R*, we obtain
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21J <av(z),au(z)>dx—21J (ov(0), 0v(0) > dx
R? R?

:J dsJR3{ S Y (Gaajsdeviopy’ — 27 d0alyow opr’) + b’aovl}dx,

0

0<o,f<3 1<i,j<m I1<i<m
(4.5)
where
(v, owy = > (ag‘oaov"aowf - ag,aku"a,wf). (4.6)
1<i,j<m 1<k,I<3
We first set
ayy = ni0" — Cl(ou), (4.7)
b= D > {apdudplw — T(agdudp)} + TD'(0w),  (48)
I<j<m 0<oa,f<3
where
1 0 0 0
,- 0 —c2 0 0
(”aﬁ)Oﬁa,ﬂ£3 = 0 0 _Ciz 0 (49)
0 0 0 =

Then each ag;,j, satisfies (4.3), and I"“u is a solution of (4.2). Therefore, it follows from
(4.5) that

27! J O u(t), 0 “u(t)y dx — 27! J O u(0), 0 u(0)> dx
R3 R3

:J ds JR3 { Z Z (@a%&of“u’&ﬁf"uf — 2’]60a5ﬂ8af"ulaﬁf"u1)

0 0<o,f<3 1<ij<m

+ > bl'aoraul’}dx.

1<i<m

Z Z {afb@aapf"uj - F“(a;ykﬁa@,guj)}

1<j<m 0<o,f<3

=0, T = Y Y {C)(0u)d, 05T — T(Cll(0u)d,0pT “u/)},

1<j,k<m 0<a,f<3
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we obtain

21J <8F“u(t),6f“u(t)>dx—21j O “u(0), 6T u(0)> dx
R} R?

t
<Cyv Y, > stj \T0u’| TP 0’| | T0u*| dx
bl +|c| <N+1 1<i,j,k<m R
b1, e[ #0

t
< Colonlnym | (1) Nous) I s

for |a] < N. Since

3 JRK OTu(t), oI “u(t)> dx > Cullou(d)||?

la| <N 7

if [Ou]y , 1s small, it follows that

t
JeulR, < Cof 4 [y [ (149wt s

Hence, by Gronwall’s lemma,
lu(t)||y < Cre(1+ 1) NPz,

Next, we set

a;l{ﬁ = 77;55117
b' =[Oy, Tu’ 4 TF'(0u, 0*u).
Then by (4.5), we have

t

lou()]3 < C [ & + J
la],|b| <N 1<i<m 0

Using (3.85) and (3.86), we have
\TPF(0u, 0%u)| 0o “u'|

< Cn{(T+s+0"2 L) + A ts+n) Y2 (s

J#i

1_(m+1)

()72 ) YA+ )T U s = )7 o [0yl 00l

dsJ |[PFi(0u, 0%u)| 60F“uidx).
R3

(4.10)

(4.11)

(4.12)

(4.13)

12
N+8,s)



Systems of wave equations with critical nonlinearity 631

< v {4507 (W Jes = )7 (s )7 Y (U fgs =)™
J#i

+ (L4177 (54177 + [0ul gy l0ull 3 s.,)

m+1
< Oy(L+8)7 7 (U Jgs =)™ 7026 + [0ul g 00l s, )- (4.14)
=1
Moreover, by (4.10) and (4.14) it follows that
\TPFi(u, 0%u)| |00 “u'|

m+1

< Cv(1+8) 77 D (U lgs — o)™ 72 (E o+ [0y gy, 82 (1 +5) o)

+

j=1
m+1
< O (1 + [l sy o) (1) Mo 3 (1 gs — )20 (4.15)
j=1

Therefore, if [0u] g5, <27'Cy'x, we obtain (4.1) from (4.13) and (4.15).
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