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Abstract. We study the initial-value problems for the Davey-Stewartson systems and the Ishi-
mori equations. Elliptic-hyperbolic and hyperbolic-elliptic cases were treated by the inverse
scattering techniques ([2–4, 10, 13–15, 32] for the Davey-Stewartson systems and [28, 29, 33]
for the Ishimori equations). Elliptic-elliptic and hyperbolic-elliptic cases were studied (in [16,
17] for the Davey-Stewartson systems and [31] for the Ishimori equations) without the use of
the inverse scattering techniques. Existence of a weak solution to the Davey-Stewartson sys-
tems for the elliptic-hyperbolic case is also obtained in [16] with a smallness condition on the
data in L2 and a blow-up result was also obtained for the elliptic-elliptic case. By using the
sharp smoothing property of solutions to the linear Schrödinger equations the local existence of
a unique solution to the Davey-Stewartson systems for the elliptic-hyperbolic and hyperbolic-
hyperbolic cases was established in [30] in the usual Sobolev spaces with a smallness condition on
the data. We prove the local existence of a unique solution to the Davey-Stewartson systems for
the elliptic-hyperbolic and hyperbolic-hyperbolic cases in some analytic function spaces without
a smallness condition on the data. Furthermore we prove existence of global small solutions
of these equations for the elliptic-hyperbolic and hyperbolic-hyperbolic cases in some analytic
function spaces.

1. Introduction. In this paper we study the initial-value problems for the Davey-
Stewartson (D-S) systems8><

>:
i@tu + c0@2

xu + @2
yu = c1|u|2u + c2u@x', t, x, y 2 R,

@2
x' + c3@2

y' = @x|u|2,
u(x, y, 0) = u0(x, y)

(1.1)

and the Ishimori equations
8>>>><
>>>>:

i@tu + @2
xu + c4@2

yu

= c5
ū

1+|u|2 ((@xu)2 + c6(@yu)2) + c7(@xu@y' + @yu@x'), t, x, y 2 R,

@2
x' + c8@2

y' = c9
(@xu)(@yū)�(@xū)(@yu)

(1+|u|2)2 ,

u(x, y, 0) = u0(x, y),

(1.2)
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where c0, c3, c4, c8 2 R and c1, c2, c5, c6, c7, c9 2 C.
The (D-S) systems were first derived by Davey-Stewartson ([11]) Benney-Roskes ([7])

and Djordjevic-Redekopp ([12]) and model the evolution of weakly nonlinear water
waves that travel predominantly in one direction, but in which the wave amplitude is
modulated slowly in horizontal directions. Independently Ablowitz and Haberman ([1])
and Cornille ([10]) obtained a particular form of (1.1) as an example of a completely
integrable model which generalizes the one-dimensional Schrödinger equation. In [12]
it was shown that the parameter c3 can become negative when capillary e↵ects are
important.

When (c0, c1, c2, c3) = (1,�1, 2,�1), (�1,�2, 1, 1) or (�1, 2,�1, 1) the system in
(1.1) is referred to in the inverse scattering literature as the DSI , DSII defocusing
and DSII focusing respectively. In these cases several results concerning the existence
of solitons or lump solutions to the Cauchy problem have been established ([2–4, 10,
13–15, 32]) by the inverse scattering techniques. Using the inverse scattering method,
Sung ([32]) has proved the global existence and uniqueness for the Cauchy problem
associated to the DSII systems (for any initial data u0 such that û0 2 L1(R2)\L1(R2)
in the defocusing case, for small data in the same space in the focusing case). He proved
moreover many regularity or qualitative properties, for instance that u(·, t) disperses to
0 in L1(R2) as t !1. Beals and Coifman ([8]) have proved the global well-posedness
of the Cauchy problem for the DSII defocusing system in the Schwartz class. The same
result has been obtained by Fokas and Sung ([15]) for the DSI system.

As a matter of fact, cases where (1.1) is of inverse scattering type are exceptional. In
[16] the IVP (initial value problem) (1.1) was studied and classified as elliptic-elliptic,
elliptic-hyperbolic, hyperbolic-elliptic and hyperbolic-hyperbolic according to the re-
spective sign of (c0, c3): (+,+), (+,�), (�,+) and (�,�). For the elliptic-elliptic and
hyperbolic-elliptic cases, local and global properties of solutions were studied in the
usual Sobolev spaces L2,H1,H2. They also established the global existence of a weak
solution of the IVP (1.1) under a smallness condition on the data in L2 norm for elliptic-
hyperbolic case and a blow-up result for elliptic-elliptic case.

In [30] Linares and Ponce obtained results concerning local existence and uniqueness
of solutions for the elliptic-hyperbolic and hyperbolic-hyperbolic cases.

In these cases one has to assume that '(·) satisfies the radiation condition; i.e.,

'(x, y, t) ! 0 as x + y and x� y ! +1

(without loss of generality we have taken c3 = �1 in (1.1) (or c8 = �1 in (1.2))). This
guarantees that if F 2 L1(R2), K�1F is well defined, where K' = (@2

x � @2
y)' = F .

Thus, the IVP (1.1) is equivalent to

i@tu + c0@
2
xu + @2

yu = c1|u|2u + c2u@2
xK�1|u|2, u(x, y, 0) = u0(x, y). (1.3)

In the hyperbolic-hyperbolic case (c0 = �1) after a rotation in the xy-plane and rescal-
ing, the system (1.3) can be written as

i@tu + @x@yu = c1|u|2u + c2u

Z 1

y
@x|u|2(x, y0) dy0 + c3u

Z 1

x
@y|u|2(x0, y) dx0,

u(x, y, 0) = u0(x, y),
(1.4)
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where c1, c2, c3 are arbitrary constants.
In the elliptic-hyperbolic case (c0 = 1) after a rotation in the xy-plane and rescaling,

the system (1.3) can be written as

i@tu + (@2
x + @2

y)u = c1|u|2u + c2u

Z 1

y
@x|u|2(x, y0) dy0 + c3u

Z 1

x
@y|u|2(x0, y) dx0,

u(x, y, 0) = u0(x, y), (1.5)

where c1, c2, c3 are arbitrary constants.
Linares and Ponce ([30]) proved local well-posedness results for the IVP (1.4) (or

(1.5)) for small data by making use of the sharp version of the Kato smoothing e↵ect
obtained in [23] for the group {eit@x@y}1�1 and {eit(@2

x+@2
y)}1�1.

We turn now to the Ishimori system. Y. Ishimori ([21]) proposed the following system:
8><
>:

@tS = S ^ (@2
xS + c0@2

yS) + c1(@x'@yS + @y'@xS)
@2

x' + c2@2
y' = c3S · (@xS ^ @yS)

S(x, y, 0) = S0(x, y),
(1.6)

where (c0, c1, c2, c3) = (�1, c1, 1, 2) or (1, c1,�1,�2), S(·, t) : R2 ! R3, |S|2 = 1,
S ! (0, 0, 1) as

p
x2 + y2 ! 1 and ^ denotes the wedge product in R3. The IVP

(1.6) is considered as a two-dimensional generalization of the Heisenberg equation in
ferromagnetism. We put

S = (S1, S2, S3) =
1

1 + |u|2 (u + ū,�i(u� ū), 1� |u|2),

where u : R2 ! C. Then it is clear that S(·, t) : R2 ! R3, |S|2 = 1, u = (S1 +
iS2)/(1 + S3) and S ! (0, 0, 1) as

p
x2 + y2 ! 1 if u ! 0 as

p
x2 + y2 ! 1. When

c0 = 1, c1 = 0 (1.6) is reduced to the two-dimensional Heisenberg equation, which was
studied by [5]. When c1 = 1, (1.6) was studied formally in [28] and [29] by using the
inverse scattering transform. By using the new variable u the Ishimori equations (1.6)
can be written as
8><
>:

i@tu + @2
xu + c0@2

yu = 2 ū
1+|u|2 ((@xu)2 + c0(@yu)2) + ic1(@xu@y' + @yu@x')

@2
x' + c2@2

y' = 2ic3
(@xu)(@yū)�(@xū)(@yu)

(1+|u|2)2

u(x, y, 0) = u0(x, y)

(1.7)

which is a special case of (1.2).
Following the classification of the Davey-Stewartson systems used in [16], we classify

the Ishimori equations (1.2) as elliptic-elliptic, elliptic-hyperbolic, hyperbolic-elliptic
and hyperbolic-hyperbolic according to the respective sign of

(c4, c8) : (+,+), (+,�), (�,+) and (�,�).
In [31] Soyeur studied the case (c4, c5, c6, c8, c9) = (�1, 2,�1, 1, 4i) for (1.2) which

corresponds to a hyperbolic-elliptic case and obtained local well-posedness results and
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a global existence of small solutions. The method used in [31] can be applicable to
the cases (c4, c6, c8) = (c, c, b) in (1.2) with c 2 R, c 6= 0, b > 0 which correspond to a
hyperbolic-elliptic case (c < 0) and a elliptic-elliptic case (c > 0). However it seems that
his method does not work for the case c4 6= c6 in (1.2) because he used a multiplication
factor 1/(1+ |u|2) to handle the nonlinear term ū((@xu)2 +c6(@yu)2)/(1+ |u|2) to which
we can not apply a classical energy method directly. More precisely a multiplication
factor 1/(1 + |u|2) translates (1.2) with c4 = c6, c8 > 0 to another system to which we
can apply a classical energy method.

In [33] Sung used the gauge equivalence between the integrable Ishimori system and
the focusing DSII system to prove the global existence and uniqueness for the Cauchy
problem associated to the integrable Ishimori system for small initial data and show
regularity results (including existence in the Schwartz class).

In the same way as in the derivations of (1.4) and (1.5) we see that by using a rotation
in the xy-plane and rescaling, the system (1.2) can be written as

8><
>:

i@tu + @x@yu = ū
1+|u|2 (c1(@xu)2 + c2@xu@yu + c3(@yu)2)

+(c4@xu@x' + c5@xu@y' + c6@yu@x' + c7@yu@y'),

@x@y' = c8
(@xu)(@yū)�(@xū)(@yu)

(1+|u|2)2

(1.8)

in the hyperbolic-hyperbolic case (c4 = c8 = �1 in (1.2)),

8><
>:

i@tu + (@2
x + @2

y)u = ū
1+|u|2 (c1(@xu)2 + c2@xu@yu + c3(@yu)2)

+(c4@xu@x' + c5@xu@y' + c6@yu@x' + c7@yu@y'),

@x@y' = c8
(@xu)(@yū)�(@xū)(@yu)

(1+|u|2)2

(1.9)

in the elliptic-hyperbolic case (c4 = 1, c8 = �1 in (1.2)), where c1, . . . , c8 are arbitrary
constants.

Thus (1.2) is equivalent to

i@tu + @x@yu = F (u) + G(u), u(x, y, 0) = u0(x, y), (1.10)

where

F (u) =
ū

1 + |u|2 (c1(@xu)2 + c2@xu@yu + c3(@yu)2)

G(u) = c4@xu

Z 1

y
K(u, @xu, @yu)(x, y0) dy0 + c5@xu

Z 1

x
K(u, @xu, @yu)(x0, y) dx0

+ c6@yu

Z 1

y
K(u, @xu, @yu)(x, y0) dy0 + c7@yu

Z 1

x
K(u, @xu, @yu)(x0, y) dx0

with
K(u, @xu, @yu) =

(@xu)(@yū)� (@xū)(@yu)
(1 + |u|2)2
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in the hyperbolic-hyperbolic case, and

i@tu + (@2
x + @2

y)u = F (u) + G(u), u(x, y, 0) = u0(x, y) (1.11)

in the case of elliptic-hyperbolic case, where c1, . . . , c7 are arbitrary constants. We note
here that the Lp-Lq estimates, energy method which are used in nonlinear Schrödinger
equations do not apply in (1.4), (1.5), (1.8), and (1.9) because these equations can be
seen as nonlinear Schrödinger equations involving derivatives and nonlocal terms in the
nonlinearity.

The purpose of this paper is to prove local existence results without a smallness
assumption on the data for the IVP (1.4) and (1.5) and global existence of small solutions
for the IVP (1.4), (1.5), (1.10), and (1.11) in some analytic function spaces.

To state our results precisely, we introduce
Notation and function spaces. Let X be a Banach space with norm k · kX and

B = (B1, . . . , Bj) be a vector field of derivations. The generalized Sobolev space Bm,p

is defined by
Bm,p =

�
f 2 Lp : kfkBm,p =

X
|↵|m

kB↵fkLp < 1
 
,

where B↵ = B↵1
1 · · ·B↵j

j , |↵| =
P

1kj ↵k,↵k 2 N [ {0}. Let A > 0. We define a
generalized analytic function space as follows:

GA(B;X) =
�
f 2 X : kfkGA(B;X) =

X
�2(N[{0})j

A|�|

�!
kB�fkX < 1

 
.

In order to state the results we introduce the first-order di↵erential operators Jx =
x + 2it@x, Jy = y + 2it@y, J1 = y + it@x, J2 = x + it@y, ⌦xy = x@y � y@x and
⌦12 = x@x � y@y.

By using these operators we define

@ = (@x, @y), R = (@, J1, J2), � = (R,⌦12), R̃ = (@, Jx, Jy), �̃ = (R̃,⌦xy).

These operators together with the identity form a Lie algebra. It is also useful to rewrite
Jx, Jy, J1 and J2 as follows:

Jx = 2ite
i|x̃|2
4t @xe�

i|x̃|2
4t , Jy = 2ite

i|x̃|2
4t @ye�

i|x̃|2
4t ,

J1 = itei xy
t @xe�i xy

t , J2 = itei xy
t @ye�i xy

t ,

where |x̃|2 = x2 + y2. By a direct calculation we have the following commutation
relations: ⇢

[Jx, i@t + �] = [Jy, i@t + �] = [⌦xy, i@t + �] = 0, � = @2
x + @2

y

[J1, i@t + @x@y] = [J2, i@t + @x@y] = [⌦12, i@t + @x@y] = 0.

We use the standard notation Hm,p instead of @m,p. With this notation we state the
main results of this paper.
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Theorem 1. We assume that u0 2 GA(@;Hm,2), where A > 0 and m � 3. Then there
exists a unique local solution u of (1.4) (or (1.5)) and a positive constant T such that

u(t, x) 2 C([�T, T ];GA1(@;Hm,2)),

where A1 < A.

Remark 1. Typical examples of data satisfying the condition of Theorem 1 are given
by 1

1+x2+y2 , e�x2�y2
.

Theorem 2. We assume that u0 2 GA(@;Hm,2), ku0kGA(@;Hm,2) < 1
2 , where A > 0

and m � 4. Then the same result as in Theorem 1 holds for the IVP (1.10) (or (1.11)).

Theorem 3. We assume that u0 2 GA(R(0);Rm,2(0)), ku0kGA(R(0);Rm,2(0)) < ✏, where
A > 0, m � 3 and ✏ is a su�ciently small positive constant. Then there exists a unique
global solution u of (1.4) such that

u(t, x) 2 GA1(R(t);Rm,2(t)) for any t,

where A1 < A.

Theorem 30. The result of Theorem 3 holds true for the IVP (1.5) under the hypotheses
of Theorem 3 with R replaced by R̃ .

Theorem 4. The result of Theorem 3 holds true with m � 5 for the IVP (1.10)
(respectively (1.11)), provided we replace in the hypotheses, R by � (respectively R by
�̃).

Remark 2. A typical example of data satisfying the conditions of Theorems 3, 30 and
4 is given by ✏e�x2�y2

. Thus our global results require an exponential decay condition
on the data. Our results also imply a smoothing e↵ect of solutions in some sense. We
explain this point herein by using Theorem 3. We take the initial function as follows:

u0(x, y) =
1

1 + x2 + y2
✏e�x2�y2

which satisfies the condition of Theorem 3 if ✏ is su�ciently small and A < 1. On the
other hand the solution u constructed in Theorem 3 satisfies the estimate

ke�ixy/tu(t)kG|t|A1 (@;L2) = ke�ixy/tu(t)kGA1 (|t|@;L2)  ku(t)kGA1 (J;L2)

 ku(t)kGA1 (R;L2) < 1.

Hence the analyticity domain of the solution determined by |t|A1 exceeds the analyticity
domain of the initial function determined by A when |t|A1 > A. This type of smoothing
e↵ect was stated in [19].
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Corollary 5. Let u be the solution constructed in Theorem 3, 30 and 4. Then we have

ku(t)kGA1 (@;L1)  C(1 + |t|)�1ku0kGA(B(0);Bm,2(0)),

where B = R, R̃, �, or �̃. Moreover, for any u0 as above there exist u�, u+ such that

ku(t)� U(t)u⌥kGA1 (@;L2) ! 0 as t ! ⌥1,

where U(t) = eit@x@y or eit(@2
x+@2

y).

Remark 3. The rate of decay obtained in Corollary 5 is the same as that of solutions to
linear Schrödinger equations. Time decay of solutions for the Davey-Stewartson systems
in the elliptic-elliptic and hyperbolic-elliptic cases was obtained in [9] and [35] with the
decay rate (1 + |t|)�1. For the Ishimori equations in the hyperbolic-elliptic case, the
time decay of solutions was obtained in [31] with the decay rate (1 + |t|)�2/3. The
time decay estimates of solutions to these equations for the hyperbolic-hyperbolic and
elliptic-hyperbolic cases seem to be new.
Remark 4. For general c0 or c4, after a rotation in xy-plane and rescaling, the linear
part of the IVP (1.1) or (1.2) can be written as, when c3, c8 < 0,

i@tu�
1
4
((b + 1)(@2

x + @2
y) + 2(b� 1)@x@y)u, @y@x',

where b = c0 or b = c4. The results mentioned above are still valid if we use

Jbx = ((b + 1)x� (b� 1)y)� 2itb@x, Jby = ((b + 1)y � (b� 1)x)� 2itb@y,

⌦bxy = (b + 1)(x@y � y@x) + (b� 1)(x@x � y@y)

instead of Jx, Jy,⌦xy or J1, J2,⌦12. It is easy to check the following computation
properties:

[Jbx, L] = [Jby, L] = [⌦bxy, L] = 0

with
L = i@t �

1
4
((b + 1)(@2

x + @2
y) + 2(b� 1)@x@y)

and Jbx, Jby are rewritten as follows:

Jbx = �2itb exp(� i

4t
�(x, y))@x exp(

i

4t
�(x, y)),

Jby = �2itb exp(� i

4t
�(x, y))@y exp(

i

4t
�(x, y)),

where
�(x, y) = (b + 1)(x2 + y2)� 2(b� 1)xy.

In order to obtain the global existence of solutions to (1.4), (1.5), (1.10) and (1.11),
the form of nonlinear terms is important since they involve nonlocal nonlinear terms.
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It is worth noticing that two-dimensional nonlinear Schrödinger equations with a cubic
nonlocal nonlinear term of the form

u

Z 1

y
|u|2(x, y0) dy0

is similar to one-dimensional nonlinear Schrödinger equations with a cubic nonlinear
term |u|2u. We explain this point herein by considering the nonlinear Schrödinger equa-
tions

i@tu + �u = u

Z 1

y
|u|p(x, y0) dy0, u(x, y, 0) = u0(x, y), t, x, y 2 R. (1.12)

Global existence of solutions to (1.12) can be obtained if p > 2 since the nonlinear term
F (u, ū) satisfies the condition that

F (ei✓u, ei✓u) = ei✓F (u, ū) (1.13)

for any ✓ 2 R, which allows us to use the chain rule for the operators Jx, Jy, which
behave like usual derivatives. We have by Hölder’s and Sobolev’s inequalities

ku
Z 1

y
|u|p(x, y0) dy0kL2

yL2
x
 kuk2L2

yL1x
kukp�2

L1 kukL2  C|t|�1kJxukL2kukp�2
L1 kuk2L2

 C|t|�(p�1)kJxukL2

X
|↵|2

kJ↵ukp�2
L2 kuk2L2 (1.14)

and
ku

Z 1

y
|u|p(x, y0) dy0kL2

yL2
x
 C

X
|↵|2

k@↵ukp+1
L2 ,

where we have used the notation

kukLp
yLq

x
=
⇣Z

R
ku(·, y)kp

Lq(R) dy
⌘1/p

and we also have used the following Sobolev-type inequalities:

kukL2
yL1x

 C|t|�1/2kuk1/2
L2 kJxuk1/2

L2 and kukL1  C|t|�1kuk1/2
L2

�X
|↵|=2

kJ↵ukL2
�1/2

which are obtained by applying the usual Sobolev’s inequality to e�
i|x̃|2
4t u.

When p = 2 the above time decay estimate (1.14) corresponds to the estimate of the
cubic nonlinear term |u|2u in one space dimension, namely

k|u|2ukL2
x
 kuk2L1x kukL2

x
 C|t|�1kJxukL2

x
kuk2L2

x
.



GLOBAL EXISTENCE OF SMALL SOLUTIONS 1665

Thus we can not expect global results for the nonlinear Schrödinger equation with
nonlinearity

u

Z 1

y
|u|2(x, y0) dy0 or @xu

Z 1

y

(@xu)(@yū)
1 + |u|2 (x, y0) dy0.

The reason why we can expect the global existence of solutions to nonlinear Schrödinger
equations with nonlinear terms

u

Z 1

y
@x|u(x, y0)|2 dy0 and @xu

⇣Z 1

y

(@xu)(@yū)� (@xū)(@yu)
1 + |u|2 (x, y0) dy0

⌘

comes from the following identities:

u

Z 1

y
@x|u|2(x, y0) dy0 =

(
1
itu

R1
y ((J1u)ū� (J1u)u)(x, y0) dy0

1
2itu

R1
y ((Jxu)ū� (Jxu)u)(x, y0) dy0

and

@xu
⇣Z 1

y

(@xu)(@yū)� (@xū)(@yu)
1 + |u|2 (x, y0) dy0

⌘

=

8<
:

1
it@xu(

R1
y

(@xu)(J2u)�(J1u)(@yu)+(⌦12u)ū
1+|u|2 (x, y0) dy0)

1
2it@xu(

R1
y

(@xu)(Jyu)�(Jxu)(@yu)+(⌦xyu)ū
1+|u|2 (x, y0) dy0).

From these identities we see that we can get the time decay of order one by express-
ing @x, @y in terms of J1, J2, Jx, Jy,⌦12 and ⌦xy. These identities remind us of the
null condition introduced by S. Klainerman ([27]) to prove a global existence theorem
to quadratic nonlinear wave equations in three space dimensions. We will use these
expressions and analytical conditions on the initial data to get our results. We note
here that analytic function spaces similar to GA(@;Hm,2) were used in [6], [18] and
[24] to prove the local existence of solutions to various nonlinear evolution equations
with nonlinear terms involving first-order space derivatives of unknown functions. Their
method and our method do not apply to the higher order nonlinear dispersive equations
considered in [25] and [26].

The null gauge condition for nonlinear Schrödinger equations was introduced in [34] in
the case of one space dimension. In the usual weighted Sobolev spaces, global existence
of small solutions to nonlinear Schrödinger equations with cubic power nonlinearities,

i@tu + @2
xu = (@x|u|2)(�u + µ@xu), �, µ 2 C,

was obtained in [22] in one space dimension.
The nonlocal nonlinear term appearing (1.4) or (1.5) behaves like the nonlinear term

(@x|u|2)u since (@x|u|2)u can be written as 1
it (Jxu · ū� Jxu · u)u.
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The proof given by [22], [34] cannot be applied to systems of nonlinear Schrödinger
equations with cubic nonlinearities such as

i@tuj + @2
xuj =

⇣
@x

nX
k=1

�k|uk|2(
nX

k=1

(�kuk + µk@xuk)
⌘
, t, x 2 R,

where �j , µj 2 C, j = 1, 2, . . . , n. On the other hand, our proof of Theorem 3 could be
applied to such systems.

For the Ishimori equations we have to assume a smallness condition on the initial data,
because 1/(1 + x2) has a singularity at x = i. More precisely, the analytic continuation
of the term 1/(1 + |u|2) occurring in the nonlinear terms of the Ishimori equations
(1.10) (or (1.11)), can be written as 1/(1 + U(z)U(z̄)) which may have a singularity.
Hence a smallness condition on the data is needed if we consider the problem in analytic
function spaces. The problem of local existence of solutions for (1.10) (or (1.11)) without
a smallness condition on the data is still open.

2. Preliminaries. In this section we prepare important estimates of the main
nonlinear terms which are needed to obtain our results.

For simplicity we use the following notation:

f1(u) = u

Z 1

y
@x|u|2(x, y0) dy0, f2(u) =

ū

1 + |u|2 (@xu)2,

f3(u) = @xu

Z 1

y

(@xu)(@yū)� (@xū)(@yu)
(1 + |u|2)2 (x, y0) dy0.

Lemma 2.1. We have for j = 1, 2, 3

kfj(u)kGA(B(t);Bm,2(t))  Ckuk2GA(B(t);Bm,2(t))kukGA(B(t);Bm+1,2(t))

provided that
kukGA(B(t);Bm,2(t)) < 1, j = 2, 3,

where m � 3 for j = 1, m � 4 for j = 2, 3, B(t) is one of the operators @, R,�, R̃ and
�̃.

Proof. Since fj(u) satisfies the gauge condition (1.13), the operators Jx, Jy, J1 and J2

act on fj(u) like a derivative @x or @y. By Lemma A.1 and Leibniz’s formula

kf1(u)kGA(B(t);Bm,2(t))  C
X

|↵|m

kB↵
�
u

Z 1

y
@x|u|2 dy0

�
kGA(B(t);L2)

 C
X

|↵|m

X
�↵
��

✓
↵
�

◆✓
�
�

◆�
k(B↵��u)

Z 1

y
(B���@xu)(B�u) dy0kGA(B(t);L2)

+ k(B↵��u)
Z 1

y
(B���@xu)(B�u) dy0kGA(B(t);L2)

�
.
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In what follows we will suppress t in B(t) and Bm,2(t) throughout the proofs of the
results. We apply Lemma A.2 to the previous inequality to get

kf1(u)kGA(B,Bm,2)

 C
X

|↵|m

X
�↵
��

kB↵��ukGA(B;L2
yL1x )kB���@xukGA(B;L2)kB�ukGA(B;L2

yL1x ).
(2.1)

By Sobolev’s inequality and Lemma A.1 the right-hand side of (2.1) is bounded by

C
X

|↵|m

X
�↵
��

(
X
|�|1

kB↵��+�ukGA(B;L2))(
X
|�|1

kB���+�ukGA(B;L2))(
X
|�|1

kB�+�ukGA(B;L2)).

(2.2)
If a, b, c 2 N and a+ b+ c  m, then at least two of them are less than or equal to m/2.
Therefore we have by (2.1) and (2.2)

kf1(u)kGA(B;Bm,2)  Ckuk2GA(B;Bm,2)kukGA(B;Bm+1,2). (2.3)

This implies the lemma for j = 1.
We next prove the lemma for j = 2. By the Taylor expansion we have for |a| < 1

1
1 + a

=
1X

n=0

(�1)nan.

In the same way as in the proof of (2.3) we have by Lemma A.3

kf2(u)kGA(B;Bm,2)  C
X
�↵
��

k(B↵��
ū

1 + |u|2 )(B���@xu)(B�@xu)kGA(B;L2)

 CkukGA(B;Bm,2)(k
ū

1 + |u|2 kGA(B̄;Bm,2)kukGA(B;Bm,2)

+ k ū

1 + |u|2 kGA(B̄;Bm�1,2)kukGA(B;Bm+1,2))

 CkukGA(B;Bm,2)(
1X

n=0

kū|u|2nkGA(B̄;Bm,2)kukGA(B;Bm,2)

+
1X

n=0

kū|u|2nkGA(B̄;Bm�1,2)kukGA(B;Bm+1,2))

 Ckuk2GA(B;Bm,2)kukGA(B;Bm+1,2)

1X
n=0

kuk2n
GA(B;Bm,2)

from which the lemma for j = 2 follows.
The lemma for j = 3 follows by combining the proof for j = 1 and the proof for

j = 2.
We will need the following time decay estimates.
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Lemma 2.2. We have for j = 1, 2, 3

kfj(u)kGA(B(t);Bm,2(t))  C(1 + |t|)�2kuk2GA(B(t);Bm,2(t))kukGA(B(t);Bm+1,2(t))

provided that
kukGA(B(t);Bm,2(t)) < 1 for j = 2, 3,

where m � 3 for j = 1, m � 5 for j = 2, 3, and B(t) is one of the operators R,�, R̃ and
�̃.

Proof. By Lemma 2.1 it is su�cient to prove that

kfj(u)kGA(B;Bm,2)  Ct�2kuk2GA(B;Bm,2)kukGA(B;Bm+1,2). (2.4)

We have

@x|u|2 =
⇢ 1

it (ūJ1u� uJ1u),
1

2it (ūJxu� uJxu).
(2.5)

Hence in the same way as in the proof of (2.1)

kf1(u)kGA(B;Bm,2)  C|t|�1
X

|↵|m

X
�↵
��

kB↵��ukGA(B;L2
yL1x )

⇥
�X
|�|1

kB���+�ukGA(B;L2)

�
kB�ukGA(B;L2

yL1x ).
(2.6)

By Sobolev’s inequality we can see that

kukL2
yL1x

 C|t|�1/2

(
kJxuk1/2

L2 kuk1/2
L2 ,

kJ1uk1/2
L2 kuk1/2

L2 .
(2.7)

We apply (2.7) and Lemma A.1 to the right-hand side of (2.6) to get (2.4) for j = 1.
In the same manner as in the proof of Lemma 2.1 for j = 2 we have (2.4) for j = 2

by using
kukGA(B;Bm�1,1)  C|t|�1kukGA(B;Bm+1,2)

which is obtained by Sobolev’s inequality

kukL1  C|t|�1
X
|↵|2

⇢ kR↵ukL2 ,

kR̃↵ukL2 .

The proof for j = 3 follows from the identity

@xu@yū� @xū@yu =
⇢ 1

it ((@xu)(J2u)� (@yu)(J1u) + (⌦12u)ū),
1

2it ((@xu)(Jyu)� (@yu)(Jxu) + (⌦xyu)ū)

and the same arguments as those used in the proof of (2.4) for j=1. This completes the
proof of Lemma 2.2. ⇤

By proofs similar to that of Lemma 2.1 and Lemma 2.2 we have
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Lemma 2.3. We have for j = 1, 2

kFj(u1)� Fj(u2)kGA(B(t);Bm,2(t))

 C(1 + |t|)�2
2X

k=1

kukkGA(B(t);Bm,2(t))

�
ku1 � u2kGA(B(t);Bm,2(t))

2X
k=1

kukkGA(B(t);Bm+1,2(t))

+ ku1 � u2kGA(B(t);Bm+1,2(t))

2X
k=1

kukkGA(B(t);Bm,2(t))

�

provided that
kukkGA(B(t);Bm,2(t))  1 for j = 2,

where

F1(u) = c1|u|2u + c2u

Z 1

y
@x|u|2(x, y0) dy0 + c3u

Z 1

x
@y|u|2(x0, y) dx0,

F2(u) = F (u) + G(u) (see (1.10)),

m � 3 for j = 1, m � 5 for j = 2 and B(t) is one of the operators R,�, R̃, �̃.

Lemma 2.4. The result of Lemma 2.3 holds true for B(t) = @, when (1 + |t|)�2 is
replaced by 1.

3. Proofs of theorems. In this section we prove the main results of this paper.
First we introduce the function spaces

XT = {f 2 C([0, T ];Hm,2) : |||f |||XT < 1},

where

|||f |||XT = sup
t2[0,T ]

kf(t)kGA(t)(B(t);Bm,2(t)) �
X
|↵|=1

Z T

0
kB↵f(t)kGA(t)(B(t);Bm,2(t))A

0(t) dt,

and where B(t) = @, R, R̃,� or �̃ and A(t) is a decreasing function with respect to t to
be determined later.
Proof of Theorem 1. We prove Theorem 1 by using the classical contraction mapping
principle in XT with B(t) = @. For any v 2 XT we consider the linearized equation of
(1.4) (or (1.5))

i@tu + @x@yu = F1(v), u(x, y, 0) = u0(x, y), t, x, y 2 R, (3.1)

or
i@tu + �u = F1(v), u(x, y, 0) = u0(x, y), t, x, y 2 R, (3.2)

where F1 was defined in Lemma 2.3. We define the mapping M by u = Mv. It is
su�cient to prove that M is a contraction mapping from XT,⇢ = {f 2 XT : |||f |||XT 
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⇢} into itself for some time T . Applying @↵ to both sides of (3.1), using the usual energy
method we obtain

d

dt
k@↵u(t)kHm,2  k@↵F1(v)kHm,2 . (3.3)

We multiply both sides of (3.3) by A(t)|↵|/↵! and make a summation to get

d

dt
ku(t)kGA(t)(@;Hm,2) �A0(t)

X
|↵|=1

k@↵u(t)kGA(t)(@;Hm,2)  kF1(v)kGA(t)(@;Hm,2), (3.4)

where A(t) = A exp(�t/✏) and ✏ is a su�ciently small positive constant. Integrating in
t and using Lemma 2.4, we get

|||u|||XT  ku0kGA(@;Hm,2) + C⇢2

Z T

0
ku(t)kGA(t)(@;Hm+1,2) dt

 ku0kGA(@;Hm,2) + C⇢3(T +
✏

A
e

T
✏ )  ⇢

(3.5)

if we take
ku0kGA(@;Hm,2) 

⇢

2
, C⇢2T  1

4
, T  ✏  A

4C⇢2e
.

In the same way as in the proof of (3.5) we get, by Lemma 2.4,

|||u1 � u2|||XT  C⇢2(T +
✏

A
e

T
✏ )|||v1 � v2|||XT 

1
2
|||v1 � v2|||XT , (3.6)

where uj = Mvj . From (3.5) and (3.6) we have Theorem 1.
We omit the proof of Theorem 2 since it is similar to that of Theorem 1.

Proof of Theorem 3. As noted in the introduction, the operators R and R̃ commute
with the linear part of (3.1) and (3.2), respectively. Hence in the same way as in the
proof of (3.4) we see that there exists a positive constant C such that

d

dt
ku(t)kGA(t)(R;Rm,2(t))�CA0(t)

X
|↵|=1

kR↵u(t)kGA(t)(R;Rm,2(t))  kF1(v)kGA(t)(R;Rm,2(t)),

(3.7)
where

A(t) = A1(1 +
A�A1

A1
(log(e + t))�✏)

and we have used Lemma A.1 to derive the second term of the left-hand side. We
integrate (3.7) with respect to t and use Lemma 2.3 to get

|||u|||X1  Cku0kGA(R(0):Rm,2(0)) + C⇢2

Z 1

0
(1 + t)�2ku(t)kGA(t)(R(t);Rm+1,2(t)) dt

 C(ku0kGA(R(0):Rm,2(0)) + ⇢3( sup
t2R+

(1 + t)�2(�A0(t))�1 + 1))

 C(ku0kGA(R(0):Rm,2(0)) + ⇢3)  ⇢
(3.8)
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if we take
Cku0kGA(R(0):Rm,2(0)) 

⇢

2
, C⇢2  1

2
.

In the same way as in the proof of (3.8) we have by Lemma 2.3

|||u1 � u2|||X1  C⇢2|||v1 � v2|||X1 
1
2
|||v1 � v2|||X1 , (3.9)

where uj = Mvj . From (3.8) and (3.9) Theorem 3 follows.
The proofs of Theorems 30 and 4 are similar to that of Theorem 3 and will be omitted.

Proof of Corollary 5. By Sobolev’s inequality and Lemma A.1 we get

ku(t)kGA1 (@;L1)  C(1 + |t|)�1
X

|↵|+|�|2

kJ↵@�u(t)kGA1 (@;L2)

 C(1 + |t|)�1ku(t)kGA1 (@;B2,2(t)),

where B = R or R̃. This yields the time-decay estimate in Corollary 5. Now we define

u⌥ = u0 +
Z ⌥1

0
U(�⌧)Fj(u(⌧)) d⌧.

Then

U(t)u⌥ = u(t) +
Z ⌥1

t
U(t� ⌧)Fj(u(⌧)) d⌧

from which and Lemma 2.3 it follows that

ku(t)� U(t)u⌥kGA1 (@;L2)  C|
Z ⌥1

t
(1 + ⌧)�2 d⌧ |,

and the second part of Corollary 5 is proved.
Remark 5. For the sake of simplicity, we have only considered the case when ' satisfies
the homogeneous boundary conditions:

lim
x!1

'(t, x, y) = lim
y!1

'(t, x, y) = 0.

However our results except for the global result for the IVP (1.11) in Theorem 4 are
still valid for the general boundary condition on '. We explain this point herein. We
let '1(t, x) and '2(t, y) be such that

lim
y!1

'(t, x, y) = '1(t, x), lim
x!1

'(t, x, y) = '2(t, y).

Under these boundary conditions the IVP (1.4) or (1.5) can be written as

i@tu + Hu = c1|u|2u + c2u

Z 1

y
@x|u|2(x, y0) dy0

+ c3u

Z 1

x
@y|u|2(x0, y) dx0 + c2u@x'1 + c3u@y'2,

u(x, y, 0) = u0(x, y),

(3.10)
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where H = @x@y or @2
x + @2

y , and the IVP (1.10) or (1.11) can be written as

i@tu + Hu = F (u) + G(u) + G1(u), u(x, y, 0) = u0(x, y), (3.11)

where F (u) and G(u) are the same ones as those defined in the introduction (see (1.10)),
and

G1(u) = c4@xu@x'1 + c5@xu@y'2 + c6@yu@x'1 + c7@yu@y'2.

Theorem 1 and Theorem 2 are valid for (3.10) provided

@x'1(t, x) 2 GA(@x;Hm,2), @y'2(t, y) 2 GA(@y;Hm,2).

Theorem 3 and Theorem 30 are valid for (3.10) if

@x'1(t, x) 2 GA(@x;GA|t|(@x;Hm,2)), @y'2(t, y) 2 GA(@y;GA|t|(@y;Hm,2))

satisfy
k@x'1(t)kGA(@x;GA|t|(@x;Hm,1))  C(1 + |t|)�a

and
k@y'2(t)kGA(@y;GA|t|(@y;Hm,1))  C(1 + |t|)�a

with a > 1.
Theorem 4 for (1.10) is valid for (3.11) with H = @x@y if

@x'1(t, x) 2 GA(@x;GA|t|(@x;GA(x@x;Hm,2))),

@y'2(t, y) 2 GA(@y;GA|t|(@y;GA(y@y;Hm,2)))

satisfy
k@x'1(t)kGA(@x;GA|t|(@x;GA(x@x;Hm,1)))  C(1 + |t|)�a

and
k@y'2(t)kGA(@y;GA|t|(@y;GA(y@y;Hm,1)))  C(1 + |t|)�a

with a > 1 and A < 1.
Typical examples of '1 and '2 satisfying the previous conditions are

'1(t, x) =
1

1 + t2 + x2
, '2(t, y) =

1
1 + t2 + y2

.

For the IVP (1.11), we have used the operator ⌦xy = x@y�y@x in the proof of Theorem
4. The use of the operator ⌦xy requires the condition

@x'1 2 GA(@x;GA|t|(@x;GA(y@x;Hm,1)))

and
@y'2 2 GA(@y;GA|t|(@y;GA(x@y;Hm,1))).

This condition implies that @x'1 and @y'2 are depending only on t. Hence Theorem 4
for the IVP (1.11) is valid for (3.11) if @x'1, @y'2 = C(1 + |t|)�a with a > 1.
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Appendix.

Lemma A.1. There exist positive constants C1 and C2 such that

C1kukGA(B(t);Bm,p(t)) 
X

|↵|m

kB↵ukGA(B(t);Lp)  C2kukGA(B(t);Bm,p(t)),

where B(t) is one of the operators @, R,�, R̃ and �̃.

Proof. We only prove the case B(t) = R = (@, J), where J = (J1, J2). By the definition
of GA(R : Rm,p(t))

kukGA(R:Rm,p(t)) =
X

|↵|+|�|m

X
�,�

A|�|+|�|

�!�!
k@↵J�@�J�ukLp .

By [20, Lemma 2.6] we see that the right-hand side is estimated by

C
X

|↵|+|�|m

X
�,�

A|�|+|�|

�!�!
k@�J�@↵J�ukLp

=C
X

|↵|+|�|m

k@↵J�ukGA(R;Lp) = C
X

|↵|m

kR↵ukGA(R;Lp).

This implies the first inequality of the lemma. The second inequality of the lemma is
obtained by [20, Lemma 2.6], similarly.

Lemma A.2. We have

kf
Z 1

y
gh̄(x, y0) dy0kGA(B(t);L2)  kfkGA(B(t);L2

yL1x )kgkGA(B(t);L2
yL1x )khkGA(B(t);L2),

where B(t) is one of the operators @, R,�, R̃ and �̃.

Proof. We only prove the case B = R. We have

kf
Z 1

y
gh̄(x, y0) dy0kGA(B;L2) =

X
↵,�

A|↵|+|�|

↵!�!
k@↵J�

�
f

Z 1

y
gh̄(x, y0) dy0

�
kL2


X
↵,�

X
↵1↵
�1�

✓
↵
↵1

◆✓
�
�1

◆
A|↵|+|�|

↵!�!
k(@↵�↵1J���1f)

�Z 1

y
(@↵1(it@)�1(gh̄)(x, y0) dy0

�
kL2

(by Leibniz’ formula)


X
↵,�

X
↵1↵
�1�

A|↵|+|�|

(↵� ↵1)!(� � �1)!↵1!�1!
k@↵�↵1J���1fkL2

yL1x

⇥ k
Z 1

y
@↵1(it@)�1(gh̄)(x, y0) dy0kL1y L2

x
(by Hölder’s inequality)

 kfkGA(B;L2
yL1x )

X
↵,�

A|↵|+|�|

↵!�!
k
Z 1

y
@↵(it@)�(gh̄)(x, y0) dy0kL1y L2

x
.

We again use Leibniz’ formula and Hölder’s inequality to obtain the result.
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Lemma A.3. We have for m � 3 and 1  p  1

1X
n=0

k|u|2nukGA(B(t);Bm,p(t))  CkukGA(B(t);Bm,p(t))

1X
n=0

kuk2n
GA(B(t);Bm,2(t)).

Proof. In the same way as in the proof of Lemma A.2 we have

k|u|2ukGA(B;Lp)  kuk2GA(B;L1)kukGA(B;Lp), 1  p  1.

By iteration of this inequality it follows that

k|u|2nukGA(B;Lp)  kuk2n
GA(B;L1)kukGA(B;Lp).

Hence Lemma A.1 gives for m � 3

k|u|2nukGA(B;Bm,p)  Ckuk2n
GA(B;Bm�2,1)kukGA(B;Bm,p), (a.1)

where C is a constant independent of n. We again use Lemma A.1 and Sobolev’s
inequality in the right-hand side of (a.1) to obtain the claim.
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