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Global existence of strong solutions for incompressible
hydrodynamic flow of liquid crystals with vacuum
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Abstract. We consider the Cauchy problem for incompressible hydrodynamic flow of nematic liquid
crystals in three dimensions. We prove the global existence and uniqueness of the strong solutions with
nonnegative ρ0 and small initial data.

1. Introduction

In this paper, we study the following incompressible hydrodynamic flow of nematic liquid crystals in
R3 × (0,+∞) (See [5, 10, 22]):

ρt + ∇ · (ρu) = 0, (1)
(ρu)t + ∇ · (ρu ⊗ u) + ∇P = µ∆u − λ∇ · (∇d ⊙ ∇d), (2)
∇ · u = 0, (3)
dt + (u · ∇)d = θ(∆d + |∇d|2d). (4)

Here ρ : R3 × [0,+∞) → R1 denotes the density function of the fluid, u : R3 × [0,+∞) → R3 denotes the
velocity field of the fluid, d : R3 × (0,+∞) → S2 denotes the macroscopic average of the nematic liquid
crystal orientation field, and P(x, t) is a scalar function representing the pressure. µ > 0, λ > 0, θ > 0 are
viscosity of the fluid, competition between kinetic and potential energy, and microscopic elastic relaxation
time respectively. The symbol ⊗ is the usual Kronecker multiplication, e.g. u ⊗ u = (uiu j)1≤i, j≤3, and the
notation ∇d ⊙ ∇d denotes the 3 × 3 matrix whose (i, j)-th entry is given by ∇id · ∇ jd, for 1 ≤ i, j ≤ 3.

We consider system (1)–(4) equipped with the following initial conditions:

(ρ,u,d)(x, 0) = (ρ0,u0,d0), with ∇ · u0 = 0, (5)

and the following boundary conditions (see also [7]):

ρ,u vanish at infinity and d is constant at infinity (in some weak sense). (6)
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The hydrodynamic flow of incompressible liquid crystals was first derived by Ericksen [5] and Leslie
[10] in 1960s. However, its rigorous mathematical analysis did not take place until 1990s, when Lin [12]
and Lin-Liu [14–16] addressed the existence and partial regularity theory of suitable weak solutions to the
incompressible hydrodynamic flow of liquid crystals of variable length. More precisely, they considered
the homogeneous case ρ ≡ 1 and the approximate equation of incompressible hydrodynamic flow of

liquid crystals
(
i.e., |∇d|2d is replaced by

(1 − |d|2)d
ϵ2

)
, and proved in [14] the local existence of classical

solutions and the global existence of weak solutions in dimension two and three. For any fixed ϵ > 0,
they also showed the existence and uniqueness of global classical solutions either in dimension two or
dimension three when the fluid viscosity µ is sufficiently large; in [15], Lin and Liu extended the classical
theorem by Caffarelli-Kohn-Nirenberg [1] on the Navier-Stokes equation that asserts the one dimensional
parabolic Hausdorff measure of the singular set of any suitable weak solution is zero. See also [17, 20] for
relevant results. It is a very interesting question to ask whether there exists a global weak solution for the
incompressible hydrodynamic flow equations (1)–(4) similar to the Leray-Hopf type solutions in the context
of the Navier-Stokes equation. This question has been answered firmly by [13] when N = 2 and ρ = 1.
When ρ , constant, Liu and Zhang in [19] obtained the global weak solutions in dimension three with the

initial density ρ0 ∈ L2. Jiang and Tan in [8] improved the condition of ρ0, i.e. ρ0 ∈ Lγ, γ >
3
2

. However,
the estimates depend on ε, and therefore one cannot take the limit ε → 0. Wen and Ding in [22] proved
the local existence and uniqueness of the strong solutions to the model (1)–(4) for a bounded domain in
RN (N = 2 or 3), provided that the initial density ρ0 ≥ 0. Furthermore, they got the global existence and
uniqueness of the strong solutions with small enough initial data and inf

x∈Ω
ρ0 > 0 in 2D. Very recently, Li and

Wang proved in [11] the existence and uniqueness of the local strong solutions with large initial data and
the global strong solutions with small data in Besov space for the initial density away from vacuum in 3D.
It leads us to focus on the global existence and uniqueness of strong solutions with small enough initial
data and nonnegative ρ0 for the model in 3D.

2. Main results

Before stating the main results, we explain the notations and conventions used throughout this paper.
We denote∫

f =
∫
R3

f dx and
∫ t

0

∫
f =

∫ t

0

∫
R3

f dxdt.

For 1 ≤ r ≤ ∞, we denote the standard Sobolev spaces as follows:

Lr = Lr(R3), Dk,r =
{
v ∈ L1

loc(R
3) : |∇kv|Lr < ∞

}
;

Wk,r = Lr ∩Dk,r, Hk =Wk,2, Dk = Dk,2, D1 =
{
v ∈ L6 : |∇v|L2 < ∞

}
,

here | · |Lr and | · |Wk,r denote the norm in Lr and Wk,r respectively.
Our main results are stated as follows:

Theorem 2.1. Assume that ρ0 ≥ 0, ρ0 ∈ H1∩L∞, u0 ∈ D2∩D1, d0 ∈ D1∩D3(R3,S2), and the following compatible
conditions are valid

µ∆u0 − ∇P0 − λ∇ · (∇d0 ⊙ ∇d0) =
√
ρ0g, in R3, (7)

for some (P0,g) ∈ H1 × L2. There exists a sufficiently small positive constant ε0 such that if

| √ρ0u0|2L2 + |∇u0|2H1 + |∇d0|2H2 + |g|2L2 < ε0, (8)
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then for arbitrary positive T, problems (1)–(6) admit a unique strong solution (ρ,u,d) satisfying

ρ ∈ C([0,T]; H1) ∩ L∞(QT), ρt ∈ C([0,T]; L2),
∇u ∈ C([0,T]; H1) ∩ L2([0,T]; W1,6), ut ∈ L2([0,T]; D1),

√
ρut ∈ L∞([0,T]; L2),

P ∈ C([0,T]; H1) ∩ L2([0,T]; W1,6), |d| = 1, in R3 × [0,T],
∇d ∈ C([0,T]; H2) ∩ L2([0,T]; H3), dt ∈ C([0,T]; H1) ∩ L2([0,T]; H2).

3. Preliminaries

In this section, we give some lemmas which will be used in the next section.

Lemma 3.1. (Interpolation inequality) Assume 1 ≤ s ≤ r ≤ t ≤ ∞ and

1
r
=
ϑ
s
+

1 − ϑ
t
. (9)

Suppose also f ∈ Ls ∩ Lt. Then f ∈ Lr, and

| f |Lr ≤ C| f |ϑLs | f |1−ϑLt . (10)

Lemma 3.2. (Gagliardo-Nirenberg inequality) For p ∈ [2, 6], q ∈ (1,∞), and r ∈ (3,∞), there exists some generic
constant C > 0 which may depend on q, r such that for f ∈ H1 and 1 ∈ Lq ∩D1,r, we have

| f |pLp ≤ C| f |
6−p

2

L2 |∇ f |
3p−6

2

L2 , (11)

and

|1|C(R3) ≤ C|1|
q(r−3)

3r+q(r−3)

Lq |∇1|
3r

3r+q(r−3)

Lr . (12)

One interesting case is when q = 2 and r = 6, we recover the C(R3) norm stated above.

4. Proof of main results

In this section we establish some a priori estimates globally in time by a modified energy method
motivated by [2, 3] and then prove Theorem 2.1. The local existence and uniqueness of solution for
problems (1)–(6) can be proved by a similar iteration procedure shown in [18, 22] or Galerkin’s method
shown in [7, 14, 21] and a standard domain expansion technique mentioned in [4, 7]. For simplicity, we
omit the proof in this paper. In the following, we denote by C the generic constants dependent on µ, λ, θ
and the initial data, but independent of ρ, u, d and T.

Lemma 4.1. (Basic energy law) For any t ≥ 0, it holds∫
(ρ|u|2 + λ|∇d|2) + 2µ

∫ t

0

∫
|∇u|2 + 2λθ

∫ t

0

∫
|∆d + |∇d|2d|2

=

∫
(ρ0|u0|2 + λ|∇d0|2). (13)

and

0 ≤ ρ(x, t) ≤ sup
x∈R3

ρ0(x). (14)
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Proof. Firstly, we rewrite (2) by (1) into

ρut + ρ(u · ∇)u + ∇P = µ∆u − λ∇ · (∇d ⊙ ∇d). (15)

Then multiplying (15) by u, and then integrating over R3, we use (3) and integration by parts to give

1
2

d
dt

∫
ρ|u|2 + µ

∫
|∇u|2

= −λ
∫ [
∆d · ∇d + ∇

(
|∇d|2

2

)]
· u = −λ

∫
(u · ∇)d · ∆d. (16)

Here ∆d · ∇d =
∑3

i=1 ∆di∇di. Then multiplying (4) by (∆d + |∇d|2d), and then integrating over R3, one
obtains∫

(dt + u · ∇d) · ∆d = θ
∫
|∆d + |∇d|2d|2, (17)

where we have used the fact that |d| = 1 to get

(dt + u · ∇d) · |∇d|2d =
1
2

[
|∇d|2(|d|2)t + u · ∇(|d|2)|∇d|2

]
= 0. (18)

By using integration by parts and (6), we have∫
dt · ∆d = −1

2
d
dt

∫
|∇d|2. (19)

Hence we obtain

λ
2

d
dt

∫
|∇d|2 + λθ

∫
|∆d + |∇d|2d|2 = λ

∫
(u · ∇)d · ∆d. (20)

It is easy to see that, by adding (16) and (20) and then integrating over [0, t], (13) follows.
Finally, (14) follows by the characteristic method (cf. [9]). �

Lemma 4.2. For any t ≥ 0, it holds

sup
t≥0

(
|∇u|2L2 + |∇d|2H2 + |

√
ρut|2L2 + |dt|2H1

)
+

∫ t

0

(
|∇u|2H1 + |∆d|2H2 + |

√
ρut|2L2 + |∇ut|2L2 + |∇dt|2H1

)
≤ C. (21)

Proof. First of all, taking the inner product of (4) by ∆d, and then by using integration by parts and the fact
|d| = 1, we have

1
2

d
dt

∫
|∇d|2 + θ

∫
|∆d|2 = θ

∫
|∇d|4 +

∫
(u · ∇)d · ∆d

≤ C|∇d|L2 |∆d|3L2 +

∫
(u · ∇)d · ∆d

≤ C|∇d|2H1 |∆d|2L2 +

∫
(u · ∇)d · ∆d. (22)

Here we have used the following fact obtained from Lemma 3.2 and the elliptic estimate in the whole space
R3:

|∇d|4L4 ≤ C|∇d|L2 |∇2d|3L2 ≤ C|∇d|L2 |∆d|3L2 , (23)
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and this term is the main difficulty for the problem considered in a bounded domain. Then applying ∇ to
(4), one obtains

∇dt + ∇u · ∇d + u · ∇2d = θ∇∆d + 2θ(∇d : ∇2d)d + θ|∇d|2∇d, (24)

and then multiplying (24) by ∇∆d and using integration by parts, we have

1
2

d
dt

∫
|∆d|2 + θ

∫
|∇∆d|2

=

∫ [
∇u · ∇d + u · ∇2d − 2θ(∇d : ∇2d)d − θ|∇d|2∇d

]
· ∇∆d

≤
∫
|∇u||∇d||∇∆d| +

∫
|u||∇2d||∇∆d|

+2θ
∫
|∇d||∇2d||∇∆d| + θ

∫
|∇d|3|∇∆d|

= I1 + I2 + I3 + I4. (25)

The Hölder inequality, Lemma 3.2, Lemma 4.1, the elliptic estimate in R3 and the Cauchy inequality imply
that

I1 ≤ C|∇u|L6 |∇d|L3 |∇∆d|L2

≤ C|∆u|L2 |∇d|
1
2

L2 |∆d|
1
2

L2 |∇∆d|L2 ≤ C|∆d|
1
2

L2

(
|∆u|2L2 + |∇∆d|2L2

)
,

I2 ≤ C|u|L6 |∇2d|L3 |∇∆d|L2 ≤ C|∇u|L2 |∆d|2H1 ,

I3 ≤ C|∇d|L6 |∇2d|L3 |∇∆d|L2 ≤ C|∆d|L2 |∆d|2H1 ,

I4 ≤ C|∇d|3L6 |∇∆d|L2 ≤ C|∆d|2L2 |∆d|2H1 .

On the other hand, multiplying (15) by ut, we use (3), (14) and integration by parts to give

µ

2
d
dt

∫
|∇u|2 +

∫
ρ|ut|2

= −
∫
ρ(u · ∇)u · ut − λ

∫
∆d · ∇d · ut

≤ C| √ρ|L∞ |u|L6 |∇u|L3 | √ρut|L2 + |∆d|L2 |∇d|L3 |ut|L6

≤ 1
2
| √ρut|2L2 + C|∇u|2L2 |∇u|2H1 + C|∆d|

1
2

L2

(
|∆d|2L2 + |∇ut|2L2

)
. (26)

It follows from the estimates for the stationary Stokes equations (see [6]), (14), the Hölder inequality and
Lemma 3.2 that

|∇2u|2L2 ≤ C| − ρut − ρ(u · ∇)u − λ∇ · (∇d ⊙ ∇d)|2L2 .

≤ C|ρ|L∞ |
√
ρut|2L2 + C|u|2L6 |∇u|2L3 + C|∇2d|2L3 |∇d|2L6

≤ C| √ρut|2L2 + C|∇u|2L2 |∇u|2H1 + C|∆d|2L2 |∆d|2H1 . (27)

We infer from (26) and (27) that

d
dt

∫
|∇u|2 +

∫
|∇2u|2 +

∫
ρ|ut|2

≤ C
(
|∇u|L2 + |∇u|2L2 + |∆d|

1
2

L2 + |∆d|2L2

) (
|∇u|2H1 + |∇ut|2L2 + |∆d|2H1

)
. (28)
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Secondly, applying ∂t to (15), we have

ρutt + ρ(u · ∇)ut − µ∆ut + ∇Pt

= −ρt [ut + (u · ∇)u] − ρut · ∇u −
[
∆dt · ∇d + ∆d · ∇dt + ∇

(
|∇d|2

2

)
t

]
.

(29)

Then multiplying (29) by ut, and then using (1), (3) and integration by parts, one obtains

1
2

d
dt

∫
ρ|ut|2 + µ

∫
|∇ut|2

= −
∫
ρt [ut + (u · ∇)u] · ut −

∫
ρ(ut · ∇)u · ut −

∫
(∆dt · ∇d + ∆d · ∇dt) · ut

= −
∫
ρu ·

(
∇ut + ∇u · ∇u + u · ∇2u

)
· ut −

∫
ρu · [ut + (u · ∇)u] · ∇ut

−
∫
ρ(ut · ∇)u · ut −

∫
(∆dt · ∇d + ∆d · ∇dt) · ut

≤
∫

2ρ|u||∇ut||ut| + ρ|u||∇u|2|ut| + ρ|u|2|∇2u||ut| + ρ|u|2|∇u||∇ut|

+ρ|ut|2|∇u| + |∆dt||∇d||ut| + |∆d||∇dt||ut|
= J1 + J2 + J3 + J4 + J5 + J6 + J7. (30)

It yields from the Hölder inequality, Lemma 3.1, Lemma 3.2, Lemma 4.1, the elliptic estimate in R3 and the
Cauchy inequality that

J1 ≤ C|ρu|L3 |∇ut|L2 |ut|L6 ≤ C|ρu|
1
2

L2 |ρu|
1
2

L6 |∇ut|2L2 ≤ C|∇u|
1
2

L2 |∇ut|2L2 ,

J2 ≤ C|u|L6 |∇u|L2 |∇u|L6 |ut|L6 ≤ |∇u|2L2

(
|∆u|2L2 + |∇ut|2L2

)
,

J3 ≤ C|u|2L6 |∇2u|L2 |ut|L6 ≤ C|∇u|2L2

(
|∆u|2L2 + |∇ut|2L2

)
,

J4 ≤ C|u|2L6 |∇u|L6 |∇ut|L2 ≤ C|∇u|2L2

(
|∆u|2L2 + |∇ut|2L2

)
,

J5 ≤ C| √ρut|L3 |∇u|L2 |ut|L6 ≤ C| √ρut|
1
2

L2 |ut|
3
2

L6 |∇u|L2

≤ C| √ρut|
1
2

L2 |∇ut|
3
2

L2 |∇u|L2 ≤ |∇u|L2

(
| √ρut|2L2 + |∇ut|2L2

)
,

J6 ≤ C|∆dt|L2 |∇d|L3 |ut|L6 ≤ C|∆dt|L2 |∆d|
1
2

L2 |∇ut|L2

≤ C|∆d|
1
2

L2

(
|∆dt|2L2 + |∇ut|2L2

)
,

J7 ≤ C|∆d|L2 |∇dt|L3 |ut|L6 ≤ C|∆d|L2 |∇dt|
1
2

L2 |∆dt|
1
2

L2 |∇ut|L2

≤ C|∆d|L2

(
|∇dt|2L2 + |∆dt|2L2 + |∇ut|2L2

)
.

Thirdly, Applying ∂t to (4), one obtains

dtt + (ut · ∇)d + (u · ∇)dt = θ∆dt + 2θ(∇d : ∇dt)d + θ|∇d|2dt. (31)
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Multiplying (31) by dt, and then by using integration by parts, (4) and the fact |d| = 1, we have

1
2

d
dt

∫
|dt|2 + θ

∫
|∇dt|2

= −
∫

(ut · ∇)d · dt + θ

∫
|∇d|2|dt|2

=

∫
(ut · ∇)d ·

[
(u · ∇)d − θ(∆d + |∇d|2d)

]
+ θ

∫
|∇d|2|dt|2

≤ C
∫
|ut||∇d|2|u| + C

∫
|ut||∇d||∆d| + C

∫
|∇d|2|dt|2

= K1 + K2 + K3. (32)

We have similarly as the estimates about Ik(k = 1, 2, 3, 4) and Jk(k = 1, 2, . . . , 7) that

K1 ≤ C|ut|L6 |∇d|2L3 |u|L6 ≤ C|∇ut|L2 |∇d|L2 |∆d|L2 |∇u|L2

≤ C|∇ut|L2 |∆d|L2 |∇u|L2 ≤ C|∇u|L2

(
|∇ut|2L2 + |∆d|2L2

)
,

K2 ≤ C|ut|L6 |∇d|L3 |∆d|L2 ≤ C|∇ut|L2 |∇d|
1
2

L2 |∆d|
3
2

L2 ≤ C|∇ut|L2 |∆d|
3
2

L2

≤ C|∆d|
1
2

L2

(
|∇ut|2L2 + |∆d|2L2

)
,

K3 ≤ C|∇d|2L3 |dt|2L6 ≤ C|∆d|L2 |∇dt|2L2 .

Then multiplying (31) by ∆dt, and then using integration by parts, we get

1
2

d
dt

∫
|∇dt|2 + θ

∫
|∆dt|2

=

∫ [
(ut · ∇)d + (u · ∇)dt − 2θ(∇d : ∇dt)d − θ|∇d|2dt

]
· ∆dt

≤
∫
|ut||∇d||∆dt| + |u||∇dt||∆dt| + 2θ|∇d||∇dt||∆dt| + θ|∇d|2|dt||∆dt|

= L1 + L2 + L3 + L4, (33)

It yield as before that

L1 ≤ C|ut|L6 |∇d|L3 |∆dt|L2 ≤ C|∇ut|L2 |∆d|
1
2

L2 |∆dt|L2

≤ C|∆d|
1
2

L2

(
|∇ut|2L2 + |∆dt|2L2

)
,

L2 ≤ C|u|L6 |∇dt|L3 |∆dt|L2 ≤ C|∇u|L2 |∇dt|
1
2

L2 |∆dt|
3
2

L2

≤ C|∇u|L2

(
|∇dt|2L2 + |∆dt|2L2

)
,

L3 ≤ C|∇d|L3 |∇dt|L6 |∆dt|L2 ≤ C|∆d|
1
2

L2 |∆dt|2L2 ,

L4 ≤ C|∇d|2L6 |dt|L6 |∆dt|L2 ≤ C|∇d|2L6 |∇dt|L2 |∆dt|L2

≤ C|∆d|2L2

(
|∇dt|2L2 + |∆dt|2L2

)
.

Combining (16), (22), (25), (28), (30), (32), (33) and all the estimates about In, Jn, Kn and Ln together, we
have

d
dt

F(t) + G(t) ≤ CH(t)G(t), (34)
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where

F(t) = | √ρu|2L2 + |∇u|2L2 + |∇d|2H1 + |
√
ρut|2L2 + |dt|2H1 ,

G(t) = |∇u|2H1 + |∆d|2H1 + |
√
ρut|2L2 + |∇ut|2L2 + |∇dt|2H1 ,

H(t) = |∇u|
1
2

L2 + |∇u|2L2 + |∇d|
1
2

H1 + |∇d|2H1 .

In conclusion, we get

d
dt

F(t) + (1 − CH(t))G(t) ≤ 0. (35)

We set now δ0 small enough such that δ0 + 2δ
1
4
0 <

1
C , where C is the constant shown in (35). And then we

choose ε0 small enough such that 2c1

(
ε0 + ε3

0

)
< δ0, where c1 is a Sobolev constant which will be used in the

following, and suppose that (8) holds. We claim that for all t ≥ 0,

|∇u|2L2 (t) + |∇d|2H1 (t) + |dt|2H1 (t) < δ0. (36)

If it is not the case, then let t1 be the first time t > 0 such that

|∇u|2L2 (t) + |∇d|2H1 (t) + |dt|2H1 (t) ≥ δ0. (37)

For all t < t1,

|∇u|2L2 (t) + |∇d|2H1 (t) + |dt|2H1 (t) < δ0, (38)

then it yields

H(t) ≤ δ0 + 2δ
1
4
0 <

1
C
, for t < t1. (39)

So we have

1 − CH(t) ≥ 0, for t < t1. (40)

Hence, for all t < t1, we have

d
dt

F(t) ≤ 0, (41)

it implies

| √ρu|2L2 (t) + |∇u|2L2 (t) + |∇d|2H1 (t) + | √ρut|2L2 (t) + |dt|2H1 (t)

≤ |√ρ0u0|2L2 + |∇u0|2L2 + |∇d0|2H1 + |
√
ρut|2L2 (0) + |dt|2H1 (0)

≤ |√ρ0u0|2L2 + |∇u0|2L2 + |∇d0|2H1 + |g|2L2 + |
√
ρ0u0 · ∇u0|2L2 + |u0 · ∇d0|2L2

+θ|∆d0|2L2 + θ
∣∣∣|∇d0|2

∣∣∣2
L2 + |∇u0 · ∇d0|2L2 + |u0 · ∇2d0|2L2 + θ|∇∆d|2L2

+θ|∇d0 : ∇2d0|2L2 + θ
∣∣∣|∇d0|3

∣∣∣2
L2

≤ c1

(
| √ρ0u0|2L2 + |∇u0|2H1 + |∇u0|4H1 + |g|2L2 + |∇d0|6H2 + |∇d0|2H2

)
≤ 2c1

(
ε0 + ε

3
0

)
< δ0. (42)

Then we have

|∇u|2L2 (t) + |∇d|2H1 (t) + |dt|2H1 (t) ≤ 2c1

(
ε0 + ε

3
0

)
< δ0. (43)
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Finally, let t→ t1, we have from the continuity of the local strong solution that(
|∇u|2L2 + |∇d|2H1 + |dt|2H1

)
(t1) ≤ 2c1

(
ε0 + ε

3
0

)
< δ0, (44)

it yields a contradiction with the definition of t1 in (37). Then we conclude (36) holds for t ≥ 0. Furthermore,
by integrating (35) over [0, t], we have

| √ρut|2L2 (t) +
∫ t

0
G(t) ≤ C, for t ≥ 0. (45)

Finally, multiplying (24) by ∇∆d, and then integrating over R3, we get

θ

∫
|∇∆d|2 ≤

∫
|∇dt||∇∆d| +

∫
|∇u||∇d||∇∆d| +

∫
|u||∇2d||∇∆d|

+2θ
∫
|∇d||∇2d||∇∆d| + θ

∫
|∇d|3|∇∆d|

= R1 + R2 + R3 + R4 + R5. (46)

The Hölder inequality, (36) and Lemma 3.2 imply that

R1 ≤ C|∇dt|L2 |∇∆d|L2 ≤ C|∇∆d|L2

R2 ≤ C|∇u|L2 |∇d|L∞ |∇∆d|L2 ≤ C|∇∆d|
7
4

L2 ,

R3 ≤ C|u|L6 |∇2d|L3 |∇∆d|L2 ≤ C|∇u|L2 |∆d|
1
2

L2 |∇∆d|
3
2

L2 ≤ C|∇∆d|
3
2

L2 ,

R4 ≤ C|∇d|L6 |∇2d|L3 |∇∆d|L2 ≤ C|∆d|
3
2

L2 |∇∆d|
3
2

L2 ≤ C|∇∆d|
3
2

L2 ,

R5 ≤ C|∇d|3L6 |∇∆d|L2 ≤ C|∆d|3L2 |∇∆d|L2 ≤ C|∇∆d|L2 .

Then it follows by the Cauchy inequality that

sup
t≥0
|∆d|2D1 ≤ C, for t ≥ 0. (47)

Similarly, by (36), (45) and (47), we have∫ t

0
|∆d|2D2 ≤ C, for t ≥ 0. (48)

then (21) follows by (36), (45), (47) and (48). �

Lemma 4.3. For any t ≥ 0, it holds

sup
t≥0

(|u|D2 + |P|H1 ) +
∫ t

0

(
|∇u|2W1,6 + |P|2W1,6

)
≤ C. (49)

and

sup
t≥0

(|ρ|H1 + |ρt|L2
) ≤ C exp(1 + t). (50)

Proof. Firstly, By using Lemma 3.2, Lemma 4.2, the Hölder inequality and a similar discussion as (27), one
obtains

|∇2u|2L2 ≤ C|ρ|L∞ |
√
ρut|2L2 + C|u|2L6 |∇u|2L3 + C|∇2d|2L3 |∇d|2L6

≤ C + C|∇2u|L2 . (51)



S.J. Ding, J.R. Huang, F.G. Xia / Filomat 27:7 (2013), 1247–1257 1256

Then it follows by the Cauchy inequality that

|u|D2 (t) ≤ C, t ≥ 0. (52)

On the other hand, using the regularity theory for the stationary Stokes equations (see [4, 6]) and Lemma
3.2 again, we have

|∇u|W1,6

≤ C
(|ρut|L6 + |ρu · ∇u|L6 + |∇ · (∇d ⊙ ∇d)|L6

)
≤ C

(|ρ|L∞ |∇ut|L2 + |ρ|L∞ (|∇u|L2 + |∇u|L6 ) |∇u|L6 + |∇d|L∞ |∆d|L6
)

≤ C
(
|∇ut|L2 + |∇u|2H1 + |∇d|H2 |∇∆d|L2

)
≤ C

(
|∇ut|L2 + |∇u|2H1 + |∇∆d|L2

)
. (53)

Then we have∫ t

0
|∇u|2W1,6 ≤ C

∫ t

0

(
|∇ut|2L2 + |∇u|4H1 + |∆d|2H1

)
≤ C

∫ t

0
|∇ut|2L2 + C sup

t≥0
|∇u|2H1

∫ t

0
|∇u|2H1 + C

∫ t

0
|∆d|2H1

≤ C. (54)

And the estimates about the pressure P follows by (2) and the estimates about u and d immediately. It
completes the proof of (49).

Secondly, we turn to give the estimates about the density. To derive these, we first observe that ∇ρ
satisfies

(∇ρ)t + u · ∇2ρ + ∇u · ∇ρ = 0. (55)

Then multiplying (55) by ∇ρ, integrating overR3, and then by using integration by parts and (3), we obtain

d
dt

∫
|∇ρ|2 ≤ C

∫
|∇u||∇ρ|2 ≤ C|∇u|L∞ |∇ρ|2L2 . (56)

Lemma 3.2 yields that

|∇u|L∞ ≤ C|∇u|
1
4

L2 |∇2u|
3
4

L6 . (57)

Then it follows by (56), (57) and Lemma 4.2 that

d
dt
|∇ρ|2L2 ≤ C

(
|∇u|2W1,6 + 1

)
|∇ρ|2L2 , (58)

Then we have from the Gronwall inequality and (54) that

|∇ρ|L2 ≤ C exp(1 + t). (59)

Then (50) follows by (1). This completes the proof of Lemma 4.3. �

Proof of Theorem 2.1 The priori estimates obtained in Lemma 4.1-4.3 allow us to extend the unique local
strong solution to [0,T] for any fixed positive T > 0. Therefore, the proof of Theorem 2.1 is completed. �

Remark 4.4. As shown in the proof of (50), we can not get a uniform estimates for t ∈ [0,∞). It yields that the
strong solution obtained in Theorem 2.1 can not be extended to the case t ∈ [0,∞).
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