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Abstract. In this paper the existence of global weak solutions for a 2 × 2 system of

non-strictly hyperbolic non-linear conservation laws is established for data in L∞.

The result is proven by means of viscous approximation and application of the com-

pensated compactness method.

The presence of a degeneracy in the hyperbolicity of the system requires a careful

analysis of the entropy functions, whose regularity is necessary to obtain an existence

result. For this purpose we combine the classical techniques referring to a singular Euler-

Poisson-Darboux equation with the compensated compactness method.

1. Introduction and main result. We consider the following system:⎧⎨
⎩

ut + f(u, v)x = 0,

vt + g(u, v)x = 0,

(u, v)|t=0 = (u0, v0),

(1.1)

where u = u(x, t), v = v(x, t) and (x, t) ∈ R× R
+.

Using the compact notation U = (u, v) and F = (f, g), we can write the system as{
Ut + F (U)x = 0,

U|t=0 = U0 = (u0, v0).
(1.2)
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We assume U0 ∈ L∞, F ∈ C1, and we denote DF (U) =

(
fu fv
gu gv

)
.

We require that hyperbolicity only fails in one point (umbilic point), that we can

identify with the origin, and that the genuine non-linearity only fails on a curve γ, which

will be part of the boundary of our domain.

To assume that the origin is an isolated umbilic point means that the eigenvalues

coincide only in (0, 0). Such umbilic degeneracy allows a sort of interaction, or non-

linear resonance, between distinct modes and leads to singularities (this phenomenon

missing in the strictly hyperbolic case) ([23]).

The flux function that we consider has the following main feature:

f(u, v) = 3
2u

2 + 1
2v

2 + φ(u, v),

g(u, v) = uv + ψ(u, v),
(1.3)

where φ and ψ are smooth functions such that φ(u, v) = O((|u| + |v|)l) and ψ(u, v) =

O((|u|+ |v|)l), where l > 0 is a constant to be determined.

We recall that, for a regular function f , f(x) = O(xl) if and only if there exist two

constants c1 > 0 and c2 > 0 such that c1 < |f(x)
xl

| < c2, in a neighbourhood of x → 0.

Interest in degenerate hyperbolic equations dates back to the work of Euler who pro-

posed the Euler-Poisson-Darboux equation. This kind of study has been applied to get

a solution for a non-linear system of entropic gas dynamics ([6], [7], [11], [18]).

Moreover, non-linear hyperbolic systems with such a kind of degeneracy have found

applications in many different areas as multiphase flow in porous media, elasticity, mag-

netohydrodynamics and oil reservoir simulations ([10], [15], [23], [27], [30]).

This type of umbilic singularity appears naturally in multidimensional systems of

conservation laws, as was proven in ([16]).

The local existence problem for such systems is well developed because many tech-

niques from linear equations can be used. However, because of the non-linearity, the

solutions of the Cauchy problem develop singularities even with smooth initial data, this

being a reflection of the physical phenomena of breaking of weaves and the development

of shock weaves. There have been several efforts to understand the Riemann solutions for

such a system ([12], [24], [28]). Moreover, two kinds of degeneracy have been classified,

each governing a different behaviour of the solution near the umbilic point: parabolic

degeneracy and hyperbolic degeneracy ([15]).

More literature arises for non-strictly hyperbolic systems with degeneracy along a line

(see [19] and the references therein).

We gather inspiration from the ideas that can be found in the papers of Kan ([13],

[14]), Chen-Kan ([1], [2]), and Rubino ([22], [21]), all based on the theory of compensated

compactness developed by Tartar ([31]), Murat ([20]), Di Perna ([7]) and Serre ([26]) for

strictly hyperbolic systems.

The main idea is to prove the existence of uniformly bounded solutions Uε for the

viscous approximating system of (1.2) and then prove that {Uε}ε>0 converges, for ε → 0,

to a solution U of (1.2) by reducing the Young measure, associated to {Uε}ε>0, to a delta

function.
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The main problem in our case, when compared to the case of Serre, is that the failure of

strict hyperbolicity at the umbilic point causes the partial differential equation governing

the entropy functions to have singular coefficients, but regular entropies are needed in

order to apply the div-curl lemma and to obtain the commutation relation in the theory

of compensated compactness.

We will construct a class of regular entropies as solutions to special Goursat problems

in the following way: first using Riemann’s method to get an integral representation for

entropy functions, and then imposing a special integral condition on the Goursat data

in order to cancel the singular part of the Riemann function in such representation.

The first existence theorems of global solutions have been obtained by Kan ([13], [14])

for the case

f(u, v) = 3
2u

2 + 1
2v

2,

g(u, v) = uv.
(1.4)

Here one can explicitly compute the Riemann invariants and so give a complete study of

the geometry of the system. In this case it is also possible to explicitly find a family of

Riemann functions for the entropy equation and study its regularity properties.

Kan’s method was later extended to more general systems, and it is in this potentiality

for extensions that its importance relies, since for the system (1.4) itself the compensated

compactness method could be carried out in a simpler way ([5], [17]).

Chen and Kan ([1], [2]) generalized Kan’s previous result to the quadratic flux function

f(u, v) = a
2u

2 + buv + 1
2v

2,

g(u, v) = b
2u

2 + uv

with some technical hypothesis on the coefficients a, b.

This choice is significant as, from the results in [23], it follows the existence of a non-

singular linear coordinate transformation that transforms every system with quadratic

flux in a system with this type of flux.

In this case the methods used by Kan still apply, with some more technical difficulties.

Some of these difficulties can be overcome thanks to the second order homogeneity of

the flux function, that allows one to carry on the study of the system introducing the

variable α = u/v.

Frid and Santos ([9]) generalised Kan’s work to some particular cases of non-strictly

hyperbolic conservation laws of the conjugate type, while Rubino ([21], [22]) generalized

it to a system of the form

f(u, v) = a(u) + b(v),

g(u, v) = uv

with b(v) = kv2n + o(|v|2n) and a(u) = (n+ 1
2 )u

2 + o(|u|2), n ∈ N, k > 0.

As we can see, in this last case, the main hypotheses are that the flux function is the

same as that of Kan up to second order terms and that there are no higher order terms

that include the product of both the state variables u and v.

The main difficulty here, with respect to Kan’s paper, is that it is not possible to

explicitly solve the Riemann function problem so that the author prefers to prove that,

near the umbilic point, the Riemann function has the same regularity as the one derived
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by Kan so that, again, a suitable condition on the Goursat data gives a family of regular

entropies.

Our goal is to generalize the previous results, first of all by also adding higher order

terms to the flux function in the second equation, and mainly by including the case of

flux functions where the two state variables are non-separated, at least in the terms of

order greater than 2.

The paper contains two main results. The first one is the following Lemma 1.1, that

is a fundamental technical result concerning the existence of regular entropies for the

perturbed system. This regularity was taken for granted in the previous works, while

here we present a detailed proof through the partial results of Section 4, Section 5 and

Section 6.

Lemma 1.1 (Existence of regular entropies). Under hypothesis (1.3), with l > 7, there

exists a choice of Goursat data for which the solutions of the entropy equation associated

to system (1.1) are bounded near the origin up to the second order derivative. �

The second result we present is a result on the Cauchy problem (1.1), establishing the

existence of a global weak solution:

Theorem 1.2 (Global existence). Consider system (1.1) with

f(u, v) = 3
2u

2 + 1
2v

2 + φ(u, v),

g(u, v) = uv + ψ(u, v),

where φ and ψ satisfy the hypotheses of Lemma 1.1.

Assume (1.1) to be a symmetric system where strict hyperbolicity fails only in (0, 0).

Also assume u0, v0, ∂xu0, ∂xv0 ∈ L∞ and (u0, v0) ∈ I+ =
{
(u, v) | v + φv ≥ 0

}
. Then

the sequence (uε, vε) of solutions of the viscous approximation of (1.1),
⎧⎨
⎩

ut + f(u, v)x = εuxx,

vt + g(u, v)x = εvxx,

(u, v)|t=0 = (u0, v0),

converges strongly in Lp
loc, p < +∞, to a weak solution (u, v) of (1.1). �

For our purposes we actually need (1.1) to be hyperbolic, with strict hyperbolicity

failing only in the origin; we assume symmetry to simplify notation.

The result l > 7 appears of course to be non-optimal, but is the best possible to obtain

with this technique and in our general setting. The condition arises in Section 5 when

proving the regularity of solutions of the entropy equation (see Theorem 5.5).

We would like to emphasize that the results in the previous sections, among which is

the basic Lemma 5.2, hold true for the more weak hypothesis l > 3.

This work is organised as follows.

In Section 2, we start our analysis of the mathematical problem, studying the geometry

of the rarefaction wave curves in order to construct a set of Riemann invariants for system

(1.1) and to analyse their properties.

In Section 3 we recall some known results on parabolic systems that guarantee the

existence of L∞ uniformly bounded solutions for the viscous system.
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In Section 4 we introduce the entropy equation and Serre’s method (see [26]) to

construct a family of entropy solutions bounded up to the second derivatives in the

state variables. This is non-trivial, as the equation governing the entropy functions has

coefficients that are singular at the umbilic point.

In Section 5 we will give our main result: following [13], [14] and [21], and using the

Riemann representation method of solutions, we will find a set of suitable conditions in

order to get regular entropies.

Finally, in Section 6, we will establish the compensated compactness framework. We

will set up the Young measure and the commutation relation, and then use the entropies

constructed in Section 5 to reduce the Young measure to a point mass.

We add, for the reader’s convenience, an Appendix with some of the results in [13], as

it is actually unpublished.

2. Riemann invariants and their properties. As already pointed out in the intro-

duction, we assume DF (U) to be symmetric. This will make it easier to write conditions

to have an isolated umbilic point and to find a convex entropy for the system.

So we assume, now and for the sequel,

fv = gu. (2.1)

The eigenvalues of system (1.1) are

λ± =
(gv + fu)±

√
G(u, v)

2
,

while the eigenvectors are

r± =

(
2fv

(gv − fu)±
√
G(u, v)

)
,

where G(u, v) = (gv − fu)
2 + 4(fv)

2.

System (1.1) is strictly hyperbolic as long as λ± are real valued and satisfy λ− < λ+,

so, in order to have an isolated umbilic point in the origin, we need G(u, v) to verify

G(u, v) = 0 ⇐⇒ (u, v) = (0, 0), that gives us the condition⎧⎨
⎩

(gv − fu)(u, v) = 0

⇐⇒ (u, v) = (0, 0)

fv(u, v) = 0.

(2.2)

2.1. Construction of Riemann invariants. Let us recall that the Riemann invariants

(ω−, ω+) for (1.1) satisfy ∇ω± × r∓ = 0 and that the integral curves R± of r± in the

state space are called the first and the second rarefaction wave curve, respectively.

The Riemann invariants, by definition, are constant along R±, and these curves satisfy

the dynamical system {
u̇ = 2fv(u, v),

v̇ = (gv − fu)(u, v)±
√
G(u, v).

(2.3)

In the general case, it is not always possible to find an exact solution for this equation,

so we will need to study the geometry of the rarefaction waves curves, which is also
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essential to obtain a L∞ a priori estimate for the viscous approximate solutions by

means of the invariant regions technique.

We consider the sets

I+ :=
{
(u, v) ⊆ R

2 | fv(u, v) ≥ 0
}

and I− :=
{
(u, v) ⊆ R

2 | fv(u, v) ≤ 0
}

separated by the curve v = γ(u), implicitly defined by the equation fv(u, v) = 0, once

we ask fvv �= 0. Let I = I+ ∪ I−.

Remark 2.1. We want γ to be monotone (where the constant case γ(u) = 0 is the

unperturbed case). To this aim we have to add the hypothesis that γ′ does not change

sign. Since in the unperturbed case we have fvv = 1, it seems natural to assume

fvv > 0,

so γ is non-decreasing if fuv ≤ 0 and non-increasing if fuv ≥ 0. The construction of the

Riemann invariants is possible in both cases; we will restrict our study to the case

fuv ≥ 0

when it is easier to write some of the technical conditions on the second order derivatives

of f and g. �
Now we state the qualitative properties of R± in I+, but it is completely similar to

deal with R± in the complementary domain I−.

Lemma 2.2. In our setting of hypotheses the following properties hold :

(i) the part of the γ curve that is in the fourth (second) quadrant is an R+ (R−)

curve;

(ii) the R+ (R−) curves are in one to one correspondence with the points of the part

of the γ curve that is in the second (fourth) quadrant ;

(iii) every R+ (R−) which does not coincide with the curve γ keeps getting further

from the curve γ as u goes to +∞ (−∞).

Finally for (1.1) we can construct Riemann invariants (ω−, ω+) so that

ω− ≤ 0 ≤ ω+.

Proof. By the uniqueness of solutions for system (2.3) and the previous construction

we only have to prove (iii); we will prove the R+ curves case.

In our set of hypotheses we have:

dv

du
− γ′(u) =

(gu − fv) +
√
G

2fv
+

fuv
fvv

≥ 0

so that the distance between the R+ curves and γ increases on the right.

Now, since ω± is constant along every R∓, if we prescribe ω± on γ as follows: for

every (u, v) such that v = γ(u) we assign

ω−(u, v) =

{
u if u < 0,

0 if u ≥ 0,

ω+(u, v) =

{
0 if u ≤ 0,

u if u > 0.
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Then for every (u, v) ∈ I+ we have well defined Riemann invariants such that

ω−(u, v) ≤ 0 ≤ ω+(u, v), as shown in Fig. 1. �

u,v)ω_( u

R_

R+

ω+(u,v)

v
(u,v)

γ

Fig. 1. Construction of Riemann invariants

Now it is possible to define the mapping

T : I+ ⊆ R
2 −→ J = T (I) ⊆ R

2,

(u, v) −→ (ω−(u, v), ω+(u, v)),

which is a well defined change of coordinates from I+ =
{
(u, v) ⊆ R

2 | fv(u, v) ≥ 0
}
to

J =
{
(ω−, ω+) ⊆ R

2 | ω− ≤ 0 ≤ ω+

}
.

However, as the strict hyperbolicity fails at the umbilic point, this transformation is

not regular at the origin.

From the geometry of the rarefaction wave curves we also have:

Corollary 2.3. The Riemann invariants constructed as above satisfy

1

fv

∂ω−
∂v

< 0,

1

fv

∂ω+

∂v
> 0

for all (u, v) ∈ I such that fv(u, v) �= 0. �

Finally we remark on another property of the Riemann invariants that will be useful

in Section 3 to construct invariant regions:

Lemma 2.4. For (u, v) �= (0, 0), if

L±(u, v) := −(fv)
2∂uz∓ + fvv(z∓)

2 − fvz∓∂vz∓ + fvfuvz∓ ≥ 0,

then the following holds: {
∇2ω+(r−, r−) ≥ 0,

∇2ω−(r+, r+) ≤ 0.

That is, ±ω± are quasiconvex in the sense of [3].
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Proof. First of all recall that ∇ω± × r∓ = 0 and that

r± =

(
fv
z±

)
,

where z± :=
(gv − fu)±

√
G

2
, so we have

fv(∂uω±) + z∓(∂vω±) = 0. (2.4)

Differentiating (2.4) with respect to u we get

fuv(∂uω±) + fv(∂
2
uω±) + (∂uz∓)(∂vω±) + z∓(∂

2
vω±) = 0,

from which we have

fv(∂
2
uω±) = −fuv(∂uω±)− (∂uz∓)(∂vω±)− z∓(∂

2
vω±),

and, multiplying for (∂vω±)
2/fv,

(∂2
uω±)(∂vω±)

2 = −fuv
fv

(∂uω±)(∂vω±)
2 − ∂uz∓

fv
(∂vω±)

3 − z∓
fv

(∂vω±)
2(∂2

uvω±).

By (2.4), we can write ∂vω± = − fv
z∓

(∂uω±) and ∂uω± = − z∓
fv

(∂vω±) so that we finally

get

(∂2
uω±)(∂vω±)

2 − (∂uω±)(∂vω±)(∂
2
uvω±) = −∂uz∓

fv
(∂vω±)

3 +
fuv
f2
v

z∓(∂vω±)
3. (2.5)

In a similar way, differentiating with respect to v we get

(∂2
vω±)(∂uω±)

2 − (∂uω±)(∂vω±)(∂
2
uvω±) = −∂vz∓

(fv)2
z∓(∂vω±)

3 +
fvv
(fv)3

(z∓)
2(∂vω±)

3.

(2.6)

Now, adding (2.5) and (2.6), we find

∇2ω±(r∓, r∓) =
(∂vω±

fv

)3{
− (fv)

2∂uz∓ + fvv(z∓)
2 − fvz∓∂vz∓ + fvfuvz∓

}
.

So, thanks to Corollary 2.3, we only need the hypothesis

L±(u, v) := −(fv)
2∂uz∓ + fvv(z∓)

2 − fvz∓∂vz∓ + fvfuvz∓ ≥ 0.

�
2.2. Genuine non-linearity. The following analysis of the genuine non-linearity prop-

erties for system (1.1) will be used when studying the reduction of Young measure in

Section 6.

Let’s recall that a system of conservation laws is said to be genuinely non-linear in

a domain A if

∇λ±(u, v)× r±(u, v) �= 0

for all (u, v) ∈ A.

In the case of system (1.1) the genuine non-linearity fails for all (u, v) such that

{(gv + fu)u
2

± (gv − fu)(gv − fu)u + 4fvfuv

2
√
G

}
2fv

+
{ (gv + fu)v

2
± (gv − fu)(gv − fu)v + 4fvfvv

2
√
G

}
((gv − fu)±

√
G) = 0.

(2.7)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



HYPERBOLIC SYSTEMS WITH AN ISOLATED UMBILIC POINT 637

First of all let’s observe that on v = γ(u) (2.7) becomes

((gv − fu)+ | gv − fu |)
{ (gv + fu)v

2
+

(gv − fu)(gv − fu)v
2 | gv − fu |

}
= 0

that is verified outside the origin for all (u, v) if (gv − fu)(u, v) < 0, and

((gv − fu)− | gv − fu |)
{ (gv + fu)v

2
− (gv − fu)(gv − fu)v

2 | gv − fu |
}
= 0

that is verified outside the origin for all (u, v) such that (gv − fu)(u, v) > 0.

As one of the main characteristics that we require system (1.1) to verify is that the

genuine non-linearity fails only on the boundary of our domain I+, we now look for

conditions that assure

∇λ±(u, v)× r±(u, v) = 0 iff v = γ(u).

From (2.7) and using fvv = guv, it follows that:

Proposition 2.5. For system (1.1) the genuine non-linearity fails only on γ if we choose

f and g such that

6fvfvv((gv − fu) +
√
G)− 2fvfuu((gv − fu)−

√
G)

+12f2
v fuv + gvv((gv − fu)−

√
G)2 = 0 (2.8)

if and only if v = γ+ :=

{
fv = 0,

(gv − fu) ≤ 0
and

−6fvfvv((gv − fu)−
√
G) + 2fvfuu((gv − fu) +

√
G)

−12f2
v fuv − gvv((gv − fu)−

√
G)2 = 0 (2.9)

if and only if v = γ− :=

{
fv = 0,

(gv − fu) ≥ 0.
�

Notice that in the (ω−, ω+)-plane γ− corresponds to ω− = 0 and that γ+ corresponds

to ω+ = 0.

Finally, it can be proven that ∂ω−λ− and ∂ω+
λ+ remain non-zero on the axes except

possibly at the umbilic point u = v = 0 = ω− = ω+. This result will be useful in the

reduction of the Young measure.

Lemma 2.6. If (gv − fu)u �= 0 on γ+ and γ− then the following holds :

(i)
∂λ−
∂ω−

�= 0 on {ω− < 0, ω+ = 0},

(ii)
∂λ+

∂ω+
�= 0 on {ω− = 0, ω+ > 0}. �

Remark 2.7 (Perturbation of Kan’s quadratic model).

(i) Our goal is to prove the existence of global solutions for system (1.1) under the

hypothesis (1.3):

f(u, v) = 3
2u

2 + 1
2v

2 + φ(u, v),

g(u, v) = uv + ψ(u, v),
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where φ(u, v) = O((|u| + |v|)l) and ψ(u, v) = O((|u| + |v|)l). This means that

we want to consider flux functions that are higher order perturbations of the

quadratic flux function corresponding to the case studied by Kan. Moreover, we

are interested in analysing the situation only in a small neighbourhood of the

origin, as elsewhere the known results on strictly hyperbolic systems hold.

(ii) We would like to translate the hypotheses we have stated until now in terms of φ

and ψ. We are looking for φ(u, v) = O((|u|+ |v|)l) and ψ(u, v) = O((|u|+ |v|)l),
such that

φv = ψu,

φuv ≥ 0,

1 + φvv > 0,

(2.10)

⎧⎨
⎩

(−2u+ ψv(u, v)− φu(u, v)) = 0

⇐⇒ (u, v) = (0, 0)

v + φv(u, v) = 0

(2.11)

and we restrict our analysis to the domain

I+ =
{
(u, v) ⊆ R

2 | v + φv(u, v) ≥ 0
}
.

(iii) We also notice that Lemma 2.4 holds under hypothesis (1.3) if we restrict our

analysis in a neighbourhood of the origin. This means that, under our hypotheses,

±ω± are quasiconvex in the sense of ([3]). Moreover, we remark that under

hypothesis (1.3) Lemma 2.6 holds, as (gv − fu)u = −2 + (ψv − φu)u is strictly

negative in a neighbourhood of the origin.

As for the genuine non-linearity, we can easily prove that, under hypothesis

(1.3), it fails only on the boundary γ of I+.

(iv) We can consider as an example the case

φ(u, v) = au3v + bu2v2 + cuv3,

ψ(u, v) = a
4u

4 + 2
3bu

3v + 3
2cu

2v2

with a ≥ 0, c ≥ 0 and b2 ≤ 3
4c.

Here we have the symmetry by construction and every hypotheses holds in a

small neighbourhood of the origin. The conditions on the parameters a, b and c

are needed to construct the Riemann invariants as in Section 2.1. �

3. Viscous approximation. In this section we establish the existence of L∞ bound-

ed solutions for the following viscous approximation to system (1.1):⎧⎨
⎩

ut + f(u, v)x = εuxx,

vt + g(u, v)x = εvxx,

(u, v)|t=0 = (u0, v0),

(3.1)

where ε > 0.

We also establish that, if the initial data are in the closed subset I+ ⊂ R
2, then every

solution of (3.1) remains in it.

In order to show that (3.1) has a global solution in time, we first prove the existence

of invariant regions for (3.1) in order to have a L∞ uniform bound for the solutions. A
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fixed point argument will complete the proof. In the sequel we will refer to the classical

results from [3] and [29].

Theorem 3.1 (See Theorem 4.4, p. 379 [3]). Let Σ =
{
(u, v) | s−(u, v) ≤ 0} ∩

{
(u, v) |

s+(u, v) ≤ 0}, where s± are smooth functions defined on a convex set.

Assume that for all t > 0 and all (u, v) ∈ ∂Σ, the following holds:

(i) ∇s± is a left eigenvector of DF (u, v);

(ii) s± is quasiconvex at (u, v).

Then Σ is invariant for (3.1) for every ε > 0. �

We also recall that a smooth function S : Rn −→ R is quasiconvex in the sense of

[3] at ζ ∈ R
n if

∇S × ζ = 0 ⇒ ∇2S(ζ, ζ) ≥ 0.

In our case we pick s− = −c − ω− and s+ = ω+ − c, where c > 0 is an arbitrary

constant and s± : I = I+ ∪ I− → R.

Then (i) is satisfied by the definition of Riemann invariants, so we only need to prove

(ii).

As we know that ∇ω± × r∓ = 0, (ii) holds under the hypothesis of Lemma 2.4, and

thanks to the previous result, we have that:

Proposition 3.2.

Σc =
{
(u, v) ∈ I | ω− + c ≥ 0

}
∩
{
(u, v) ∈ I | ω+ − c ≤ 0

}
is a family of invariant regions for system 3.1, where c > 0, Σc is strictly increasing in

c and it spans the whole phase plane when c −→ +∞. �

We can conclude that, if the data (u0, v0) ∈ L∞, then there exists a constant c > 0

such that the solution (uε, vε) of (3.1), when it exists, is in Σc for all (x, t) ∈ R×R
+ and

ε > 0.

Next we assume (u0, v0) ∈ L∞ in (3.1) and we prove the global existence of a solution

by a fixed point argument (see [29]).

Theorem 3.3. If (u0, v0) ∈ L∞, then system (3.1) has a unique solution, global in time:

(uε, vε) ∈ C((0,∞);C(R)). �

Finally, in the last part of this section we want to prove that if we take our initial

data (u0, v0) ∈ I+ =
{
(u, v) ⊆ R

2 | fv(u, v) ≥ 0
}
, then the solution (uε, vε) remains in

I+, for every ε > 0.

Using a positive solution theorem from the theory of parabolic equations (see, for

example, [8]), we can prove:

Proposition 3.4. If (u0, v0) ∈ I+ ∩L∞, then every solution (uε, vε) of (3.1) belongs to

I+ for all (x, t) ∈ R× R
+.

Proof. We know from classic results that for a parabolic system such as (3.1), under

reasonable assumptions, positive initial data lead to positive solutions. We apply this

result to the functions z := v − γ(u) and z0 := v0 − γ(u0) and show that z0 ≥ 0 ⇒ z ≥
0. �
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Corollary 3.5. Under the previous assumptions we have, for all (x, t) ∈ R× [0,∞),

w∗ − limε→0+(u
ε, vε) ∈ I+. �

4. Serre’s method to construct regular entropies. In order to apply the theory

of compensated compactness as developed by Serre in [26] we need to prove the existence

of a family of regular entropies for system (1.1). We want to construct four canonical

types of entropies that will be called entropies of type East, West, North and South,

following the standard notation. Each one of these entropies vanishes on a half plane and

is obtained by solving a Goursat problem for the partial differential equation governing

the entropy in the characteristic variables. The theory in [26] shows how to construct

such entropies as long as the system is strictly hyperbolic; however, in our case, the

entropies of type East and type South are, in general, singular at the umbilic point, as

their support contains the origin. So we will use an integral representation for these

types of entropies using Riemann’s method and we will set additional conditions on the

Goursat data to obtain regular entropies in each of the four cases. Since in our general

setting it is not possible to explicitly compute the Riemann function for the entropy

equation, we will prove that, at least in a neighbourhood of the origin, our Riemann

function has the same behaviour as that of the case studied by Kan, and we will use such

a result to derive the necessary integral condition.

Definition 4.1. The couple (η, q) is an entropy-entropy flux pair for (1.1) if, for

any classical solution U = (u, v) of (1.1), we have

η(u, v)t + q(u, v)x = 0.

This yields to the compatibility condition ∇q = ∇ηDF (U).

Eliminating q we get a second order partial differential equation in η:

fv(ηvv − ηuu) + (fu − gv)ηuv = 0. (4.1)

Remark 4.2. It is easy to check that η∗ = u2+ v2 is a convex solution of (4.1). More

generally, ηk = k1(u
2 + v2) + k2 is an entropy for the system for every k1, k2 ∈ R. These

simple entropies will be useful in Section 6. �
Equation (4.1) in (ω−, ω+) coordinates reads as

∂2η

∂ω+∂ω−
+

1

λ+ − λ−

(∂λ+

∂ω−

∂η

∂ω+
− ∂λ−

∂ω+

∂η

∂ω−

)
= 0 (4.2)

which we are interested in solving only when ω− ≤ 0 ≤ ω+.

Now we consider the Goursat problem associated to (4.2), that is, the problem of

finding a solution of (4.2) when its value is known on two incident characteristics:⎧⎪⎪⎨
⎪⎪⎩

∂2η

∂ω+∂ω−
+

1

λ+ − λ−

(∂λ+

∂ω−

∂η

∂ω+
− ∂λ−

∂ω+

∂η

∂ω−

)
= 0,

η(ω−, ω
∗
+) = θ−(ω−),

η(ω∗
−, ω+) = θ+(ω+),

(4.3)

where (ω∗
−, ω

∗
+) are fixed constants such that ω∗

− ≤ 0 ≤ ω∗
+ and θ−, θ+ are given smooth

functions such that θ−(ω
∗
−) = θ+(ω

∗
+).
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Notice that the coefficients of the first order terms in (4.2) are singular at the umbilic

point.

Our main goal in this section is to find some conditions on the Goursat data in order

to obtain solutions to (4.3) whose derivatives, up to the second order, are bounded in

J∗ :=
{
(ω−, ω+) | ω∗

− ≤ ω− ≤ 0 ≤ ω+ ≤ ω∗
+

}
.

We must now recall four canonical classes of entropies:

Definition 4.3. We call entropy of type East with limit ω∗
− a solution to problem

(4.3) when

ω∗
+ = 0,

ω∗
− < 0,

θ+ ≡ 0,

θ− = 0 if ω− ≤ ω∗
−.

In a similar way we can define entropy of type West with limit ω∗
− and entropy

of type South and entropy of type North with limit ω∗
+.

As the support of entropies of types West and North does not contain the umbilic

point, we can use the known results to have regular solutions.

In the next section we will analyse in detail the case of entropies of type East, the

case of South type entropies being similar.

5. Main result.

5.1. The Riemann function for the entropy equation. To study the regularity of en-

tropy of type East, we will make use of an integral representation obtained via the

Riemann function associated to equation (4.2).

For classical results we refer to chapter 5 of [4].

We want to study the problem
⎧⎪⎪⎨
⎪⎪⎩

∂2η

∂ω+∂ω−
+

1

λ+ − λ−

(∂λ+

∂ω−

∂η

∂ω+
− ∂λ−

∂ω+

∂η

∂ω−

)
= 0,

η(ω−, 0) ≡ θ−(ω−),

η(ω∗
−, ω+) = 0

(5.1)

with θ−(ω−) = 0 if ω− ≤ ω∗
−.

Our first step will be to derive an integral representation for the solution η of (5.1).

Let

R = R(t, s;ω−, ω+)

be the Riemann function for the entropy equation (4.2). We know that R contains all the

information about the general solution of the problem and is defined as the solution to

the characteristic boundary value problem for the adjoint equation of (4.2) with respect

to the first couple of variables:

∂2R
∂s∂t

+
( ∂ω+

λ−
λ+ − λ−

R
)
t
−
( ∂ω−λ+

λ+ − λ−
R
)
s
= 0,
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with special boundary data:

R(t, s;ω−, s) = exp
{∫ t

ω−

∂ω−λ+

λ+ − λ−
(x, s)dx

}

R(t, s; t, ω+) = exp
{
−
∫ s

ω+

∂ω+
λ−

λ+ − λ−
(t, y)dy

}
.

It is well known (again see [4]) that the solution to (5.1), at least in regions where η

is C2, can be expressed in integral form in terms of R and θ− as follows:

η(ω−, ω+) =

∫ ω−

ω∗
−

R(t, 0;ω−, ω+)
(
θ′−(t)−

∂ω−λ+(t, 0)

λ+(t, 0)− λ−(t, 0)
θ−(t)

)
dt. (5.2)

The idea is to analyse the existence and the singular behaviour of R and then use

representation (5.2) to show how to choose a general class of data θ− to cancel those

singularities.

To this end we first show that, near the umbilic point, R has the same behaviour

as R0, where R0 is the Riemann function for the entropy equation associated to the

unperturbed system (see the Appendix ).

In what follows we will use the subscript 0 when referring to the unperturbed case.

First notice that equation (4.2) can be written as

∂2η

∂ω+∂ω−
+

1

2((ω+)0 − (ω−)0)

( ∂η

∂ω+
− ∂η

∂ω−

)
= ρ(ω−, ω+)

∂η

∂ω+
+ σ(ω−, ω+)

∂η

∂ω−
,

(5.3)

where

ρ(ω−, ω+) =
1

2((ω+)0 − (ω−)0)
−

∂ω−λ+

λ+ − λ−

and

σ(ω−, ω+) = −
( 1

2((ω+)0 − (ω−)0)
−

∂ω+
λ−

λ+ − λ−

)
.

If ρ ≡ σ ≡ 0, equation (5.3) is the entropy equation for the unperturbed case.

In order to obtain the main result of this section we need the following lemmas.

First we observe that, as we have one degree of freedom when choosing the Riemann

invariants, it is possible to choose a Riemann invariant system of coordinates (ω−, ω+)

for which ∂u/∂ω± are forced to be constant, while the derivatives ∂v/∂ω± contain all

the non-linearity. This choice is consistent with the results of Kan for the unperturbed

system. More precisely, the following holds:

Lemma 5.1. There exists a Riemann invariant system of coordinates for system (1.1) as

constructed in Lemma 2.2, for which we have

∂u

∂ω∓
=

1

2
,

∂v

∂ω∓
=

1

2

(gv − fu)∓
√
G

2fv
.
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Proof. Let T be the map that transforms the state variables into the Riemann invari-

ants, JT its Jacobian and k = detJT .

For every (u, v) �= (0, 0), using JT−1 = (JT )
−1, we get

∂ω+

∂v
= k

∂u

∂ω−
and − ∂ω+

∂u
= k

∂v

∂ω−
.

If we use the relation ∇ω± × r∓ = 0 we have

∂v

∂ω∓
=

(r∓)2
(r∓)1

∂u

∂ω∓
.

As
(r∓)2
(r∓)1

=
(gv − fu)∓

√
G

2fv
,

we are free to take
∂u

∂ω∓
=

1

2
, which gives the result. �

With this we can now prove:

Lemma 5.2. If condition (1.3) holds, that is, if

f(u, v) = 3
2u

2 + 1
2v

2 + φ(u, v),

g(u, v) = uv + ψ(u, v),

where φ(u, v) = O((|u|+ |v|)l) and ψ(u, v) = O((|u|+ |v|)l), and if l > 3, then

lim
|ω+−ω−|−→0

ρ(ω−, ω+) = 0

and

lim
|ω+−ω−|−→0

σ(ω−, ω+) = 0.

Proof. We will prove only lim|ω+−ω−|−→0 ρ(ω−, ω+) = 0, as the other case is similar.

First we want to compute

∂λ+

∂ω−
=

∂λ+

∂u

∂u

∂ω−
+

∂λ+

∂v

∂v

∂ω−

=
∂u

∂ω−

(∂λ+

∂u
− (r−)2

(r−)1

∂λ+

∂v

)
.

By the result of the previous lemma, we only have to compute

∂λ+

∂u
− (r−)2

(r−)1

∂λ+

∂v

=
( (gv + fu)u

2
+

(gv − fu)(gv − fu)u + 4fvfuv

2
√
G

)

+
(gv − fu)−

√
G

2fv

( (gv + fu)v
2

+
(gv − fu)(gv − fu)v + 4fvfvv

2
√
G

)
.

Using hypothesis (1.3) we get

∂λ+

∂u
− (r−)2

(r−)1

∂λ+

∂v

= 1 +
(ψv + φu)u

2
− u(ψv − φu)u√

G
+

(ψv − φu)(ψv − φu)u

2
√
G
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−2(v + φv)φuv√
G

+
(−2u+ ψv − φu)φuv

2(v + φv)
− (ψv + φu)v

√
G

4(v + φv)

+
(−2u+ ψv − φu)

2(ψv − φu)v

4(v + φv)
√
G

+
(−2u+ ψv − φu)φvv√

G
− φvv.

Finally,
∂λ+

∂ω−

=
{
1 +

(ψv + φu)u
2

− u(ψv − φu)u√
G

+
(ψv − φu)(ψv − φu)u

2
√
G

−2(v + φv)φuv√
G

+
(−2u+ ψv − φu)φuv

2(v + φv)
− (ψv + φu)v

√
G

4(v + φv)

+
(−2u+ ψv − φu)

2(ψv − φu)v

4(v + φv)
√
G

+
(−2u+ ψv − φu)φvv√

G
− φvv

}1

2
. (5.4)

Recalling that
√
G0 := (ω+)0 − (ω−)0 = 2

√
u2 + v2, λ+ − λ− =

√
G, and that, under

hypothesis (1.3), we can assume
√
G =

√
G0 +O((|u|+ |v|)l)

and
1√
G

=
1√
G0

(
1 +O((|u|+ |v|)l−1)

)
,

we have

ρ(ω−, ω+)

=
1

2
√
G0

{
1−

(
1 +O((|u|+ |v|)l−1)

)(
1 +

(ψv + φu)u
2

−u(ψv − φu)u√
G

+
(ψv − φu)(ψv − φu)u

2
√
G

− 2(v + φv)φuv√
G

+
(−2u+ ψv − φu)φuv

2(v + φv)
− (ψv + φu)v

√
G

4(v + φv)
+

(−2u+ ψv − φu)
2(ψv − φu)v

4(v + φv)
√
G

+
(−2u+ ψv − φu)φvv√

G
− φvv

)}
.

Now, by (1.3),

lim
|ω+−ω−|−→0

ρ(ω−, ω+)

= lim
(u,v)−→(0,0)

O((|u|+ |v|)l−2)√
u2 + v2

= 0,

as l > 3. �
Remark 5.3. In the previous proposition we cannot allow l = 3.

If we consider the simple case φ = au3 and ψ = bv3, using polar coordinates, the final

limit in the previous proof becomes

lim
(u,v)−→(0,0)

−6
( au√

u2 + v2
+

(a+ 2b)u2 + bv2

u2 + v2

)

= lim
r−→0

−6
(
a cos θ + (a+ 2b) cos2 θ + b sin2 θ

)
,
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that is equal to 0 for every θ only for specific values of a and b.

This proves that the result l > 3 is optimal within our method. �
Now, given ε > 0 and Qε := (−ε, 0)× (0, ε), we can introduce the space

V :=
{
F ∈ C2(Q2

ε,R) | ‖F‖V < +∞
}
,

with the norm

‖F‖V = max
0≤|i+j|≤2

{
sup
Q2

ε

∣∣∂i
ω−∂

j
ω+

F (t, s;ω−, ω+)
∣∣|s− ω−|γ |s− t|β |ω+ − ω−|α

}
,

where α, β and γ are positive constants to be determined.

Remark 5.4. V is a complete vector space, as it is a Frechet space with respect to

the separate family of seminorms

‖F‖Kδ
= sup

K2
δ

‖F‖V

for every F ∈ V , where Kδ = [−ε+ δ,−δ]× [δ, ε− δ], δ > 0.

The weight in the norm ‖ · ‖V has been chosen in a polynomial form so that it is

possible to balance eventually arising singularities with |ρ(·, ·)| and |σ(·, ·)|, that we can

control thanks to the previous lemma. �
With the results in Lemma 5.2 we can state:

Theorem 5.5. Let R be the Riemann function for the entropy equation (4.2) and R0 the

Riemann function for the entropy equation associated to the unperturbed system. Under

hypothesis (1.3), we have

lim
|ω+−ω−|−→0

‖R −R0‖V = 0

if α > 3
2 , β ≥ 5

2 , γ ≥ 7
2 and l > 7.

Proof. Recall from [4] that the Riemann function in any case verifies, with respect to

the last two variables, the equation to which it is associated.

So, in particular, R verifies (4.2).

But, if we consider in (5.3) the right hand side as a function of the independent

variables, we can consider R0 as the Riemann function associated to (5.3).

Of course, the representation formula of the solution via the Riemann function in this

way becomes an implicit representation formula. In particular, for R we obtain

R(t, s;ω−, ω+) = R0(t, s;ω−, ω+)

+

∫ ω+

s

R0(t, y;ω−, ω+)
(∂R(t, s; t, y)

∂y
+

R(t, s; t, y)

2(y − t)

)
dy

+

∫ ω−

t

R0(x, s;ω−, ω+)
(∂R(t, s;x, s)

∂x
+

R(t, s;x, s)

2(x− s)

)
dx

+

∫ ω−

t

∫ ω+

s

R0(x, y;ω−, ω+)
(
ρ(x, y)

∂R(t, s;x, y)

∂y

+σ(x, y)
∂R(t, s;x, y)

∂x

)
dxdy.

(5.5)

We define the operator T : V −→ V as

T (R)(t, s;ω−, ω+) = R0(t, s;ω−, ω+)
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+

∫ ω+

s

R0(t, y;ω−, ω+)R(t, s; t, y)σ(t, y)dy +

∫ ω−

t

R0(x, s;ω−, ω+)R(t, s;x, s)ρ(x, s)dx

+

∫ ω−

t

∫ ω+

s

R0(x, y;ω−, ω+)
(
ρ(x, y)

∂R(t, s;x, y)

∂y
+ σ(x, y)

∂R(t, s;x, y)

∂x

)
dxdy.

Our final aim is to prove that T is a contraction on V . We will only prove that for

every R ∈ V also T (R) ∈ V . (The second step in proving that T is a contraction is

similar, just with more complex notation.)

For every R ∈ V we have to show that the expressions

sup
Q2

ε

∣∣∂i
ω−∂

j
ω+

T (R)(t, s;ω−, ω+)
∣∣|s− ω−|γ |s− t|β|ω+ − ω−|α

are bounded for every i, j such that 0 ≤ i+ j ≤ 2.

The main problem is represented by the singularities in R0 and in its derivatives near

the origin that are of the following kind (see the Appendix for more details): ln(1− z),
1

1− z
and

1

(1− z)2
.

Therefore we present the computation for the case involving the worst term, i.e. the

one that requires the higher values of l.

As an example we consider the expression containing ∂2
ω−R0(t, s;ω−, ω+), so we look

for the right conditions on α, β, γ and l to have

sup
Q2

ε

∣∣∂2
ω−T (R)(t, s;ω−, ω+)

∣∣|s− ω−|γ |s− t|β|ω+ − ω−|α < +∞.

From the formula for T (R)(t, s;ω−, ω+), we have

∂ω−T (R)(t, s;ω−, ω+)

= ∂ω−R0(t, s;ω−, ω+)

+

∫ ω+

s

∂ω−R0(t, y;ω−, ω+)R(t, s; t, y)σ(t, y)dy

+R0(ω−, s;ω−, ω+)R(t, s;ω−, s)ρ(ω−, s)

+

∫ ω−

t

∂ω−R0(x, s;ω−, ω+)R(t, s;x, s)ρ(x, s)dx

+

∫ ω+

s

R0(ω−, y;ω−, ω+)
(
ρ(ω−, y)

∂R(t, s;ω−, y)

∂y
+ σ(ω−, y)

∂R(t, s;ω−, y)

∂ω−

)
dy

+

∫ ω+

s

∫ ω−

t

∂ω−R0(x, y;ω−, ω+)
(
ρ(x, y)

∂R(t, s;x, y)

∂y
+ σ(x, y)

∂R(t, s;x, y)

∂x

)
dxdy.

Using this we can compute

|∂2
ω−T (R)(t, s;ω−, ω+)|

≤ |∂2
ω−R0(t, s;ω−, ω+)|

+

∫ ω+

s

|∂2
ω−R0(t, y;ω−, ω+)||R(t, s; t, y)||σ(t, y)|dy

+|∂ω−

(
(R0(ω−, s;ω−, ω+)R(t, s;ω−, s)ρ(ω−, s)

)
|

+|∂ω−R0(ω−, s;ω−, ω+)R(t, s;ω−, s)ρ(ω−, s)|
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+

∫ ω−

t

|∂2
ω−R0(x, s;ω−, ω+)||R(t, s;x, s)||ρ(x, s)|dx

+

∫ ω+

s

|∂ω−

(
R0(ω−, y;ω−, ω+)

(
ρ(ω−, y)

∂R(t, s;ω−, y)

∂y
+ σ(ω−, y)

∂R(t, s;ω−, y)

∂ω−

))
|dx

+

∫ ω+

s

|∂ω−R0(ω−, y;ω−, ω+)||
(
ρ(ω−, y)

∂R(t, s;ω−, y)

∂y
+ σ(ω−, y)

∂R(t, s;ω−, y)

∂ω−

)
|dx

+

∫ ω+

s

∫ ω−

t

|∂2
ω−R0(x, y;ω−, ω+)||

(
ρ(x, y)

∂R(t, s;x, y)

∂y
+ σ(x, y)

∂R(t, s;x, y)

∂x

)
|dxdy.

To reach our aim we need to multiply both sides of the inequality for |s − ω−|γ |s −
t|β|ω+ −ω−|α, take the supQ2

ε
and finally show that every term on the right hand side is

finite, at least in a neighbourhood of the origin.

As an example we will analyse the term that generate the stronger conditions on α

and l, i.e. the second one:∫ ω+

s

|∂2
ω−R0(t, y;ω−, ω+)||R(t, s; t, y)||σ(t, y)|dy.

So we need to prove

sup
Q2

ε

|s− ω−|γ |s− t|β |ω+ − ω−|α
∫ ω+

s

|∂2
ω−R0(t, y;ω−, ω+)||R(t, s; t, y)||σ(t, y)|dy < +∞.

First we write

sup
Q2

ε

|s− ω−|γ |s− t|β|ω+ − ω−|α
∫ ω+

s

|∂2
ω−R0(t, y;ω−, ω+)||R(t, s; t, y)||σ(t, y)|dy

= sup
Q2

ε

∫ ω+

s

|∂2
ω−R0(t, y;ω−, ω+)|

(
|R(t, s; t, y)||s− t|γ |s− t|β |y − t|α

)

·
(s− ω−

s− t

)γ(ω+ − ω−
y − t

)α

|σ(t, y)|dy

< C sup
Q2

ε

∫ ω+

s

|∂2
ω−R0(t, y;ω−, ω+)|

(s− ω−
s− t

)γ(ω+ − ω−
y − t

)α

|σ(t, y)|dy,

where we used the fact that R ∈ V .
Note that all the quantities inside the brackets are positive and that in ∂2

ω−R0(t, s;ω−,

ω+) an example for the worst singular term is (see the Appendix )

(ω+ − s)2(ω+ − t)2

(s− t)
5
2 (ω+ − ω−)

7
2

(
ln(

(s− ω−)(ω+ − t)

(s− t)(ω+ − ω−)
) +

(s− t)2(ω+ − ω−)
2

(s− ω−)2(ω+ − t)2

)
.

So finally we have to prove∫ ω+

s

(ω+ − y)2(ω+ − t)2

(y − t)
5
2 (ω+ − ω−)

7
2

(
ln(

(y − ω−)(ω+ − t)

(y − t)(ω+ − ω−)
)

+
(y − t)2(ω+ − ω−)

2

(y − ω−)2(ω+ − t)2

)(s− ω−
s− t

)γ(ω+ − ω−
y − t

)α

|σ(t, y)|dy < +∞.

Thanks to Lemma 5.2, if l > 3 + k, we can assume |σ(x, y)| = O(|y − x|k) and

|ρ(x, y)| = O(|y − x|k).
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Now, note that
y − ω−
y − t

≤ 1 and
ω+ − y

ω+ − ω−
≤ 1 implies, respectively,

ln(
(y − ω−)(ω+ − t)

(y − t)(ω+ − ω−)
) ≤ ln(

(ω+ − t)

(ω+ − ω−)
)

and
(ω+ − y)2

(ω+ − ω−)
7
2

≤ 1

(ω+ − ω−)
3
2

.

We have to estimate

(ω+ − ω−)
α− 3

2 (ω+ − t)2
(
| ln(ω+ − t)|+ | ln(ω+ − ω−)|

)(s− ω−
s− t

)γ
∫ ω+

s

(y − t)k−(α+ 5
2 )dy

+(ω+ − ω−)
α+ 1

2

(s− ω−
s− t

)γ
∫ ω+

s

(y − t)k−(α+ 1
2 )

(y − ω−)2
dy = (a) + (b).

As
s− ω−
s− t

≤ 1, (a) is finite if α > 3
2 , γ ≥ 0 and k ≥ α+ 3

2 .

Now we analyse (b). Integrating by parts, we have

(ω+ − ω−)
α+ 1

2

(s− ω−
s− t

)γ
∫ ω+

s

(y − t)k−(α+ 1
2 )

(y − ω−)2
dy

= (ω+ − ω−)
α+ 1

2

(s− ω−
s− t

)γ(
− (ω+ − t)k−(α+ 1

2 )

ω+ − ω−
+

(s− t)k−(α+ 1
2 )

s− ω−

)

+(k − (α+
1

2
))(ω+ − ω−)

α+ 1
2

(s− ω−
s− t

)γ
∫ ω+

s

(y − t)k−(α+ 3
2 )

(y − ω−)
dy.

The worst case is the last term, so we concentrate on that one.

First we note that we can decompose

(y − t)k−(α+ 3
2 )

(y − ω−)
=

(y − t)ξ(y − t)p

(y − ω−)
= (y − t)ξ

(
P (y) +

(ω− − t)p

(y − ω−)

)
,

where P (y) is a polynomial in y, p = [k − (α + 3
2 )] ≥ 1 and ξ = k − (α + 3

2 )− p. (Here

[x] is the floor of x.)

So we have

(ω+ − ω−)
α+ 1

2

(s− ω−
s− t

)γ
∫ ω+

s

(y − t)k−(α+ 3
2 )

(y − ω−)
dy

≤ (ω+ − ω−)
α+ 1

2

(s− ω−
s− t

)γ

(ω+ − t)ξ
∫ ω+

s

P (y)dy

+(ω+ − ω−)
α+ 1

2

(s− ω−
s− t

)γ

(ω+ − t)ξ(ω− − t)p| ln(ω+ − ω−)|

+(ω+ − ω−)
α+ 1

2

(s− ω−
s− t

)γ

(ω+ − t)ξ(ω− − t)p| ln(s− ω−)|.

Again the worst condition comes from the last term. Given δ ∈ (0, 1) ⊂ R, we can

write such a term as

(ω+ − ω−)
α+ 1

2

(s− ω−
s− t

)γ−δ

(ω+ − t)ξ
(ω− − t)p

(s− t)δ
(s− ω−)

δ| ln(s− ω−)|

that is finite as p ≥ δ. So we need to require k − (α+ 3
2 ) ≥ 1, that is, k ≥ α+ 5

2 .
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If we take into account the previous condition α > 3
2 , we finally have k > 4, and so

l > 7. �
5.2. C2 East type entropies. Our aim is to find some conditions on the Goursat data in

order to obtain solutions to (5.1) whose derivatives, up to the second order, are bounded

in

J∗ :=
{
(ω−, ω+) | ω∗

− ≤ ω− ≤ 0 ≤ ω+ ≤ ω∗
+

}
.

Now we can state the main result of this section:

Theorem 5.6. Assume hypothesis (1.3) with l > 7 and consider the Goursat problem

(5.1). If −δ < ω∗
− ≤ ω∗

+ < δ, for a small positive constant δ, there exists a family of

Goursat data

Θ :=
{
θ− ∈ C2(R) |

∫ −δ

ω∗
−

(
(−t)−

3
2

(
θ′−(t)−

1

2t
θ−(t)

))
dt = 0 and

∫ −δ

ω∗
−

(
(−t)−

5
2

(
θ′−(t)−

1

2t
θ−(t)

))
dt = 0

}

such that, for every θ− ∈ Θ, problem (5.1) has a unique solution η(ω−, ω+) ∈ C2(J∗ \
(0, 0)).

Moreover η and its derivatives in ω±, up to second order, are bounded on bounded sets

in J∗.

Proof. Recall the integral representation (5.2) for East type entropies:

η(ω−, ω+) =

∫ ω−

ω∗
−

R(t, 0;ω−, ω+)
(
θ′−(t)−

∂ω−λ+(t, 0)

λ+(t, 0)− λ−(t, 0)
θ−(t)

)
dt

that, for the unperturbed case (see the Appendix for details), becomes

η0(ω−, ω+) =

∫ ω−

ω∗
−

(ω+ − ω−
−t

) 1
2

H
( ω+(ω− − t)

−t(ω+ − ω−)

)(
θ′−(t)−

1

2t
θ−(t)

)
dt.

In Lemma 5.2 and Theorem 5.5, respectively, we proved

lim
|ω+−ω−|−→0

ρ(ω−, ω+) = lim
|ω+−ω−|−→0

1

2((ω+)0 − (ω−))0
−

∂ω−λ+

λ+ − λ−
= 0

and

lim
|ω+−ω−|−→0

‖R −R0‖V = 0.

Thanks to these results, we can prove that there exists a constant c such that, in a

small neighbourhood of the origin,

|η(ω−, ω+)− η(0, 0)| ≤ c|η0(ω−, ω+)− η0(0, 0)|.

Now, by Proposition A.1 (see the Appendix ) we can conclude η(ω−, ω+) ∈ C(J∗).

Using the analogous estimates for the derivatives of first and second order proven in

Theorem 5.5 and the results in Proposition A.1, we can close the proof. �
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For our purposes we will need the regularity of entropies in the state variables. The

result is non-trivial because the transformation T from the state variables to the Riemann

invariant is not regular in (0, 0).

So we need to prove

Theorem 5.7. Assume hypothesis (1.3).

Let η(ω−, ω+) be a solution for the Goursat problem (5.1) with θ ∈ Θ.

If −δ < ω− ≤ ω+ < δ, for a small positive constant δ, then η(u, v) := T−1(η(ω−, ω+))

∈ C2(R2 \ (0, 0)).
Moreover η and its derivatives in u, v, up to second order, are bounded on bounded

sets in the state space I.

Proof. It will be enough to observe that, under hypothesis (1.3),

∂ω±
∂u

=
(∂ω±

∂u

)
0
+O((|u|+ |v|)l−1),

∂ω±
∂v

=
(∂ω±

∂v

)
0
+O((|u|+ |v|)l−1),

(5.6)

where
(
∂ω±/∂u

)
0
and

(
∂ω±/∂v

)
0
are the derivatives of the Riemann invariants asso-

ciated to the unperturbed system.

Now using the chain rule and Theorem 5.6 we have the result. �
Finally it will also be useful to establish the following representation for an entropy

-entropy flux pair (η, q).

Corollary 5.8. Suppose (η, q) is an entropy-entropy flux pair, where η is an entropy

of type East or West with limit ω−∗. Then η and q have the following representations:

η(ω−, ω+) = A(ω−, ω+)θ−(ω−) +

∫ ω−

ω∗
−

B(x, ω−, ω+)θ−(x)dx,

q(ω−, ω+) = C(ω−, ω+)θ−(ω−) +

∫ ω−

ω∗
−

D(x, ω−, ω+)θ−(x)dx,

where A, B, C and D are smooth functions in the variables x, ω−, ω+ whenever x < 0

and ω− < 0.

Proof. Again using the integral representation (5.2) for η, the proof follows from

Lemma 5.2, Theorem 5.5 and the results in the Appendix. �

6. Strong convergence by compensated compactness. In this section we will

show that the sequence of solutions {(uε, vε)}ε>0 of system (3.1) that we obtained in

Section 3 converges strongly to a solution (u, v) of (1.1) when ε → 0.

We first introduce the Young measure describing the weak convergence of the sequence

{(uε, vε)}ε>0. Then, using the results in Section 5, we set up a commutation relation

and a new representation for the entropy-entropy flux pair. Finally we reduce the Young

measure to a point mass so that we can apply Tartar’s result ([31]) and obtain strong

convergence.
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Before starting to analyse our case, we recall the most important results of the basic

theory of compensated compactness. We will refer mainly to [26], chap. 9.

Let Ω be an open set of Rn and K a closed set of Rp.

We consider a sequence of functions uk : Ω −→ R
p such that uk(x) ∈ K for almost all

x ∈ Ω.

Proposition 6.1 (Proposition 9.1.7, p. 47 of [26]). Let {Uk}k∈N be a sequence in L∞(Ω),

convergent in the sense of Young to the measure ν. Let U be its weak-star limit. The

following assertions are equivalent:

(1) There exists p ∈ [1,∞] such that ‖Uk−U‖Lp(ω) → 0 for every bounded set ω ∈ Ω.

(2) The same statement is true for all p ∈ [1,∞).

(3) For almost all x ∈ Ω, νx is a Dirac mass. �

Next we recall Tartar’s result:

Proposition 6.2 (Proposition 9.2.2, p. 57 of [26]). We consider a physical system (1.2)

and we suppose that a sequence (Uε)n∈N of solutions of its viscous approximation for

ε = εn → 0+ has values in a compact set and converges in the sense of Young to ν.

Then for all entropy-entropy flux pairs (ηj , qj), j = 1, 2, of class C2, we have

〈νx,t, η1q2 − η2q1〉 = 〈νx,t, η1〉〈νx,t, q2〉 − 〈νx,t, η2〉〈νx,t, q1〉,

for almost all (x, t) ∈ R× R
+. �

Let (Uε)ε>0 be a sequence of solutions for the viscous approximation to (1.2).

From the results in Section 3 we know that, for every ε > 0 such a solution exists,

global in time, and the sequence (Uε)ε>0 is uniformly bounded with respect to ε.

So we can apply the result of Theorem 9.1.5, p. 44 of [26] and describe the weak

convergence of Uε through a Young measure ν = ν(x,t):

g(Uε(x, t)) ⇀

∫
g(s)dν(x,t)(s) =: 〈ν(x,t), g〉, (6.1)

for any continuous function g.

Our goal is to reduce this Young measure to a Dirac mass, then apply Proposition 6.1,

and finally obtain strong convergence for (Uε)ε>0.

In order to reduce the Young measure we will need the commutation relation in Propo-

sition 6.2.

To this end, using the entropy η∗ from Remark 4.2, we can prove in the standard way

the following:

Lemma 6.3. Let Uε = (uε, vε) be a L2 solution for the viscous approximation (3.1).

Then there exists a constant M > 0 such that, for every ε > 0,

2ε

∫ T

0

∫ +∞

−∞

(
(uε)2x + (vε)2x

)
dxdt ≤ M. �

With this result we can prove:
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Proposition 6.4. Let Uε = (uε, vε) be a L2 solution to (3.1), and (η, q) a C2 entropy-

entropy flux pair for (1.2). Then (η(Uε)t+ q(Uε)x)ε>0 is relatively compact in H−1
loc (R×

R
+).

Proof. It follows from the result of Murat (Lemma 9.2.1, p. 57 of [26]), using Theorem

5.7 and Lemma 6.3. �
Now the hypotheses of Tartar (Proposition 6.2) are satisfied by all the couples of

entropy-entropy flux pairs (ηj , qj), j = 1, 2, of class C2 so that we have the commutation

relation

〈νx,t, η1q2 − η2q1〉 = 〈νx,t, η1〉〈νx,t, q2〉 − 〈νx,t, η2〉〈νx,t, q1〉, (6.2)

for almost all (x, t) ∈ R× R
+.

To reduce the Young measure to a Dirac mass is now equivalent to proving that the

only non-zero solution to (6.2) is a Dirac mass.

6.1. The reduction of the Young measure. First we notice that, by the geometrical

construction in Section 2, if we conclude that the Young measure ν is a point mass in

the (ω−, ω+) plane, then ν is at most the sum of two δ-functions in the (u, v) plane. By

using the hypothesis (u0, v0) ∈ I+ and the result from Corollary 3.5, we have that ν is

a point mass in the (u, v) plane too.

Therefore it is sufficient to prove our result in the Riemann invariant coordinates.

Now let

R = [ω−
− , 0]× [0, ω+

+ ]

be the minimal rectangle in the (ω−, ω+) plane containing the support of ν. We will

just analyse the most complex case, that is, when R contains the umbilic point and

ω−
− < 0 < ω+

+ (so that R is not just a line parallel to one of the axes).

After some preliminary remarks, we divide our proof in two parts: first we show that

the support of ν concentrates on the four corners of R, and then we reduce again to get

just one Dirac mass.

Let ω−
− < −δ < 0, where δ > 0 is the positive constant that gives us the zero moment

condition in Theorem 5.6.

Let γ ∈ R satisfy ω−
− < −γ < −δ, and ε′′ = ε′′(γ, δ) such that

ω−
− < ω∗

− < γ < ω	
− < −δ,

where ω∗
− = γ − ε′′ and ω	

− = γ + ε′′.

Now we can use the results in [13] and generalise to our case the theory developed by

[25] for strictly hyperbolic systems, and prove the following:

Lemma 6.5. Let (η, q) be an entropy-entropy flux pair of type East with limit ω∗
− and

(η, q) be an entropy-entropy flux pair of type West with limit ω	
−.

Let θ− and θ− be their Goursat data (as in the hypotheses of Theorem 5.6).

Let θ−(γ), θ−(γ), θ
′
−(γ) θ

′
−(γ), θ

′′
−(γ) and θ

′′
−(γ) be fixed positive constants indepen-

dent of ε′′.

(i) Suppose that for ε′′ > 0 small enough, if 〈ν, ηq − ηq〉 = 0, then

supp(ν) ∩
{
(ω−, ω+) | ω+ ≥ 0, ω− = γ

}
= ∅.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



HYPERBOLIC SYSTEMS WITH AN ISOLATED UMBILIC POINT 653

(ii) Let ω−
− ≤ ω∗

− ≤ −δ. Then there exists a constant c, independent from ω∗
−, such

that

〈ν, q〉 = c〈ν, η〉.
(iii) Fix δ > 0. Let ω	

− satisfy ω−
− < ω	

− < −δ < 0. If, for every East type entropy η

with limit ω	
− we have

〈ν, η〉 = 0,

then

supp(ν) ∩
{
(ω−, ω+) | ω+ ≥ 0, ω	

− ≤ ω− ≤ −δ
}
= ∅. �

Thanks to these results it is possible to prove:

Theorem 6.6. The Young measure ν as defined in (6.1) is a point mass in the plane

(ω−, ω+).

Proof. Following D. Serre ([25]), we divide our proof in three steps.

Step 1. Reduction to four δ-functions. Let δ > 0 be small enough so that ω−
− < −δ,

and define

ω−(δ) := inf
{
y | ω−

− ≤ y ≤ −δ, supp(ν) ∩ {(ω−, ω+) | y < ω− < −δ} = ∅
}
.

Under our assumptions, it is easy to prove that

supp(ν) ⊂
{
(ω−, ω+) | 0 ≤ ω+ ≤ ω+

+ and ω− = ω−
− or − δ ≤ ω− ≤ 0

}
and

supp(ν) ⊂
{
(ω−, ω+) | ω−

− ≤ ω− ≤ 0 and ω+ = ω+
+ or 0 ≤ ω+ ≤ δ

}
.

The support of ν is so concentrated on the square
{
(ω−, ω+) | −δ ≤ ω− ≤ 0, 0 ≤ ω+ ≤

δ
}
and on the points (ω−

− , 0), (0, ω
+
+), (0, 0) and (ω−

− , ω
+
+).

If we let δ → 0+ we obtain that the support of ν is concentrated on the four corners

of R.

Step 2. Reduction from 4 to 3 δ-functions. Let Ai, i = 1, 2, 3, 4, be the four corners

of R, with A1 = (ω−
− , 0), A2 = (ω−

− , ω
+
+), A3 = (0, 0) and A4 = (0, ω+

+). We know that

ν =
∑

1≤i≤4

βiδAi
,

where βi ≥ 0 for every i, and
∑

1≤i≤4

βi = 1. Assume βi �= 0 for every i.

If we consider two entropy-entropy flux pairs (η1, q1) and (η2, q2), applying the com-

mutation relation (6.2) we get

4∑
i,j=1

βiβj

{
(η1(Ai)−η1(Aj))(q2(Ai)− q2(Aj))− (η2(Ai)−η2(Aj))(q1(Ai)− q1(Aj))

}
= 0.

(6.3)

Now let Θ be an application with values in R
8 defined on the pairs (η, q) in the

following way:

Θ(η, q) = (η(A1), ..., η(A4), q(A1), ..., q(A4)).
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Its image is X ⊂ R
8. Also define a linear form f on R

8 × R
8:

f((x1, y1), (x2, y2)) =

4∑
i,j=1

βiβj

{
(x1i − x1j)(y2i − y2j)− (x2i − x2j)(y1i − y1j)

}
.

If βi �= 0 for every i, then f is an antisymmetric form of rank 6, of the same form as

(6.3), so that we have

(a, b) ∈ X ×X ⇒ f(a, b) = 0,

that also implies dimX ≤ 5.

Now let 1 ≤ l ≤ 4. As the quadratic forms (η, q) → η(Ai) and (η, q) → q(Ai), i �= l,

are six linearly dependent forms on the set of pairs (η, q), there exist real numbers ail,

bil, i �= l, not all equal to zero, such that∑
i 	=l

ailq(Ai) + bilη(Ai) = 0, (6.4)

for every pair (η, q).

We now consider an entropy η of type East, that verifies in particular θ− = 0 if

ω− = ω∗
− (see Definition 4.3 ), and the associated flux function q. Then we have

η(A1) = η(A2) = q(A1) = q(A2) = 0,

and from (6.4), for l = 4, we have a34q(A3) + b34η(A3) = 0.

From this follows that

(b34 + a34λ−(A3))η(A3) = −a34λ−(A3)η(A3)− a34

∫ A3

A1

∂q

∂ω−
dω−

= a34

∫ A3

A1

η
∂λ−
∂ω−

dω−.

(6.5)

Notice that once we have η(A1) = 0, the restriction of η to A1A3 is arbitrary, so we have

a34
∂λ−
∂ω−

= 0 on A1A3,

b34 + a34λ−(A3) = 0. (6.6)

Using an entropy of type North we get

a24
∂λ+

∂ω+
= 0 on A1A2,

b24 + a24λ+(A3) = 0. (6.7)

If ∂λ−
∂ω−

�= 0 on A1A3 and ∂λ+

∂ω+
�= 0 on A1A2, then from (6.6) and (6.7) we have

a34 = a24 = b34 = b24 = 0,

and so, from (6.4) with l = 4, we have a14η(A1) + b14(A1)q(A1) = 0 for all pairs (η, q).

This is absurd.

Since from the genuine non-linearity of (1.1) in the interior of R and from Lemma

2.6 we have that ∂λ−/∂ω− and ∂λ+/∂ω+ are non-zero everywhere, the only possible

explanation is that there exists an i, 1 ≤ i ≤ 4, such that βi = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



HYPERBOLIC SYSTEMS WITH AN ISOLATED UMBILIC POINT 655

Step 3. Reduction to one δ-function. In what follows, for every function f we will

use the notation f(Ai) = fi.

We now know that

ν = β1A1 + β2A2 + β3A3 + β4A4

where, at least for one index i, βi = 0.

Assume β4 = 0. Then

ν = β1A1 + β2A2 + β3A3. (6.8)

Let (η, q) be a West type entropy-entropy flux pair, with limit 1
2ω

−
− , and (ηk, qk) an

entropy-entropy flux pair as constructed in Remark 4.2.

We choose the Goursat data so that η1 = η2 = q1 = q2 = 0, and combining (6.8) with

the commutation relation we get

(β3 − β2
3)(η3q

k
3 − ηk3q3) = β3η3(β1q

k
1 + β2q

k
2 )− β3q3(β1η

k
1 + β2η

k
2 ).

We can assume β1 + β2 > 0 and choose (ηk, qk) such that

β1q
k
1 + β2q

k
2 = 0 = β1η

k
1 + β2η

k
2 .

So we have (β3 − β2
3)(η3q

k
3 − ηk3 q3) = 0.

As (η, q) is an arbitrary West type entropy-entropy flux pair and ηk, qk is an arbitrary

entropy-entropy flux pair from Remark 4.2, this implies

β3 − β2
3 = 0.

This means

β4 = 0 ⇒ β3 = 0 or β3 = 1.

In a similar way we can find

β1 = 0 ⇒ β4 = 0 or β4 = 1,

β3 = 0 ⇒ β4 = 0 or β4 = 1

and

β2 = 0 ⇒ β4 = 0 or β4 = 1.

At this point we know that

ν = ρ1δP + ρ2δQ,

where P and Q are two of the four corners of R and ρ1, ρ2 are non-negative constants

such that ρ1 + ρ2 = 1. We have finally to prove that ν can be reduced to one δ-function.

Let (ηk, qk) and (ηj , qj) be two entropy-entropy flux pairs from Remark 4.2 and assume

P �= (0, 0). Choosing the appropriate constants, we can have

ηk(Q) = qk(Q) = 0 = ηj(Q) = qj(Q).

The commutation relation gives (ρ1 − ρ21)(η
kqj − ηjqk) = 0.

As (ηk, qk) and (ηj , qj) are arbitrary and P �= (0, 0), this implies ρ1 − ρ21 = 0, that is,

ρ1 = 0 or ρ1 = 1. �
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Appendix A. The unperturbed case. We now recall some results from Kan ([13],

[14]).

In the unperturbed case the entropy equation (4.2) becomes

∂2η0
∂ω+∂ω−

+
1

2((ω+)0 − (ω−)0)

( ∂η0
∂ω+

− ∂η0
∂ω−

)
= 0, (A.1)

where (ω−)0 and (ω+)0 are the Riemann invariants associated to the unperturbed system:

(ω−)0 = u−
√
u2 + v2,

(ω+)0 = u+
√
u2 + v2.

If R0 is the Riemann function associated to (A.1) it can be represented as

R0(t, s;ω−, ω+) =
(ω+ − ω−

s− t

) 1
2

H(w),

where w =
(ω+ − s)(ω− − t)

(s− t)(ω+ − ω−)
and H(w) is the hypergeometric function.

In what follows we summarize some properties about the singularities of R0 that were

used in the proof of Theorem 5.5.

A.1. Singularities of the Riemann function. The hypergeometric function H(w) is

such that H(0) = 1, it is analytic when 0 ≤ w < 1 and in a neighbourhood of w = 1 it

can be represented in the form

H(w) = AH1(w − 1) +BH1(w − 1) ln(1− w) +H2(w − 1),

where Hi(·) is analytical near 0 and H1(0) = 1.

Also note that

H ′(w) = AH ′
1(w − 1) +BH ′

1(w − 1) ln(1− w)− BH1(w − 1)

1− w
+H ′

2(w − 1)

and

H ′′(w) = AH ′′
1 (w−1)+BH ′′

1 (w−1) ln(1−w)−2
BH ′

1(w − 1)

1− w
−BH1(w − 1)

(1− w)2
+H ′′

2 (w−1).

In the proof of Theorem 5.5, we have to prove that

sup
Q2

ε

∣∣∂i
ω−∂

j
ω+

F (t, s;ω−, ω+)
∣∣|s− ω−|γ |s− t|β |ω+ − ω−|α

is bounded. Problems arise near the origin, i.e. when w = 1.

For instance, for the zero-order derivative term we have to consider the singularities

of ln(1− w) in H(w). So, for our purposes, instead of considering the whole expression

for R0 we estimate only the term containing(ω+ − ω−
s− t

) 1
2

ln(
(s− ω−)(ω+ − t)

(s− t)(ω+ − ω−)
).

When deriving R0 up to the second order with respect to ω− and ω+, we obtain

(ω+ − s)(ω+ − t)

(s− t)
3
2 (ω+ − ω−)

3
2

(
ln(

(s− ω−)(ω+ − t)

(s− t)(ω+ − ω−)
) +

(s− t)(ω+ − ω−)

(s− ω−)(ω+ − t)

)
,

(s− ω−)(ω− − t)

(s− t)
3
2 (ω+ − ω−)

3
2

(
ln(

(s− ω−)(ω+ − t)

(s− t)(ω+ − ω−)
) +

(s− t)(ω+ − ω−)

(s− ω−)(ω+ − t)

)
,
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(ω+ − s)2(ω+ − t)2

(s− t)
5
2 (ω+ − ω−)

7
2

(
ln(

(s− ω−)(ω+ − t)

(s− t)(ω+ − ω−)
) +

(s− t)2(ω+ − ω−)
2

(s− ω−)2(ω+ − t)2

)
,

(s− ω−)
2(ω− − t)2

(s− t)
5
2 (ω+ − ω−)

7
2

(
ln(

(s− ω−)(ω+ − t)

(s− t)(ω+ − ω−)
) +

(s− t)2(ω+ − ω−)
2

(s− ω−)2(ω+ − t)2

)
,

(ω+ − s)(ω+ − t)(s− ω−)(ω− − t)

(s− t)
5
2 (ω+ − ω−)

7
2

(
ln(

(s− ω−)(ω+ − t)

(s− t)(ω+ − ω−)
) +

(s− t)2(ω+ − ω−)
2

(s− ω−)2(ω+ − t)2

)
,

as the worst cases for the singular terms involving ∂ω−R0, ∂ω+
R0, ∂

2
ω−R0, ∂

2
ω+

R0 and

∂2
ω−ω+

R0 respectively.

A.2. Regular entropy solutions. For the East type entropy case the integral represen-

tation (5.2) becomes

η0(ω−, ω+) =

∫ ω−

ω∗
−

(ω+ − ω−
−t

) 1
2

H
( ω+(ω− − t)

−t(ω+ − ω−)

)(
θ′−(t)−

1

2t
θ−(t)

)
dt. (A.2)

Thanks to the properties of H and from representation (A.2), it is possible to give the

following results on the regularity of η0 near the umbilic point.

Proposition A.1. If −δ < ω− ≤ ω+ < δ, for a small positive constant δ, and if

∫ −δ

ω∗
−

(
(−t)−

3
2

(
θ′−(t)−

1

2t
θ−(t)

)
dt = 0

∫ −δ

ω∗
−

(
(−t)−

5
2

(
θ′−(t)−

1

2t
θ−(t)

)
dt = 0,

then

η0 = O((ω+ − ω−)
1
2 (ω2

+(−ω−) + ω+(−ω−)
2)),

∂η0
∂ω−

=
∂η0
∂ω+

= O(ω
3
2
+(−ω−) + ω+(−ω−)

3
2 ),

∂2η0
∂ω−∂ω+

=
∂2η0
∂2ω−

=
∂2η0
∂2ω+

= O(ω
1
2
+(−ω−) + ω−(−ω+)

1
2 ). �

Proposition A.2. Suppose (η0, q0) is an entropy-entropy flux pair, where η0 is an en-

tropy of type East or West with limit ω∗
−. Under the same hypotheses as Proposition

A.1, η0 and q0 have the following representations:

η0(ω−, ω+) = A0(ω−, ω+)θ−(ω−) +

∫ ω−

ω∗
−

B0(x, ω−, ω+)θ−(x)dx,

q0(ω−, ω+) = C0(ω−, ω+)θ−(ω−) +

∫ ω−

ω∗
−

D0(x, ω−, ω+)θ−(x)dx,

where A0, B0, C0 and D0 are smooth functions in the variables x, ω−, ω+ whenever

x < 0 and ω− < 0. �
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équations à une dimension d’espace, J. Math. Pures Appl. (9) 65 (1986), no. 4, 423–468. MR881690
(88d:35123)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=1337115
http://www.ams.org/mathscinet-getitem?mr=1337115
http://www.ams.org/mathscinet-getitem?mr=1869669
http://www.ams.org/mathscinet-getitem?mr=1869669
http://www.ams.org/mathscinet-getitem?mr=0430536
http://www.ams.org/mathscinet-getitem?mr=0430536
http://www.ams.org/mathscinet-getitem?mr=1013360
http://www.ams.org/mathscinet-getitem?mr=1013360
http://www.ams.org/mathscinet-getitem?mr=684413
http://www.ams.org/mathscinet-getitem?mr=684413
http://www.ams.org/mathscinet-getitem?mr=719807
http://www.ams.org/mathscinet-getitem?mr=719807
http://www.ams.org/mathscinet-getitem?mr=808729
http://www.ams.org/mathscinet-getitem?mr=808729
http://www.ams.org/mathscinet-getitem?mr=2597943
http://www.ams.org/mathscinet-getitem?mr=1256997
http://www.ams.org/mathscinet-getitem?mr=1256997
http://www.ams.org/mathscinet-getitem?mr=995288
http://www.ams.org/mathscinet-getitem?mr=995288
http://www.ams.org/mathscinet-getitem?mr=948072
http://www.ams.org/mathscinet-getitem?mr=948072
http://www.ams.org/mathscinet-getitem?mr=1167301
http://www.ams.org/mathscinet-getitem?mr=1167301
http://www.ams.org/mathscinet-getitem?mr=1117777
http://www.ams.org/mathscinet-getitem?mr=1117777
http://www.ams.org/mathscinet-getitem?mr=549642
http://www.ams.org/mathscinet-getitem?mr=549642
http://www.ams.org/mathscinet-getitem?mr=640948
http://www.ams.org/mathscinet-getitem?mr=640948
http://www.ams.org/mathscinet-getitem?mr=1188496
http://www.ams.org/mathscinet-getitem?mr=1188496
http://www.ams.org/mathscinet-getitem?mr=1042662
http://www.ams.org/mathscinet-getitem?mr=1042662
http://www.ams.org/mathscinet-getitem?mr=1486714
http://www.ams.org/mathscinet-getitem?mr=1486714
http://www.ams.org/mathscinet-getitem?mr=506997
http://www.ams.org/mathscinet-getitem?mr=506997
http://www.ams.org/mathscinet-getitem?mr=1294451
http://www.ams.org/mathscinet-getitem?mr=1294451
http://www.ams.org/mathscinet-getitem?mr=1343459
http://www.ams.org/mathscinet-getitem?mr=1343459
http://www.ams.org/mathscinet-getitem?mr=872382
http://www.ams.org/mathscinet-getitem?mr=872382
http://www.ams.org/mathscinet-getitem?mr=906816
http://www.ams.org/mathscinet-getitem?mr=906816
http://www.ams.org/mathscinet-getitem?mr=881690
http://www.ams.org/mathscinet-getitem?mr=881690


HYPERBOLIC SYSTEMS WITH AN ISOLATED UMBILIC POINT 659

[26] , Systems of conservation laws. 2, Cambridge University Press, Cambridge, 2000, Geomet-
ric structures, oscillations, and initial-boundary value problems, Translated from the 1996 French
original by I. N. Sneddon. MR1775057 (2001c:35146)

[27] M. Shearer, Loss of strict hyperbolicity of the Buckley-Leverett equations for three-phase flow in a
porous medium, Numerical simulation in oil recovery (Minneapolis, Minn., 1986), IMA Vol. Math.
Appl., vol. 11, Springer, New York, 1988, pp. 263–283. MR922970

[28] M. Shearer, D. G. Schaeffer, D. Marchesin, and P. L. Paes-Leme, Solution of the Riemann problem

for a prototype 2×2 system of nonstrictly hyperbolic conservation laws, Arch. Rational Mech. Anal.
97 (1987), no. 4, 299–320. MR865843 (88a:35156)

[29] J. Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Science], vol. 258, Springer-Verlag, New York,
1983. MR688146 (84d:35002)

[30] Z. J. Tang and T. C. T. Ting, Wave curves for the Riemann problem of plane waves in isotropic
elastic solids, Internat. J. Eng. Sci. 25 (1987), no. 11-12, 1343–1381. MR921358 (88m:73011)

[31] L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear
analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman,
Boston, Mass., 1979, pp. 136–212. MR584398 (81m:35014)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=1775057
http://www.ams.org/mathscinet-getitem?mr=1775057
http://www.ams.org/mathscinet-getitem?mr=922970
http://www.ams.org/mathscinet-getitem?mr=865843
http://www.ams.org/mathscinet-getitem?mr=865843
http://www.ams.org/mathscinet-getitem?mr=688146
http://www.ams.org/mathscinet-getitem?mr=688146
http://www.ams.org/mathscinet-getitem?mr=921358
http://www.ams.org/mathscinet-getitem?mr=921358
http://www.ams.org/mathscinet-getitem?mr=584398
http://www.ams.org/mathscinet-getitem?mr=584398

	1. Introduction and main result
	2. Riemann invariants and their properties
	2.1. Construction of Riemann invariants
	2.2. Genuine non-linearity

	3. Viscous approximation
	4. Serre’s method to construct regular entropies
	5. Main result
	5.1. The Riemann function for the entropy equation
	5.2. 𝐶² East type entropies

	6. Strong convergence by compensated compactness
	6.1. The reduction of the Young measure

	Appendix A. The unperturbed case
	A.1. Singularities of the Riemann function
	A.2. Regular entropy solutions

	References
	References

