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Global exposure to flooding 
from the new CMIP6 climate model 
projections
Yukiko Hirabayashi1*, Masahiro Tanoue1,2, Orie Sasaki1,3, Xudong Zhou4 & Dai Yamazaki4

Estimates of future flood risk rely on projections from climate models. The relatively few climate 
models used to analyze future flood risk cannot easily quantify of their associated uncertainties. In 
this study, we demonstrated that the projected fluvial flood changes estimated by a new generation 
of climate models, the collectively known as Coupled Model Intercomparison Project Phase 6 (CMIP6), 
are similar to those estimated by CMIP5. The spatial patterns of the multi-model median signs of 
change (+ or −) were also very consistent, implying greater confidence in the projections. The model 
spread changed little over the course of model development, suggesting irreducibility of the model 
spread due to internal climate variability, and the consistent projections of models from the same 
institute suggest the potential to reduce uncertainties caused by model differences. Potential global 
exposure to flooding is projected to be proportional to the degree of warming, and a greater threat is 
anticipated as populations increase, demonstrating the need for immediate decisions.

Flood risk is changing drastically worldwide, associated with socioeconomic growth and climate change. Global 
�ood risk assessments have investigated the populations and assets potentially exposed to future  �ooding1–7, 
based on the multiple atmosphere–ocean general circulation model (AOGCM) in the Coupled Model Inter-
comparison Project Phase 5 (CMIP5)8. Some studies have focused on human exposure at di�erent levels of 
 warming2,3,9, which makes an important scienti�c contribution for implementing adequate mitigation and adapta-
tion targets. However, due to limitations in the available daily runo� data in AOGCM, few studies have focused 
on the uncertainties of these  projections1. In this study, we made the �rst comparison of �ood projections from 
CMIP5 and CMIP6 and investigated the model uncertainties using multi-model ensembles.

Figure 1 shows the change in �ooding between the ends of the last (1971–2000) and current (2071–2100) 
centuries according to the CMIP5 and CMIP6 models under the highest emission scenario, Representative 
Concentration Pathway 8.5 (RCP8.5). Following previous  studies1, we expressed the change in �ooding as the 
change in the return period (probability) of a river discharge having a 100-year return period in the past. �e 
time series of simulated past and future annual maximum daily river discharge were �tted to an extreme dis-
tribution function and the multi-model median of the future return period of river discharge and agreement 
among multi-model ensembles were calculated for each grid cell. Further details of the processes and modelling 
framework are provided in the “Methods” section.

�e overall patterns of increase and decrease in �ood frequency (corresponding to decreases and increases in 
the return period, respectively) are remarkably similar with CMIP5 and CMIP6, with increases in many regions 
in South Asia, Southeast Asia, Northeast Eurasia, eastern and low-latitude Africa, and South America and 
decreases in northern and eastern Europe, Anatolia, Central Asia, central North America, and southern South 
America. �e results of three other RCP scenarios (Supplementary Fig. S2) showed similar spatial distributions. 
�e result indicates that the large-scale features of �ood projection are robust to the resolution and assumptions 
of the models, despite the substantial development of climate models since CMIP5. Di�erences in the direction 
of change in Texas (USA), the Amazon, Italy, and South Africa were not caused by di�erences among the models 
used. Our comparison of return period change data obtained by six models from institutions that participated in 
both CMIP5 and CMIP6 showed very similar di�erences in the spatial patterns of �ood frequency changes (Sup-
plementary Fig. S3). Model consistency was low for Texas, Italy, and South Africa in CMIP5, and in the Amazon 
in CMIP6, which was the main reason for di�erences in the direction of changes between CMIP5 and CMIP6.
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�e consistency of the future direction of �ood change between CMIP5 and CMIP6 was also very similar 
in many regions where �ood frequency increases (e.g., Asia, Northeast Eurasia, low-latitude Africa, and South 
America) or decreases (Scandinavia and central to eastern Europe and high-latitude South America). Of the 
global model grid cells, 36% showed increased �ood frequency with relatively high consistency (more than 7 of 
the 7 AOGCMs). By contrast, 15% of the global grid cells had a relatively high consistency (7 of 9) among the 
AOGCMs in the regions where the �ood frequency decreases in the future.

Figure 2 shows the multi-model mean population potentially exposed to large amounts of �ooding from the 
middle of the twentieth century to the end of the twenty-�rst century. �ere is high inter-annual �uctuation due 
to the relatively small number of ensembles and the fact that the exposure is largely a�ected by rare large �oods. 
A di�erence in the potential �ood exposure becomes obvious a�er around 2070.

Following previous  research10, we compare the robustness of global �ood exposure change to the speci�c 
warming level (SWL). �e range of exposure for the twenty-�rst century is not simple to compare, because 
CMIP5 analyzed 11 AOGCMs while CMIP6 analyzed 9 AOGCMs due to data availability. Moreover, the experi-
ments selected AOGCMs from di�erent institutes (Tables S1 and S2). However, the increase in potential �ood 
exposure associated with SWLs (1.5 °C, 2 °C and 3 °C warming) is very similar with CMIP5 and CMIP6 (Fig. 3). 
To focus on �ood change only, the population distribution was �xed at that of 2015; the result shows that annual 
global �ood exposure increases about 1.4-fold (from 2.2 to 3.2% of the global population) from historical period 
(1971–2000) with 3 °C warming in CMIP6.

�e potential �ood exposure varies among regions depending on the population in �ood-prone regions and 
the projected �ood change (Fig. 3). Increased potential �ood exposure due to warming was observed in Asia, 
North America, and Africa, whereas exposure was stable or lower at higher SWLs in Europe and North Africa. 
�e increase in �ood exposure was high in Africa and Asia, particularly with 3 °C warming (1.7-fold and 1.5-
fold higher than the average of 1971–2000, respectively), re�ecting a signi�cant increase in �ooding (Fig. 1b).

We analyzed the potential number of people, to focus only on the changes associated with climate change. 
Hence, the value is larger than the estimates of previous studies analyzing large  �oods1 or those considering local 
�ood protection. �e increase in global potential �ood exposure is due mainly to increased exposure in regions 
such as Asia and Africa, where �ood frequency is projected to increase (Fig. 1). �e model spread relative to the 
model mean change is also very similar, implying that the models’ projections have not converged.

�e assumption that AOGCMs from the same institute show similar results was con�rmed in for �ood expo-
sure of a selected subset of AOGCMs used in both CMIP5 and CMIP6 (Fig. 4b, Tables S5 and S6). �is �nding 
indicates that although model spread due to internal climate variability is irreducible, the uncertainty arising 
from model di�erences is large and can potentially be reduced.

We examined potential �ood exposure focusing only on changes induced by climate change; however, �ood 
risk also depends on other drivers of change, such as the degree of socioeconomic development and associated 

Figure 1.  Projected change in �ood frequency. Multi-model median return period (years) in future (2071–
2100) for discharge corresponding to a 100-year �ood in the past (1971–2000), and for (a) CMIP5 and (b) 
CMIP6 under the RCP8.5 and ssp585 (SSP5-RCP8.5) scenarios, respectively, and model consistency for (c) 
CMIP5 and (d) CMIP6. Grid cells with a mean annual discharge of a retrospective simulation for 1971–2000 
of < 0.05 mm−1 day are screened out (see “Methods”). �is �gure was created using python 2.7.12.
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Figure 2.  Global potential �ood exposure change and uncertainty. Global potential �ood exposure change 
(mean and one standard deviation among AOGCMs, indicated by as shading) for the multi-model median 
return period (years) in the future (2071–2100) for a discharge corresponding to a 100-year �ood in the past 
(1971–2000).

Figure 3.  Potential �ood exposure during the baseline period and projected future warming levels. �e ssp585 
scenario (SSP5 and RCP8.5) was applied to di�erent regions. �e percentage of the regional total population 
(�xed at the 2015 level) is shown for each region.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3740  | https://doi.org/10.1038/s41598-021-83279-w

www.nature.com/scientificreports/

vulnerability and  exposure11,12. For example, previous studies have demonstrated that vulnerability to �ooding 
has changed over time in association with economic  development11,12, which a�ected �ood risk  projections6,12. 
A newly developed global data of �ood protection standard allowed us to estimate the consequences of a given 
�ood exceeding the current �ood protection  level13. Studies have shown that reducing �ooding vulnerability 
greatly reduces the future projected consequences of  �ooding2–4,12. Moreover, increases in assets and population 
in a �ood-prone region can increase �ood exposure. �us, �ood exposure projections were underestimated in 
cases where the population will increase in the future. Despite the model development including �ner resolu-
tions of topography and population distribution, potential �ood exposure for large �oods was similar to those 
projected in a previous  study1.

Projection uncertainty arises in association with multiple models. We analyzed uncertainty using a bootstrap 
method; future changes in potential �ood exposure were evaluated using non-parametric bootstrap  samples14. A 
random number generator was used to sample a 109-year subset of exposure and surface temperature anomaly 
from the 109-year samples (30-year moving average for 1960–2100). �is procedure was repeated 1000 times, 
giving 1000 exposure and temperature anomaly estimates for each AOGCM. �e 5th and 95th percentiles, and 
average, of the 1000 estimates of potential �ood exposure were then obtained for both CMIP5 and CMIP6; the 
ranges were similar between CMIP5 and CMIP6.

In summary, it is clear that potential �ood exposure will increase with the level of warming, even for a �xed 
population. Moreover, the value will increase with increasing population, particularly at lower latitudes. Despite 
the uncertainty remaining in the global data and modeling framework, the robustness of the �ood projection 
presented here supports the e�orts to make decisions needed to adapt to climate impacts and mitigate green-
house gas emissions.

Methods: river discharge simulation
We calculated the discharge from AOGCMs participating in  CMIP58 and  CMIP615 (listed in Supplementary 
Tables S1 and S2). �e AOGCMs were selected from independent institutions to avoid the potential dependence 
of di�erent versions of the AOGCMs from the same institution. River discharge is calculated along the river net-
work through a high-resolution (15′ × 15′ spatial resolution) global river network map using the Catchment-based 
Macro-scale Floodplain Model (CaMa-Flood v4.0)16 and daily AOGCM runo� data. CaMa-Flood simulates river 
water levels and �oodplain inundation hydrodynamics based on high-resolution (~ 500 m) sub-catchments and 
reasonably represents the temporal variation and peaks of river discharge (Fig. S4). �e inundation area showed 
reasonable correspondence in lowland areas due to the river bifurcation scheme of the  model17,18.

When several ensemble runs were available, the �rst ensemble of each AOGCM was selected and disag-
gregated into 0.5° pixels through bi-linear interpolation. Validation of the modeled historical discharge against 
in situ observation from the Global Runo� Data Centre showed reasonable consistency between simulation- and 
observation-based annual discharges and annual maximum daily discharges (the selected river basins and details 

Figure 4.  Model robustness for �ood exposure. (a) Fraction of the global population exposed to potential 
�oods using CMIP5 and CMIP6 corresponding to a SWL relative to the preindustrial period. �e mean and 
maximum and minimum ranges among AOGCMs (lines and shaded area, respectively) are shown. (b) As 
(a), but for a subset of 6 models from 6 institutions participating in both CMIP5 and CMIP6 (Supplementary 
Tables S1 and S2). �e population distribution is �xed at the 2015 level.
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of the validation are presented in Supplementary Information S2). Noted that CaMa-Flood does not consider 
the e�ects of anthropogenic river management, including the regulation of �oodwater.

Methods: fitting an extreme distribution function
�e annual maximum daily discharge was �tted to the two-parameter Gumbel  distribution19, with parameters 
estimated using the probability-weighted moments  method20. We used 30-year periods to represent past and 
future �oods. Due to the relatively small data samples, we used the Gumbel distribution because it provides 
relatively robust and stable results from small data samples compared to other  distributions1,21. A previous 
study showed that randomly increased samples produced similar �ood change signals and model  consistency1. 
�e Gumbel distribution can yield higher probabilities of extreme values than other distributions because it has 
lighter  tails3; however, frequency changes can be well illustrated. We evaluated the goodness of �t of the simula-
tion data to the Gumbel distribution based on the probability plot correlation coe�cient (PPCC)22, which has 
been widely used in hydrology to evaluate agreement between estimated distributions and the original data. For 
all AOGCMs, ~ 79 ± 7% of the global model grid cells over land, excluding dry regions (average of the modeled 
30-year (1971–2000) mean annual discharge at < 0.05 mm day−1), had a PPCC > 0.96 (signi�cant at the 95% level; 
Fig. S1). Due to the small inundation extent, grids poor �t to the Gumbel distribution did not a�ect the �ood 
exposure calculation.

�e magnitude of river discharge corresponding to the 100-year return period in the past (1971–2000) was 
�rst computed using the annual maximum daily discharge of the historical AOGCM simulation �tted to the 
Gumbel distribution. �e return period of this calculated discharge in the future (2071–2100) was then computed 
for each AOGCM. �e median return period of the 9 (CMIP6) or 11 (CMIP5) AOGCMs was then obtained. 
Finally, the consistency among the AOGCMs was calculated by counting the number of AOGCMs showing the 
same sign of change (increase or decrease in frequency).

Methods: exposure calculation
�e population potentially exposed to �ooding was calculated as the sum of the population over the inundated 
area modeled. �e modeled inundation area was overlaid onto the population dataset of version 4 of the Grid-
ded Population of the World (GPWv4)23. To focus on climate change only, a �xed population distribution cor-
responding to that of 2015 was used.

Because we used the direct output of runo� from the AOGCMs without correcting the bias related to the 
lack of gauge observations on a global scale, we did not calculate inundation areas and associated �ood exposure 
directly from discharge values. Instead, we followed a published  approach1,2, and linked the recurrence frequency 
(return period) in each 0.25° pixel (15 arcmin, ~ 25 km at the equator) to water depth at a �ner spatial resolu-
tion (30 arcsec resolution, approximately 1 km at the equator) according to the relationship between frequency 
(return period of annual maximum river water storage) and inundation area. �is was based on a retrospective 
model simulation forced by observation-based climate data (i.e., a retrospective simulation). For the retrospec-
tive simulation, water depth in each 0.25° pixel (i.e., water level above the top of a river channel) was downscaled 
using a 30 arcsec (~ 1 km at the equator) high-resolution digital elevation model (DEM)18, by comparing the 
elevation of pixels in the DEM with the water level modeled at a coarse resolution. Since CaMa-Flood uses the 
same high-resolution sub-grid topography for both river routing and downscaling, the water volume is consist-
ent at 0.25° pixel resolution before and a�er downscaling. Finally, a look-up table of the return period at a 0.25° 
pixel resolution (2-year to 1,000-year) and inundation area at 30 arcsec was used to calculate �ood exposure for 
each AOGCM.

�e annual maximum daily discharge of the retrospective simulation from 1971 to 2000 was �rst �tted to 
a generalized extreme value distribution. �en, the discharge magnitude corresponding to the return periods 
from 2 to 1000 years was calculated for each grid cell. Simultaneously, the water level was downscaled using a 
bias-corrected high-resolution DEM, the Multi-Error-Removed Improved-Terrain (MERIT)  DEM24 to obtain 
a �ner inundation area to obtain look-up tables for each return period (2–1000 years) at 0.25° pixel resolution 
and the corresponding inundation extent at 30 arcsec resolution.

For each AOGCM simulation, the annual maximum daily discharge of the historical simulation from 1971 
to 2000 was �tted to a generalized extreme value distribution in each 0.25° pixel and distribution parameters 
were calculated (see “Methods: �tting an extreme distribution function”). Using the extreme parameters, the 
return period of the annual maximum daily discharge at each year and corresponding inundation extent at 30 
arcsec resolution were calculated for 1971–2100. Population data at 30 arcsec resolution was overlaid onto the 
30 arcsec inundation area.

We present results at each SWL of 1.5 °C, 2 °C and 3 °C above the preindustrial temperature (Supplementary 
Tables S3 and S4). Following previous  research2, SWLs were calculated as the year each SWL was �rst passed 
from a reference year in the preindustrial period (1850–1900), using a running mean of the 30-year global aver-
aged annual mean temperature.
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