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Abstract

Background: Schistosoma japonicum is one of the remarkable Platyhelminths that are endemic in China and Southeast
Asian countries. The parasite is dioecious and can reside inside the host for many years. Rapid reproduction by producing
large number of eggs and count-react host anti-parasite responses are the strategies that benefit long term survival of the
parasite. Praziquantel is currently the only drug that is effective against the worms. Development of novel antiparasite
reagents and immune-prevention measures rely on the deciphering of parasite biology. The decoding of the genomic
sequence of the parasite has made it possible to dissect the functions of genes that govern the development of the
parasite. In this study, the polyadenylated transcripts from male and female S. japonicum were isolated for deep sequencing
and the sequences were systematically analysed.

Results: First, the number of genes actively expressed in the two sexes of S. japonicum was similar, but around 50% of genes
were biased to either male or female in expression. Secondly, it was, at the first time, found that more than 50% of the
coding region of the genome was transcribed from both strands. Among them, 65% of the genes had sense and their
cognate antisense transcripts co-expressed, whereas 35% had inverse relationship between sense and antisense transcript
abundance. Further, based on gene ontological analysis, more than 2,000 genes were functionally categorized and
biological pathways that are differentially functional in male or female parasites were elucidated.

Conclusions: Male and female schistosomal parasites differ in gene expression patterns, many metabolic and biological
pathways have been identified in this study and genes differentially expressed in gender specific manner were presented.
Importantly, more than 50% of the coding regions of the S. japonicum genome transcribed from both strands, antisense
RNA-mediated gene regulation might play a critical role in the parasite biology.
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Introduction

Human schistosomiasis, the second only to malaria in term of

morbidity and mortality, is caused by infections of Schistosoma

species depending on the endemic region of the parasites [1]. S.

japonicum is the causative agent of schistosomiasis perturbing

millions of people in several East and Southeast Asian countries.

Though schistosomal parasites are sensitive to the treatment of

praziquantel, high re-infection rates in both human and animals

plus the requirement of frequent administration still limit the

overall success of chemotherapy. More therapeutic targets are to

be defined for an optimal treatment as well as disease prevention.

The recent decoding of the genome sequences of the two most

pathogenic parasites, S. mansoni and S. japonicum, has paved a

pivotal way for a systematic dissection of the parasite biology

[2,3,4].

The genome of S. japonicum harbors in 8 pairs of chromosomes

with an estimated 397 Mb containing 13,469 protein-coding

sequences [3], which accounts for 4% of the genome. In the non-

protein coding regions, approximately 40% is composed of

repeated sequences including transposable elements (TE). Recent

study indicated that the transcripts of TE could be processed into

small RNAs (endogenous siRNA), which fulfilled regulatory

functions from the maintenance of genome stability to stage-

specific gene activation or silencing [5,6,7]. Genomic variation

such as single nucleotide polymorphism (SNP) has been noticed
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but its biological significance remains to be further studied [8,9].

The availability of the genome sequences of several schistosomal

parasites plus the free-living Schmidtea mediterranea have paved the

way for deep functional analysis on the genomes and the encoding

biology of the pathogenic parasites [10,11,12]. Primary analyses

have revealed remarked features of both parasite biology and host-

parasite interaction [10,11,12]. Genomic sequencing project has

revealed that S. japonicum has abandoned more than 1,000 protein

coding domains as compared to the free living worm Caenorhabditis

elegans, indicating the parasite has gained the ability to exploit host

factors for its development [3]. For example, several signal

transduction pathways (including those for Wnt, Notch, Hedge-

hog, and transforming growth factor b (TGF-b) found in human)

are also present in the parasite [3]. These include endogenous

hormones such as insulin, epidermal growth factor (EGF)-like and

fibroblast growth factors (FGF)-like peptides. Predicted compo-

nents of the Ras–Raf–MAPK and TGF-b–SMAD signaling

pathways (including FGF and EGF receptors) share high sequence

identity with their mammalian orthologs, indicating that schisto-

somes, in addition to utilizing their own signaling pathways,

exploit host endocrine signals for their own development

[3,10,13].

Schistosomal parasites are featured with very complicated

developmental and biological cycles. They are the first group of

organisms that are dioecious with marked differences in sexual

dimorphism and biology [14], which are controlled by genetic as

well as epigenetic regulation factors. Studies on stage- and gender-

specific expression profiles with parasites of various developmental

stages have been carried out with different methodological

approaches, from manual sequencing of expression sequence tag

(EST) to full-length cDNA cloning, microarray hybridization, and

random sequencing [15,16,17,18,19,20,21]. The valuable data

obtained from the genomic and post-genomic studies has

facilitated tremendously in understanding parasite biology as well

as parasite-host interactions (for review, see refs 10, 11, 12).

While the stage-specific transcriptomic information of S.

japonicum keeps increasing, investigation with specific perspectives

on the differences of genome-wide transcriptions of the male and

female parasites has mainly been based on the availability of the

genomic sequence which has been far from a complete

assembly[22]. In this study, by using the high through-put RNA-

seq techniques, we successfully explored the transcriptomes of

male and female schistosomal parasites. The data revealed novel

features of gender-specific expression and gene regulation

pathways.

Results

Libraries of sequence tags from male and female adult
worms of S. japonicum
In this study, we determined and compared transcriptomes of

male and female adult worms of S japonicum. DGE (Digital Gene

Expression) libraries were made, using RNA with a PolyA tail at

the 39-end of each template, for both genders, and all

polyadenylated RNA was sequenced using Solexa (Illumina) high

through-put technology (Figure 1). The two libraries (male and

female adult worms) contained 3,705,287 and 3,672,014 unfiltered

tags. After removal of tags containing ambiguous base calls and

adaptor tags, there were 3,660,835 (male) and 3,693,835 (female)

clean tags and the number of distinct tags in the two libraries of

male and female was 219,628 and 213,310, respectively (Table 1).

The clean tags were mapped onto the S. japonicum genome of

SGST (http://lifecenter.sgst.cn) and the relationship between

sequence tags and genes was then built up. For genes with multi-

tags, the total distinct expressed tags were taken into account as the

gene expression value. Most of the tags were from highly expressed

genes (Figure 2 and Table S1). The redundancy for Sjc-F and Sjc-

M was respectively 94.2% and 94.1% which indicated the

sequencing quantity should be enough for both libraries

(Table 1). Of the 360,955 unique tags, 71,983 can be found in

both libraries. Male and female specific tags accounted for 3.85%

and 4.35% respectively. The number of clean distinct tags was

141,327 and 147,645 in Sjc-F and Sjc-M, respectively (Table 1).

As shown in figure 2, the most abundant tags (63%) were single

copy and tags with more than 10 copies accounted only around

3% in both female and male worms (Figure 2). All sequence data

has been deposited in the database (http://www.ncbi.nlm.nih.

gov/geo/info/faq.html#seq) with an accession number of

GSE26845.

Genes differentially expressed in male and female
parasites
Tags that could specifically match to the reference genes of S

japonicum generated expression data of 9,239 genes, accounted for

73% of genes in the annotated genome which was estimated to

have 13,469 genes in the genome [3]. A total of 4,732 (35%)

distinct genes were found differentially expressed between male

and female, of which 2,545 genes up-regulated and 2,187 genes

down-regulated in male versus female adult worms (Figure 3A and

Table S2). Genes showed significant differences in expression were

those coding proteins with functions associated with biological

process, cellular component or molecular functions (Table S2).

Genes related to the function of genetic information processing

which was more biased to the female parasite, while genes with

function related to interaction with host (environmental informa-

tion processing) were more active in the male parasites. To

evaluate whether the number of sequencing tags that could reflect

the patterns of differentially expressed genes between male and

female parasites, transcripts of 6 genes of AMP-activated kinase,

eggshell protein 1 precursor, an unknown gene (Sjc_0024870),

dynein light chain, paramyosin, and tropnin were analyzed by

quantitative PCR. The results from quantitative PCR correlated

with the number of sequence tags that were significantly different

between male and female parasite (Figure 3B).

Half of the coding regions in the genome of S. japonicum
was transcribed from both strands
When mapping the sequence tags to the genome we found that,

of the genes (9,239) with unambiguous tags detected, 7,261 genes

have tags transcribed from both sense and antisense strands. Thus

nearly 50% of the genes annotated in the genome of S. japonicum

were found transcribed from both strands. Of these genes, 5,487

genes had tags corresponding to sense strands more than that from

antisense strands, and 1411 genes had more tags from the

antisense strands than that from the sense strands. While 363

genes have equal number of tags generated from both strands

(Figure 4A, Table S3).

Further comparative analysis on the sequence tags between

male and female parasites revealed that 3,963 tags from sense

strand were significantly different in copy number between male

and female parasites. Of which, 2,562 tags had antisense and their

cognate sense transcripts co-expressed (higher levels of sense tags

also yield higher antisense tags counts, Figure 4B), 1,401 tags had

no matched antisense tags. There were 2,528 antisense tags which

were differentially expressed in the two sexes of the parasite, of

which 1,704 had sense counterparts co-expressed and 824 was

discordant with the sense strand. 1,851 genes had differentially

Gender-Specific Transcriptome in S. japonicum
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expressed tags from both sense and antisense strands, with 1,300

tags were co-expressed, and 551 tags were discordant (Figure 4B).

Identification of different biological or metabolic
pathways between male and female parasites
Gene categorization based on potential functions of the coded

proteins was performed. Sequence tags from 2,148 genes can be

categorized into different functions or biological pathways

(Figure 5, Table 2, and Table S4). Of which, 940 genes related

to metabolic pathways, 475 genes were with functions related to

genetic information processing, 495 genes were related to

responses to environmental changes, and 958 genes were related

to cellular processing (Figure 5A).

Genes with differential expression patterns between male and

female parasites were also identified (Table S5, S6), of the 940

genes with functions associated to metabolism, 230 genes were up-

regulated and 238 genes are down-regulated in male compared to

Figure 1. Schematic illustration of the principle and procedure of Tag preparation. Biotin-conjugated Oligo-dT was used to enrich mRNA
and cDNA synthesis. The double strand cDNA was first digested with the 4 base (GTAC) recognition enzyme NlaIII, and Illumina adapter 1 was linked
afterwards. Mmel was used to digest at 17 bp downstream of CATG site which was ligated with Illumina adapter 2 at the 39 end. Sequencing anchor
primers were added to the end of each fragment by PCR and the PCR product were purified and followed by Solexa sequencing.
doi:10.1371/journal.pone.0018267.g001

Table 1. Expression profiles of sequence reads in the two
libraries.

Sjc-F Sjc-M

Distinct clean reads 213,310 219,628

Sex-specific reads 141,327 147,645

Matched to genome 57,395 55,498

Redundancy (%) 94.2 94.1

Distinct reads represent the number of distinct sequence reads in the two
libraries, Sjc-F and Sjc-M. Sex-specific reads represent number of sequence
reads specific to female (Sjc-F) or male (Sjc-M) parasite. The numbers of the
distinct reads from the two libraries that matched to the genomic sequences
were listed. The redundancy of the two libraries was calculated according to the
formula (Redundancy = 100-(Total Clean Distinct Tags/Total Tags x 100).
doi:10.1371/journal.pone.0018267.t001
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female parasites. Of the 475 genes with functions related to genetic

information processing, 98 genes were up-regulated and 168 genes

were down-regulated in the male parasite. 102 genes related to

environmental information processing were up-regulated and 65

genes were down regulated in male parasites. 168 genes function

in cellular processing were more active in male parasites, while 185

genes were more silent than female counterpart (Figure 5B).

Among the metabolic pathways identified in the parasites, the

expression of 5 genes related to the xenobiotic metabolism was

found up-regulated in female parasites (Table S5, S6).

Discussion

The draft genomic sequence of S. japonicum has been available

[3], but functional determination of genes related to important

biological significance will likely rely on the analysis of mRNA

transcripts and the encoded proteins, since the multi-cellular

nature of the pathogen and its specific structure of tegument has

made it difficult to carry out genetic manipulation directly on the

parasite [21]. In this study, by combining the powerful Digital

Gene Expression (DGE)-tag and high through-put RNA-seq

technique [23], the global transcriptomes of male and female S.

japonicum were obtained and compared. DGE offers distinct

advantages over other methods (such as array-based gene-

expression analysis systems) for transcriptomic studies. First, it

has a better coverage and an ability to measure low-abundance

genes, find unknown transcripts with minimal background noise

for increased sensitivity. Secondly, as demonstrated in Figure 1,

all sequence tags were anchored on a chip matrix at the 39 side

before sequencing, thus only the cDNA strand (complimentary to

the polyA-tailed RNA template) was sequenced. The advantages

of this approach are that most adenylated transcripts can be

obtained and the step of cDNA cloning is not needed. Further,

the rationale in tag preparation was that the restriction enzyme

(NlaIII) would cleave at the 39 most CATG site, thus the 39 UTR

(Un-translating region) information will be critical for the

following tag annotation. To avoid false positive of CATG site,

we used 3 kb as the cutoff value to define the 39 UTR of the

selected RNA templates. The CATG cleavage sites were

identified in the gene accompanied with 3 kb potential 39 UTR

using in-house perl script. Thus, contrast to normal EST

sequencing which mainly obtains sequence information close to

the 59 end of the templates, the DGE method explored here could

target the mRNA sequences which were more likely in full-

length. Though deep (or random) sequencing can generate

genome-wide transcriptome information, it does not discriminate

strand-specific transcription. Further, all sequence tags were

mapped to the protein-coding genes with non-coding sequences

dismissed, thus small transcripts such as pre-microRNAs and

transcripts from non-coding regions were not included in the

analysis.

The number of sequence tags identified in male and female

parasites was similar (Figure 2 and Table S1). However, around

one third of genes in the genome were found with bias in

preferential expression between male and female. Interestingly, the

number of genes with preferential expression in male and female

parasite was similar (Figure 3A and Table S2). The differences in

gene expression between male and female parasites were related to

the function of genetic information processing which was more

biased to the female parasite, which was likely due to the

production of eggs. While genes with function related to

interaction with host (environmental information processing) were

more active in the male parasites, this was presumably due to the

physiological character of male parasite which was much larger

than the female and most of its surface was exposed to the host

while female parasite was held in the cavity of the male. Further,

previous studies with microarray identified around 1,000 genes

that were differentially expressed in either male or female parasite

[19,24]. The reason that low numbers of genes identified in early

studies was likely due to the in-availability of a complete genome

Figure 2. Percentage of tags in copy number identified in the two libraries (A Male worm, B Female worm). More than 60% of the tags
identified in the two libraries are single copies.
doi:10.1371/journal.pone.0018267.g002
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sequence when the studies were performed. The advantage of the

current study is that the readout does not depend on the genome

sequence. Thus the number of genes identified with differential

expression in male and female parasite was more than that with

other approaches [19,22,24].

Gender-specific transcriptome analysis revealed that more than

2,000 genes were potentially involved in metabolic pathways or

biological functions (Figure 5 and Table S4). Among the

metabolic pathways identified in the parasites, the expression of

genes related to the xenobiotic metabolism was found more

interesting. Xenobiotic metabolism reactions often function in

detoxifying poisonous compounds [25]. The reactions contain

three phases. In phase I, enzymes such as cytochrome P450

oxidases introduce reactive or polar groups into xenobiotics. These

modified compounds are then conjugated to polar compounds in

phase II reactions. These reactions are catalyzed by transferase

enzymes such as glutathione S-transferases (GST). In phase III, the

conjugated xenobiotics are recognized by efflux transporters and

Figure 3. Tags represented differential expression in male and
female parasites. A Distribution by Scatter plotting of expressed
sequence tags identified in male and female parasites. Tags biased
towards male parasite were in red color, while tags biased towards
female parasite were labeled in green color. B Verification of gender-
biased expression of 6 genes by real-time RT PCR. The differences in
copy numbers of transcripts relative to that of a-tubulin were presented
in log 10 scale.
doi:10.1371/journal.pone.0018267.g003

Figure 4. Sequence tags identified from both sense and
antisense strands of the genome. A Gene numbers that with
differential transcription patterns of the two DNA strands. Genes with
more transcription from the sense strand were dominant. B Tags
differentially expressed in male and female parasites.
doi:10.1371/journal.pone.0018267.g004

Gender-Specific Transcriptome in S. japonicum

PLoS ONE | www.plosone.org 5 April 2011 | Volume 6 | Issue 4 | e18267



pumped out of cells [25]. Proteins encoded by these genes are

likely involved in fertilization or egg production in the female

parasite. Studies on S. mansoni has reported functions of P450 and

GST in the parasite [26]. However, this is the first report which

reveals more complete connection of the enzymes in the

xenobiotic metabolism pathway in S. japonicum. So far, GST has

been regarded as a best candidate for development of anti-

fecundity vaccine for japonicum schistosomiasis [27]. In light of

the components identified in the pathways related to the

reproduction of the parasite, more molecules such as P450

homologue might be potential candidate in the vaccine develop-

ment. Further, genes with functions related to the pairing of the

two sexes were found differentially expressed. Male parasite

expressed more genes related to WNT (originally been identified

as a recessive mutation affecting wing and haltere development in

Drosophila melanogaster) signaling pathway which might be beneficial

for embryo development in female parasites. Interestingly, genes

encoded actin proteins were found more active in female parasites

than male parasites, whether this related to the egg-shedding

function or the pairing of the two sexes remains further

elucidation. Furthermore, the axon guidance pathway was found

Figure 5. Functional categorization of genes identified in male
and female parasites. A Number of genes that can be categorized into
four main functional groups (Metabolic pathway, genetic information
processing, environmental information processing and cellular process-
ing). B Number of genes within the four functional categories that
showed up- or down-regulation in male parasite compared to female
counterpart.
doi:10.1371/journal.pone.0018267.g005

Table 2. Number of genes potentially involved in biological
pathways and differentially expressed in male and female
parasites.

Pathways

Total genes

identified

Genes up-

regulated

(P,0.05)

Sjc-M Sjc-F Sjc-M Sjc-F

Metabolism

Amino acids 134 134 48 43

Biosynthesis of secondary metabolites 14 15 6 7

Carbohydrate 102 97 27 37

Energy 79 72 19 26

Glycan biosythesis 50 49 13 14

Lipid 50 49 19 10

Cofactors and vitamins 45 43 11 20

Nucleotides 41 39 17 9

Xenobiotics biodegradation 20 17 7 5

Genetic information processing

Replication and repair 81 75 11 30

Transcription 45 43 9 18

Translation 144 144 28 62

Folding, sorting and degradation 119 119 42 47

Environmental information

processing

Membrane transport 28 30 12 5

Signal transduction 160 159 53 32

Signaling molecules and interaction 25 28 10 4

Cellular processes

Cell communication 108 102 35 20

Cell growth and death 85 76 13 35

Cell motility 43 41 13 7

Development 31 31 14 2

Endocrine system 100 97 17 31

Immune system 72 75 23 15

Nervous system 44 43 8 11

Sensory system 17 12 1 3

Others 255 252 74 77

doi:10.1371/journal.pone.0018267.t002
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more active in female than male. Compounds targeting these

pathways may effectively block parasite development and reduce

pathological reaction in the liver of the host.

The discovery of tremendous antisense transcripts from the

coding region is remarkable. The estimated number of protein-

coding genes in the S. japonicum genome is 13,469, while 7,261 genes

were found transcribed from both strands. To our knowledge, this is

the first observation in S. japonicum that more than 50% of the

protein-coding genes were bi-directionally transcribed. It much be

pointed out that previous studies in S. mansoni using a microarray

already found bi-directional transcription in 7% of the active ‘‘no

match’’ genes [28]. Thus bi-directional transcription is likely a

common feature in schistosomal parasites. Though most of the

transcripts were from sense strands of the genes, more than 1,000

genes were found to have more antisense than sense transcripts and

around 500 genes were transcribed symmetrically. Since the RNA

templates were selected based on the poly-A tail, thus the antisense

transcripts were likely polyadenylated. It cannot be ruled out that

some of the anti-sense RNAs may encode proteins, but it is unlikely

that all polyadenylated antisense RNAs do so. Recent study on the

antisense transcripts in human found that the pseudogenes could be

sources of natural antisense transcripts [29]. Transcripts from

pseudogenes form hybrids with that of parental genes, which will be

further processed into regulatory endogenous siRNAs. Though it

could not be ruled out that such a mechanism also existed in S.

japonicum, it is unlikely that the parasite harbors so many

pseudogenes in the genome, as antisense transcripts complementary

to more than half of the protein-coding genes were detected. Thus,

some of the antisense transcripts must be a result of bi-directional

transcription, at least in the adult worms. The mechanism behind

the bi-directional transcription is still not known; but, with the

discovery of NAT (natural antisense transcripts)-derived endoge-

nous siRNAs in the parasite [5], it can be hypothesized that some, if

not all, sense and antisense RNA hybrids are the sources of NAT-

derived endo-siRNAs [7]. However, it is also possible that some of

the antisense transcripts exerted post-transcriptional regulation

through direct hybridization with the mRNA templates. Neverthe-

less, the finding in this study has opened up new avenue for

dissection of parasite biology regarding the function of antisense

RNA-dependent gene regulation.

In this study, transcripts of 73% of the genes in S. japonicum

genome was identified by high-through-put sequencing, of which,

35% (4,732/13,469) was preferential expressed in either male or

female parasite. More than 900 genes involved in metabolic and

biological pathways were identified and genes that were

differentially expressed in gender specific manner were analyzed.

Further, polyadenylated antisense RNAs were mapped to more

than 50% of the coding regions in S. japonicum genome, indicating

bi-directional transcription were common, at least in adult worm

stage of the parasite. Antisense-mediated gene regulation might

play a critical role in the parasite biology.

Methods

Parasites and RNA purification
S. japonicum-infected snails were collected from the endemic area

in Jiangxi province. Cercarie were released from the snails in room

temperature (around 25 degree) under a lamp. One New Zealand

white female rabbit (5 month old) was infected with 1500-2000

cercarie for 42 days. Mature adult parasites were harvested from

the infected rabbit by flushing the blood vessels with PBS as

described earlier [5,30]. Male and female parasites were manually

separated and total RNA from the parasites was purified with

Trizol reagent (Invitrogen, CA, USA) as described [5,30].

Generation of expression tags of male and female
parasites for sequencing
Messenger RNA from male and female S. japonicum parasite was

selectively purified from total RNA using oligo-(dT) conjugated

magnetic beads (DynabeadsH, Invitrogen). Complementary DNA

(cDNA) was synthesized guided by oligo-(dT) as a primer.

Sequencing tags were generated as illustrated in Fig. 1. Briefly,

double stranded cDNA sample was digested with the endonuclease

NlaIII that recognizes the CATG sites on cDNAs. After cleavage,

the 39-regions of the cDNAs attached on the magnetic beads were

selected. The first sequencing adapter (Illumina adapter 1) [31]

was added to the 59 ends of each fragment which was further

digested with MmeI, an enzyme cuts 17 bp downstream of the

CATG site. After removing 39 fragments with magnetic beads

precipitation, Illumina adapter 2 was introduced at 39 ends of the

tags to generate tag library with different adapters at both ends.

The fragments were PCR amplified and the 85 base strips were

purified by 6% TBE PAGE Gel electrophoresis and sequenced

with the Solexa high-throughput sequencing technology. The

advantage of this approach is that transcripts from both strands

(sense and anti-sense) can be targeted and sequenced.

Sequence analysis
After removing the low quality and adaptor tags, the clean

sequence tags were mapped onto the gene reference tag data set

and the relationship between sequence tags and genes were then

built up. For genes with multi-tags, the total distinct expressed tags

were taken into account as the gene expression value. For tags that

mapped to different genes, the mean value of tag number was used

as the expression level for each gene.

Reads with CATG site were selected and mapped to the

genome sequences. Sequences that with complete match to the

genome sequences were further analyzed for differential expres-

sion. We employed IDEG6 (http://telethon.bio.unipd.it/bioinfo/

IDEG6/) to identify differentially expressed mRNAs based on

their relative abundance which was reflected by total count of

individual sequence read between the two libraries. The general

Chi test was employed which has been proved to be one of the

most efficient tests [32]. Finally, genes with a P value ,= 0.05

were deemed to be significantly different between the two libraries.

Gene sequences were firstly blasted with Kyoto Encyclopedia of

Genes and Genomes database (KEGG, release 50) (http://

nematode.net/cgi-bin/keggview.cgi and http://www.nematode.

net/FTP/index.php) with E values ,= 1e-10 [33]. The KO

information was retrieved from blast result using which the

possible pathway information for each gene could be identified.

Domain information was annotated by InterProScan and

functional assignments were mapped onto Gene Ontology (GO).

WEGO was employed to do GO classification and draw GO tree

[34].

Verification of gender-specific transcripts by real-time
quantitative RT-PCR
Total RNA of S. japonicum (adult male and female worms) was

extracted using Trizol reagent (Invitrogen, CA, USA). The RNAs

were dissolved in diethylpyrocarbonate (DEPC)-treated water and

reverse transcribed with 200 U SuperScriptTM III Reverse

Transcriptase (Invitrogen) according to the manufacturer’s instruc-

tion. The following primers were designed as forward and reverse

primers based on the female, male specific tags and a-tubulin gene

(endogenous control): AMP-activated kinase F: 59-TGCTAGTGG-

TAAATGGGGTGT-39, R: 59-TTCATTGTACCATTGGA-

TATTTTCAT-39. Eggshell protein 1 precursor F: 59-

Gender-Specific Transcriptome in S. japonicum
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TGGTGGTAAGAATGGTGGTG-39, R: 59-CACACATTAC-

GATATTACAGTGAGATG-39. Unknown (Sjc_0024870: S. japo-

nicum expressed protein, putative mRNA) F: 59-CACGACATCAA-

CATGAGGGTA-39, R: 59-ACCCGAATATCGTGAAACAGA-

39. Dynein light chain F: 59-GCTGCAATGGCTATGGATAAA-

39, R: 59-TCCACGATCTTCCAGTGAGA-39. Paramyosin F: 59-

CTCAAAGCAGCCATAACA-39, R: 59-TCTCCTCCTCCAA-

CTGAA-39. Tropnin F: 59-CGATGGAAAGTCTGAAGC-39, R:

59-ACGTTCCCCTCTACGAAA-39. a-tubulin F: 59-CATGGTA-

GACAACGAAGCTATTTATGA-39, R: 59-GATTAGTGTAG-

GTTGGACGCTCTATG-39.

We used a-tubulin transcript as the endogenous control.

Quantitative RT-PCR was conducted in triplicate and each

reaction underwent 40 amplification cycles using an Applied

Biosystems 7300 real-time PCR system (Applied Biosystems,

Foster City, USA) with cDNA equivalent to 15 ng of total RNA,

200 mM of primers and 12.5 ml SYBR Green PCR Master Mix

(ABI, USA) adjusted to final volume of 25 ml with DEPC-treated

water. Dissociation curves were generated for each sample to

verify the amplification of a single PCR product. The Relative

expression was analyzed using the SDS 1.4 software (Applied

Biosystems, Foster City, USA). Due to the fact that the

transcription of a-tubulin gene in male was 2 times higher than

in female[19], a step of normalization was included in the final

analysis.

Supporting Information

Table S1 Description of the libraries generated with sequence

tags from male and female S. japonicum. The first column (Class)

defined the sequence classes. In the columns of Sjc-F and Sjc-M,#

represents the number of tags; % represents the percentage of

clean tags with different copy numbers in the total clean tag pools

of female and male parasite respectively.

(DOC)

Table S2 Genes showed significant differences in expression in

female versus male parasite and the biological functions associated.

The function of genes identified were classified into general (First

Class) and more defined (Second Class). The number of genes up-

(# of Up), down-regulated (# of Down) as well as the contig

names were listed.

(XLS)

Table S3 Tags mapped to either sense, antisense strand or both

stands of the genes identified. The first column is the gene name,

the second column ‘Both’ means gene expressed in both strand. ‘#

of Detected’ is the number of tags detected by sequencing. ‘Total

Express’ means total times of detected tags including both female

and male. ‘Sjc-F Expression and Sjc-M Expression’ means total

times of detected tags in female and male respectively. ‘Total

TPM’ means total times of detected tags per million, and Sjc-F

TPM, Sjc-M TPM means total times of detected tags per million

in female and male respectively. ‘M-F’ means difference between

the TPM value of Sjc-M and Sjc-F. Up in the Mark column means

the TPM value of Sjc-M is higher than that of Sjc-F. The last

column ‘Tags’ represents tag positions in genome, for example.

‘‘Y’’ means the tag is distinct. The numbers represent the position

of the ‘‘CATG’’ from the 39 end of the gene, total TPM and the

TPMs of the same tag in Sjc-F and Sjc-F respectively.

(XLS)

Table S4 Tags mapped to genes involved in metabolic and other

biological functions. The first column lists the metabolic pathways

and classified biological functions identified. The second column

represents the number of genes involved and the thirst column

represents the contig names.

(XLS)

Table S5 Genes involved in metabolic and other biological

functions which were up-regulated in male parasites.

(XLS)

Table S6 Genes involved in metabolic and other biological

functions which were down-regulated in male parasites.

(XLS)
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