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1 Introduction

F-theory [1] provides a promising framework for studies of string vacua with potentially
realistic particle physics.1 It combines many of the nice features of type IIB, particularly
localization of gauge degrees of freedom on D-branes, with some of the nice features of
heterotic models, such as the natural appearance of exceptional groups.

Most effort so far has centered on the classical aspects of F-theory models, i.e. couplings
that can be computed as wave function overlaps. This perturbative sector is already enough
for constructing appealing and phenomenologically promising models (there is a rapidly
growing literature on the topic, starting with [8–11]). Nevertheless, non-perturbative cor-
rections to this picture can in some instances be the dominant contribution, and modify
the picture substantially.

Classical examples come from gaugino condensation or euclidean instantons wrapping
isolated cycles. Under favorable conditions [12], they can generate a superpotential for the
Kähler modulus associated with the cycle. This effect has very important applications for
moduli stabilization in IIB and F-theory [13, 14], and it is an essential ingredient of many
semi-realistic type IIB scenarios [15].

1For recent efforts within the Type IIA intersecting D-brane framework, see [2, 3] for a review and [4–7]

for a systematic study of local realistic MSSM quivers.

– 1 –



J
H
E
P
0
1
(
2
0
1
1
)
0
7
3

Another important effect coming from D-brane instantons has been greatly clarified
in the type II context in recent years. Whenever a D-brane instanton intersects a D-brane
stack, there are some zero modes in the instanton worldvolume that are charged under
the gauge symmetry on the D-brane stack. Integration over these charged zero modes can
generate F-term couplings for matter fields living on the D-brane stack [16–19].

In the type II context these charged instantons solve a long-standing difficulty in con-
structing realistic models: brane stacks have U(1) factors that survive perturbatively, and
generally forbid certain important couplings in the MSSM lagrangian. Typical examples
are the top-quark Yukawa couplings in SU(5) GUT models, and the µ term. Charged
D-brane instantons do not necessarily respect perturbative U(1) symmetries, and thus can
generate these couplings (see [20] for a recent review).

A very attractive feature of F-theory compactifications is that, due to its close relation
with exceptional groups, these U(1) factors are not present, and thus the couplings which
are problematic from the type II point of view can be obtained perturbatively. Nevertheless,
one may still investigate the effect of non-perturbative effects in F-theory. The motivations
are many: instanton effects can be naturally suppressed, depending on the volume of the
cycle wrapped by the instanton, a feature that can be quite convenient whenever one desires
to obtain a hierarchy. One may also want to try a hybrid approach, building a good model
in the better understood IIB context with some couplings coming from euclidean instantons
and then uplifting to F-theory to improve some aspects of the model. Finally, and perhaps
most importantly, non-perturbative effects will be there in any case, and one must be able
to understand how they affect the model at hand.

With this motivation in mind, in this paper we discuss in detail the F-theory uplift of
a particular global type IIB model in which D-brane instantons are known to play a crucial
role in generating MSSM couplings, in particular the top-quark Yukawa coupling. We try
to be explicit in discussing all the technical issues involved in doing the F-theory uplift,
and discuss at length some features that arise, such as the splitting of certain brane stacks.

Previous works on charged instantons in F-theory include [21], which lays down part
of the framework required for studying charged instantons, and [22, 23], which propose
to use euclidean D-branes to implement local F-theory models for GMSB (although one
has to be careful in determining which instantons can be responsible for supersymmetry
breaking [24, 25]).

The framework in which we work is toric geometry.2 Our Calabi-Yau fourfold Y will
be a complete intersection in a six (complex) dimensional ambient space XΣ′′ , specified by
toric data. When analyzing the model, one needs to be able to compute the cohomology of
arbitrary line bundles L on divisors of Y . This can be done by first computing the coho-
mology of the Čech complex (twisted by L) on XΣ′′ , and then using the Koszul complex to
project down results to divisors of Y . We have collected all the relevant information and
worked out explicitly an instructive example in appendix A. The algorithm for comput-
ing Čech cohomology, while straightforward, quickly becomes intractable if done by hand.
Luckily, it is not hard to instruct a computer to do it, and we provide a working imple-

2We recommend [26–28] for an introduction and [29–31] for a more thorough treatment.
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mentation that should be useful for doing general computations of line bundle cohomology
on arbitrary toric varieties.

This paper is organized as follows. In section 2, we present the geometric data for a IIB
GUT orientifold compactification on a Calabi-Yau manifold realized as a hypersurface in
a toric variety. In section 3, we lift this IIB model to F-theory by specifying an elliptically
fibered Calabi-Yau fourfold as a complete intersection in a six-dimensional toric variety. In
section 4.1, we present the precise form of the Tate sections and show that many features
of the gauge D7 branes and O7 planes in IIB can be seen in the lift. In section 4.2, we
discuss the resolution in terms of quantum brane splitting of a difficulty that we encounter
when lifting the type IIB model, which we study using Seiberg-Witten theory on a D3 brane
probe. In section 5, we address the issue of M5 instanton zero modes in F-theory and discuss
the absence of fermionic zero modes that would make the contribution of the instanton to
the superpotential vanish. In appendix A, we discuss how these zero modes can be counted
by calculating the Čech cohomology of line bundles on a toric variety. We give an explicit
example over dP1 and provide a computer implementation which automates the process.

While we were writing our results, we became aware of the work [32], which provides an
efficient algorithm and computer implementation for computing line bundle cohomology on
toric varieties, and thus overlaps with our discussion in appendix A. We thank the authors
of that work for sharing their insights.

2 The IIB geometry

For the sake of reference, in this section we present the geometric data relevant for the
F-theory lift of the manifold M (dP9)2

2 , henceforth called X, which is a Calabi-Yau threefold
hypersurface in a four-dimensional toric variety. It was presented in [33] as a suitable
manifold for SU(5) GUT model building in IIB orientifold compactifications. It exhibits
many desirable features, including the generation of the 10 10 5H Yukawa coupling via a
euclidean D3 instanton. This geometry is interesting because it is a prototype to study
both F-theory instantons and gauge dynamics.

The GLSM charges representing the ambient toric variety XΣ are given in table 1.
As required by the Calabi-Yau condition, the hypersurface X has divisor class equal to
the anticanonical class of the ambient toric variety, that is

∑
i [Di]. In addition to this

information, the orientifold involution σ is taken to be
σ : x3 7→ −x3, (2.1)

under which the divisors D3 and D7 are fixed.3 This identifies them as O7-planes, so that
[O7] = [D3] + [D7]. Furthermore, via projective equivalences it can be seen that the points
x5 = x6 = x8 = 0 and x1 = x5 = x8 = 0 are fixed points of the σ-action, and thus are the
locations of O3-planes.4

3Di is the vanishing locus of the homogeneous coordinate xi, which can be written in terms of the

generators of the divisor group, as in table 1.
4As noted in [33], the points x4 = x7 = x8 = 0 and x4 = x5 = x6 = 0 are also fixed under the involution.

However, the monomials x4x5 and x4x8 are in the Stanley-Reisner ideal, and thus these points are not in
XΣ. This is equivalent to them being in the set ZΣ in the homogeneous coordinate construction of this

toric variety, XΣ = (C8 − ZΣ)/G.
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Coords / Vertices Q1 Q2 Q3 Q4 Divisor Class
x1 = (1, 0, 0, 0) 3 0 0 0 3M
x2 = (0, 1, 0, 0) 2 0 0 0 2M
x3 = (0, 0, 1, 0) 0 1 0 0 N

x4 = (0, 0, 0, 1) 0 0 1 0 O

x5 = (−9,−6,−1,−1) 0 1 1 -1 N + O − P

x6 = (−3,−2, 0, 0) 1 -1 -1 -1 M − N − O − P

x7 = (−6,−4,−1, 0) 0 0 -1 1 −O + P

x8 = (−6,−4, 0,−1) 0 -1 0 1 −N + P∑
i[Di] 6 0 0 0 6M

Table 1. GLSM charges for XΣ, the ambient toric variety on the IIB side whose Calabi-Yau hyper-
surface is the threefold X. We have chosen the basis of linearly inequivalent divisors (M,N,O, P )
to have charges (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) under the indicated C∗ gauge symmetries
Qi of the GLSM. We have also indicated next to each field xi the corresponding one-dimensional
generator of the fan.

The intersection ring on the base can be computed using standard techniques of alge-
braic geometry. In order to talk sensibly about intersections we need to give a triangulation
of the fan, or equivalently the Stanley-Reisner ideal (loosely speaking, the set of monomi-
als in which not all terms can vanish simultaneously). We choose the following simplicial
triangulation:

[[1, 2, 3, 4], [1, 2, 3, 8], [1, 2, 4, 7], [1, 2, 5, 7], [1, 2, 5, 8], [1, 3, 4, 6],

[1, 3, 6, 8], [1, 4, 6, 7], [1, 5, 6, 7], [1, 5, 6, 8], [2, 3, 4, 6], [2, 3, 6, 8],

[2, 4, 6, 7], [2, 5, 6, 7], [2, 5, 6, 8]]

(2.2)

where the integers refer to generators of the fan (so n stands for xn). The corresponding
Stanley-Reisner ideal is

SRI = {x3x5, x3x7, x4x5, x4x8, x7x8, x1x2x6}, (2.3)

which can be seen directly from the triangulation. For example, since there is no cone in
the triangulation with both 3 and 5, we know that x3x5 is in the Stanley-Reisner ideal.

In fact, this variety was analyzed in [33] using a different base of divisors. We can just
take the result quoted there and change the base to our M,N,O, P cycles. The change of
base is the following:

M =
1
2
D2 = 3D5 +D6 + 2D7 + 2D8

N = D3 = D5 +D7

O = D4 = D5 +D8

P = N +O −D5 = D5 +D7 +D8

(2.4)
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Here we have defined the basic divisors Di as the ones given by xi = 0, and we have used
the linear equivalences of divisors:5

D1 = 9D5 + 3D6 + 6D7 + 6D8

D2 = 6D5 + 2D6 + 4D7 + 4D8

D3 = D5 +D7

D4 = D5 +D8

(2.5)

Using this change of basis, and the intersection form given in [33]:

IX = D6(7D2
6 −D2

5 −D2
7 −D2

8 −D5D6 −D6D7 −D6D8 +D5D7 +D5D8) (2.6)

we can easily obtain the triple intersection form in terms of M,N,O, P . The result is:

IX = M(7M2 + 2MN + 2MO + 3MP +NO +NP +OP + PP ) (2.7)

3 The uplift to F-theory

In this section we present the lift of the IIB orientifold model to F-theory, where the
geometry is that of an elliptically fibered Calabi-Yau fourfold Y of the form

T 2 ↪−→ Y −� X/σ. (3.1)

We follow the prescription of [34–36], which is generalizable to many lifts of IIB orientifolds,
and discuss the details of this particular lift.6 We construct first the base of the elliptic
fibration X/σ as a hypersurface in a new ambient toric variety XΣ′ , with homogeneous
coordinates whose GLSM charges have been changed relative to their counterparts in XΣ

to account for modding out by the orientifold action. We then determine the divisor class
of the hypersurface X/σ and use it to calculate the canonical bundle of the base, KX/σ,
which is crucial in determining the precise form of the Tate sections an. Next, having
relevant knowledge of the fourfold base, we construct a six-dimensional toric variety XΣ′′ ,
in which the Calabi-Yau fourfold Y is a complete intersection of two hypersurfaces, one
for the base and one for the fiber. The GLSM charges for the homogeneous coordinates of
the base carry over from the toric variety XΣ′ , and we show how to determine the GLSM
charges for the fiber-related coordinates x, y, and z from the Weierstrass equation. We
also briefly mention how one could arrive at the ambient toric variety of the fourfold XΣ′′

without explicitly constructing the intermediate toric variety XΣ′ .

The base of Y . Since we would like to stay in the framework of toric geometry, we
will start by constructing a toric ambient space for the base. Specifically, the Calabi-Yau
threefold X on the IIB side is a hypersurface in the toric variety XΣ, so that one can

5We also list the linear equivalence relation for D1, although it is not necessary for our calculations

above.
6There has also been great progress recently in constructing semi-realistic global models directly in

F-theory [37–41].
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Coords/Vertices Q1 Q2 Q3 Q4 Divisor Class
x̃1 = (1, 0, 0, 0) 3 0 0 0 3I
x̃2 = (0, 1, 0, 0) 2 0 0 0 2I
x̃3 = (0, 0, 1, 0) 0 2 0 0 2J
x̃4 = (0, 0, 0, 1) 0 0 1 0 K

x̃5 = (−9,−6,−2,−1) 0 1 1 -1 J + K − L

x̃6 = (−3,−2, 0, 0) 1 -1 -1 -1 I − J − K − L

x̃7 = (−3,−2,−1, 0) 0 0 -2 2 −2K + 2L
x̃8 = (−6,−4, 0,−1) 0 -1 0 1 −J + L∑

i[D̃i] 6 1 -1 1 6I + J − K + L

Table 2. GLSM Charges for XΣ′ , the four-dimensional ambient toric variety for the base X/σ of
the elliptic fibration on the F-theory side. We have indicated the generators of the fan.

construct the base of the fourfold by modding out by the orientifold action, giving a new
toric ambient space XΣ′ , and by mapping the hypersurface constraints appropriately. This
requires a map from XΣ to XΣ′ which is 2-to-1 away from the O7-planes and 1-to-1 on
them. We choose the map to be

(x1, x2, x3, x4, x5, x6, x7, x8) 7→ (x1, x2, x
2
3, x4, x5, x6, x

2
7, x8) (3.2)

≡ (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8),

where the latter are the homogeneous coordinates of XΣ′ . The effect of such a map is a
simple doubling of the GLSM charges of x̃3 and x̃7 relative to x3 and x7, while the charges
of the other x̃i are left unchanged. This is sufficient to determine the toric data of XΣ′

presented in table 2.
Having deduced the GLSM charges for the homogeneous coordinates x̃i in XΣ′ , we

must also deduce the divisor class of X/σ. To this end, the divisor class of X in XΣ is∑
i[Di] = 6I. Monomials of this divisor class in XΣ get mapped to monomials of base

coordinates in XΣ′ via the map (3.2), from which we can read off the divisor class of X/σ
in XΣ′ . For example, from

x18
5 x6

6 x
12
7 x12

8 7→ x̃18
5 x̃6

6 x̃
6
7 x̃

12
8 (3.3)

we see that X/σ has class 6I. From this, the anticanonical bundle of the base can be
computed from the adjunction formula to be KX/σ = c1(TX/σ) =

∑
i D̃i−6I = J −K+L.

Thus, we see that X/σ is not Calabi-Yau.
At this point, one could explicitly construct the Tate form of the elliptic fibration,

since it is specified by sections an ∈ H0(X/σ,K−nX/σ), and we have calculated the divisor
class of the anticanonical bundle. This method was employed in [36] and was fruitful in
examining the gauge enhancements associated with fiber degenerations. However, since we
are interested in counting instanton zero modes via cohomologies of a divisor wrapped by
a vertical M5 brane, it is useful to construct the full elliptically fibered fourfold Y as a
complete intersection in a toric ambient space. In doing so, we will be able to apply the
algorithm descibed in appendix A in a straightforward manner.

– 6 –
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The elliptically-fibered fourfold Y. The process of constructing the ambient toric
variety XΣ′′ of the fourfold Y is fairly intuitive, as one might expect, and essentially
amounts to appropriately adding homogeneous coordinates for the fiber. In addition, since
we wish to realize the fourfold as a complete intersection

Y ≡ {PX/σ = 0} ∩ {PT 2 = 0}, (3.4)

we must specify the divisor class of the polynomials PX/σ and PT 2 . The polynomial PT 2 is
usually chosen to be in either the Weierstrass form or (equivalently) the Tate form for an
elliptic curve. For ease in determining the relevant GLSM data, we will use the Weierstrass
form in this section, but will later move to the Tate form to make the determination of
gauge enhancements more tractable. There is no technical difference, of course, since the
Tate sections determine f and g. We merely choose one or the other based on what is
easiest for the particular task at hand.

Beginning with the base, the GLSM charges for the homogeneous coordinates in XΣ′

carry over directly to XΣ′′ , with the addition of the fact that they are uncharged under
the GLSM charge associated with the fiber, Q5. We immediately know that [PX/σ] = 6I,
since it is must have the same divisor class as X/σ in XΣ′ .

In addition to the polynomial PX/σ, we must take into account a polynomial PT 2

corresponding to the elliptic fiber. As mentioned above, in this section we choose the form

PT 2 ≡ y2 − x3 − fxz4 − gz6, (3.5)

the vanishing locus of which gives an elliptic curve in Weierstrass form, where f and g are
global sections f ∈ H0(X/σ,K−4

X/σ) and g ∈ H0(X/σ,K−6
X/σ). In the case where f and g are

merely complex numbers, rather than sections, the Weierstrass equation can be considered
to be a degree six hypersurface in P2,3,1. This gives the charges Q5 of x, y, and z under the
projective scaling associated only to the fiber coordinates. Moreover, from homogeneity of
the Weierstrass equation, the classes [Dx] and [Dy] can be determined as

2[Dy] = 3[Dx] = [g] + 6[Dz], (3.6)

where we use [g] = 6[KX/σ] = 6J − 6K+ 6L. In addition, since we have two equations and
three unknowns, we choose [Dz] = M , so that it does not transform under projective scal-
ings of the base. This is sufficient to determine the toric data of XΣ′′ presented in table 3.

The reader should note, though, that the intermediate step of constructing the toric
ambient space XΣ′ of the base is not really necessary, since the GLSM charges of homoge-
neous coordinates in XΣ′ are a subset of the GLSM charges of homogeneous coordinates
in XΣ′′ and one can easily deduce the charges of y via the Calabi-Yau condition and the
adjunction formula. This yields

c1(TY ) = c1(TX
Σ
′′ )−NPX/σ −NPT2 (3.7)

=
∑
i

[Di]− 6I − 2[Dy] = 6J − 6K + 6L+ 6M − 2[Dy] = 0,

– 7 –



J
H
E
P
0
1
(
2
0
1
1
)
0
7
3

Coords / Vertices Q1 Q2 Q3 Q4 Q5 Divisor Class
x̃1 = (1, 0, 0, 0, 0, 0) 3 0 0 0 0 3I
x̃2 = (0, 1, 0, 0, 0, 0) 2 0 0 0 0 2I
x̃3 = (0, 0, 1, 0, 0, 0) 0 2 0 0 0 2J
x̃4 = (0, 0, 0, 1, 0, 0) 0 0 1 0 0 K

x̃5 = (0, 0, 0, 0, 1, 0) 0 1 1 -1 0 J + K − L

x̃6 = (−3,−2, 0, 0, 0, 0) 1 -1 -1 -1 0 I − J − K − L

x̃7 = (6, 4, 1, 1, 1, 0) 0 0 -2 2 0 −2K + 2L
x̃8 = (−6,−4, 0,−1, 0, 0) 0 -1 0 1 0 −J + L

x = (0, 0, 2, 1, 1, 3) 0 2 -2 2 2 2J − 2K + 2L + 2M
y = (−3,−2,−2,−1,−1,−2) 0 3 -3 3 3 3J − 3K + 3L + 3M

z = (9, 6, 2, 1, 1, 0) 0 0 0 0 1 M∑
i[Di] 6 6 -6 6 6 6I + 6J − 6K + 6L+ 6M

Table 3. GLSM Charges for XΣ′′ , the six-dimensional ambient toric variety for the elliptically
fibered Calabi-Yau fourfold Y, which is a complete intersection of two hypersurfaces. We have
indicated the generators of the fan.

with Poincaré duality implied. In the same way, one could determine the charges of x, and
again one could choose z to only be charged under Q5. It is then possible to read off the
class of f and g, or equivalently the Tate sections an, from the homogeneity of PT 2 , without
ever explicitly calculating the anticanonical bundle. Of course, these different viewpoints
are all closely tied together, and the method one uses is a matter of preference.

4 The Tate form and F-theory gauge dynamics

In this section we discuss the details of the Tate form for the elliptic fiber in the fourfold
Y . We construct the most general form of the sections an of the Tate form in terms of the
homogeneous coordinates associated with the base and show that at a point in complex
structure moduli space the degenerations of the elliptic curve recover two of the three gauge
groups seen in the IIB limit. We show that the third group SO(6) is recovered only in Sen’s
weak coupling limit. In section 4.2 we will discuss the physical reason for the absence of
an SO(6) degeneration in the uplift.

The fourfold Y , as mentioned, is an elliptic fibration over the base X/σ. The elliptic
fiber is often cast in the Weierstrass form y2 = x3 +fxz4 + gz6, where f ∈ H0(X/σ;K−4

X/σ)

and g ∈ H0(X/σ;K−6
X/σ) encode how the fiber varies over the base. Often more useful in

practice, however, is the Tate form

y2 + a1 xyz + a3 yz
3 = x3 + a2 x

2z2 + a4 xz
4 + a6 z

6, (4.1)

where an ∈ H0(X/σ;K−nX/σ) instead encode the variation of the fiber over the base. Par-
ticular combinations of the an’s are grouped into variables

b2 = a2
1 + 4 a2, b4 = a1 a3 + 2a4, b6 = a2

3 + 4 a6 (4.2)

– 8 –
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which are related to f and g by

f = − 1
48(b22 − 24 b4), g = − 1

864(−b32 + 36b2b4 − 216 b6). (4.3)

The discriminant, which encodes the locations of degeneration of the elliptic fiber, and thus
the 7-branes, takes the form

∆F = 4f3 + 27g2 = −1
4 b

2
2 (b2b6 − b24)− 8b34 − 27b26 + 9b2b4b6. (4.4)

The geometry of the base determines the explicit form of the sections an and the discrimi-
nant ∆F , from which the singularities of the fiber, and thus the corresponding gauge groups
of the 7-branes, can be read off. The data relating the vanishing order of the sections an
and the discriminant ∆F to the singularity type is reproduced in table 4.

Given these generic equation for the Tate sections and the corresponding table, we
proceed to discuss the precise form of the sections for the elliptic fiber in Y .

4.1 The Tate form for the uplift

In the case of the lift we are considering, we have an ∈ H0(X/σ;O(n(J−K+L)). Since they
must be global sections, the orders of vanishing of the homogeneous coordinates xi ∈ XΣ′

appearing in the monomials must be positive. Thus, the divisors corresponding to the
monomials must be effective:

[D] =
∑
i

ni[Di] = n(J −K + L) ni ≥ 0 ∀ni. (4.5)

Satisfying this condition for the case at hand yields the result

n3 = −n7 + n n5 = 2n7 − n n1 = n2 = n4 = n6 = n8 = 0, (4.6)

which completely determines the allowed monomials in each section an. Note that this
gives

a1 = c0x̃5x̃7 a2 = c1x̃3x̃7 + c2x̃
2
5x̃

2
7, (4.7)

which leads to b2 = c2
0x̃

2
5x̃

2
7 + 4c1x̃3x̃7 + 4c2x̃

2
5x̃

2
7. It can be shown that in Sen’s limit, the

orientifold is located at b2 = 0, which in our case corresponds to O7-planes on the divisor
[O7] = [D3] + [D7]. This is precisely the result of the simple analysis on the IIB side.
Continuing this analysis for the sake of examining possible gauge enhancements gives

a3 = c3x̃
3
5x̃

3
7 + c4x̃3x̃5x̃

2
7 a4 = c5x̃

4
5x̃

4
7 + c6x̃3x̃

2
5x̃

3
7 + c7x̃

2
3x̃

2
7 (4.8)

a6 = c8x̃
6
5x̃

6
7 + c9x̃3x̃

4
5x̃

5
7 + c10x̃

2
3x̃

2
5x̃

4
7 + c11x̃

3
3x̃

3
7.

This is the most general form for the Tate sections in this model, from which the “minimal”
gauge enhancements can be read off. For example, using table 4, it can be seen from the
order of vanishing along D7 that it has minimal gauge group G2 (a similar phenomenon
was found in [20]). Rather than constructing the most general allowed fibration for this
model, however, we would like to reproduce as much of the IIB physics as possible in the
F-theory lift. Moving to a point in complex structure moduli space where

a2 = c1x̃3x̃7 a3 = 4c1c3x̃3x̃5x̃
2
7 a1 = a4 = a6 = 0 (4.9)

∆F = −256c4
1c

2
3x̃

4
3x̃

2
5x̃

7
7(27c2

3x̃
2
5x̃7 + c1x̃3),
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sing. discr. gauge enhancement coefficient vanishing degrees
type deg(∆) type group a1 a2 a3 a4 a6

I0 0 — 0 0 0 0 0
I1 1 — 0 0 1 1 1
I2 2 A1 SU(2) 0 0 1 1 2
I ns
3 3 [unconv.] 0 0 2 2 3
I s
3 3 [unconv.] 0 1 1 2 3

I ns
2k 2k C2k SP (2k) 0 0 k k 2k

I s
2k 2k A2k−1 SU(2k) 0 1 k k 2k

I ns
2k+1 2k + 1 [unconv.] 0 0 k + 1 k + 1 2k + 1

I s
2k+1 2k + 1 A2k SU(2k + 1) 0 1 k k + 1 2k + 1

II 2 — 1 1 1 1 1
III 3 A1 SU(2) 1 1 1 1 2

IV ns 4 [unconv.] 1 1 1 2 2
IV s 4 A2 SU(3) 1 1 1 2 3
I∗ ns
0 6 G2 G2 1 1 2 2 3

I∗ ss
0 6 B3 SO(7) 1 1 2 2 4
I∗ s
0 6 D4 SO(8) 1 1 2 2 4

I∗ ns
1 7 B4 SO(9) 1 1 2 3 4
I∗ s
1 7 D5 SO(10) 1 1 2 3 5

I∗ ns
2 8 B5 SO(11) 1 1 3 3 5
I∗ s
2 8 D6 SO(12) 1 1 3 3 5

I∗ ns
2k−3 2k + 3 B2k SO(4k + 1) 1 1 k k + 1 2k

I∗ s
2k−3 2k + 3 D2k+1 SO(4k + 2) 1 1 k k + 1 2k + 1

I∗ ns
2k−2 2k + 4 B2k+1 SO(4k + 3) 1 1 k + 1 k + 1 2k + 1

I∗ s
2k−2 2k + 4 D2k+2 SO(4k + 4) 1 1 k + 1 k + 1 2k + 1

IV∗ns 8 F4 F4 1 2 2 3 4
IV∗ s 8 E6 E6 1 2 2 3 5
III∗ 9 E7 E7 1 2 3 3 5
II∗ 10 E8 E8 1 2 3 4 5

non-min 12 — 1 2 3 4 6

Table 4. Refined Kodaira classification resulting from Tate’s algorithm [42], from [43]. In order
to distinguish the “semi-split” case I∗ ss

2k from the “split” case I∗ s
2k one has to work out a further

factorization condition which is part of the aforementioned algorithm, see §3.1 of [43].

it is readily seen that the gauge groups along D7 and D5 are SO(10) and Sp(2), respectively,
as is the case in IIB. However, recovering the factor of SO(6) along D3 requires taking
c3 → 0, which sends ∆F → 0 everywhere and thus gs → 0. This is precisely Sen’s limit [44].
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4.2 F-theoretic gauge dynamics from Seiberg-Witten theory

In the model described in the previous section we could not obtain the SO(6) factor, which
we only recovered upon taking Sen’s limit. In this section we would like to describe the
physics behind this result. In order to see the behavior of our system more clearly we will
discuss the case of an SO(6) stack in flat space, instead of our more involved global case.

The basic physics at play here is similar to that which smooths out the O7− plane in
F-theory [44, 45]. It can be elucidated by studying the world-volume dynamics of a D3
brane probe close to the SO(6) stack [46]. The theory on the worldvolume of the D3 brane
has a Coulomb branch, with a Coulomb branch parameter that can be identified with the
position of the D3 brane in the direction transverse to the SO(6) stack. Furthermore, the
exact solution of the gauge theory on the probe can be described in terms of an elliptic
fibration over the Coulomb branch (the Seiberg-Witten solution [47, 48]), which can be
identified with the F-theory geometry in which the probe moves [44–46].

We construct the SO(6) theory by putting three D7 branes on top of an orientifold.
Due to the orientifold, the worldvolume theory on the D3 brane probe is an N = 2 SU(2)
theory, and due to the three A branes we have 3 massless quarks in the theory (at weak
coupling). The Seiberg-Witten curve for the theory with three massless flavors is given
by [48]:

y2 = x2(x− u) + tΛ2
3(x− u)2 (4.10)

with u the coordinate on the Coulomb branch in the SU(2) theory, Λ2
3 the strong coupling

scale of the theory, and t a constant which we could absorb in the definition of Λ2
3. The

elliptic fibration (4.10) over the complex u plane degenerates over two points. There is a
degeneration of order one at u = −tΛ2

3/4, and a degeneration of order 4 at u = 0. This
already explains why we could not obtain the SO(6) singularity above: the coupling Λ3

of the SU(2) theory is determined by the string coupling at the position of the D3. In
the perturbative IIB limit this coupling is everywhere vanishing, so Λ3 → 0, and the two
singular points collide, enhancing the degeneration to order 5, as we expected from Tate’s
classification. Nevertheless, at finite string coupling this SO(6) factor decomposes into a
degeneration of degree 4, and a degeneration of degree 1, separated by Λ3. This is exactly
what we observed in the previous section.

It is interesting to try to understand the physics of the lift a bit better. In order to
do this it is convenient to use the classification of (p, q) 7-branes described in [49, 50]. The
ordinary D7-branes are of type (1, 0), and are denoted as A-type branes. An isolated O7−

plane splits into two components in F-theory, which can be denoted as B and C, of (p, q)
type (−2, 1) and (0, 1) respectively. The complete SO(6) stack can then be described as a
CBAAA stack. We would like to understand how the five seven-branes in our stack split
as we switch on a finite coupling. In order to do this, it is convenient to consider the form
of the Seiberg-Witten curve for large (and equal) mass for the three flavors. It is given
by [48]:

y2 = x2(x− u)− 1
64

Λ2
3(x− u)2 − 3

64
m2Λ2

3(x− u) +
1
4
m3Λ3x−

3
64
m4Λ2

3 (4.11)
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Figure 1. Schematic representation of the motion of the branes described in the text as we tune
the mass parameter from large values down to 0. The red dot on the left represents the C brane (of
type (0, 1)), the blue dot in the center the B brane (type (−2, 1) before doing the monodromy), and
the black dot on the right represents the stack of three A branes (type (1, 0) before monodromy).
These A branes become (0, 1) branes after the monodromy (shown as the dashed red dot), and the B
brane becomes a (−1, 2) dyon. We have indicated the branch cuts associated with the monodromies
around each brane by the dotted line.

As one would expect, this mass deformation separates the branes into three stacks: three
branes are located at u3 = m2 + Λ3m/8, and the two remaining branes are located at:

u± =
1

512

(
Λ2

3 − 96Λ3m± (Λ3 + 64m)
√

Λ2
3 + 64Λ3m

)
(4.12)

For large mass we can identify the branes at u± as the components of the orientifold, and
the stack of three branes as the three A branes. Let us now smoothly take the mass to
0. For some intermediate value of the mass the stack of three branes collides with the
degeneration at u+, and the branes can have their (p, q) labels altered in the collision.
After the collision the stack of three A branes must become magnetic monopoles (0, 1) (so
we recover a fourplet of monopoles in the massless regime at u = 0 [48]), while the brane
at u+ must become a (−1, 2) dyon. This is indeed possible to achieve if we take the brane
at u+ to be the B brane, and we take the two brane stacks to circle around each other
once as they collide. We are left with u−, which was a spectator in the whole process, and
which we identify as the C brane. We have depicted this process in figure 1.

In more detail, the process goes as follows: recall (from [49], for example) that a brane
of type (r, s) becomes a brane of type (m,n) upon crossing the branch cut associated with
a (p, q) brane, with: (

m

n

)
=

(
1− pq p2

−q2 1 + pq

)(
r

s

)
. (4.13)

In figure 1, we have chosen conventions in in which this is the monodromy for crossing
the branch cut counterclockwise. Denoting a brane of type (p, q) as X(p,q), the sequence of
crossings in figure 1 is then:

CBA3 → CA3X(1,1) → CX(1,1)X
3
(0,1) → CX3

(0,1)X(−1,2) = C4X(−1,2) (4.14)
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So the local geometry is simply the one obtained from putting four C branes together,
which gives an SU(4) theory. The same result can be obtained by studying the form
of (4.10) close to u = 0.

Let us briefly comment on what happens in various other interesting configurations.
If we tried to uplift SO(4) stacks we would run into the same phenomenon. The theory to
study now is N = 2 SU(2) with 2 massless flavors. In this case the Seiberg-Witten curve
is known to degenerate at two points, both of degree 2 [48]. Using the same arguments
as above, we can argue that they correspond to a stack of two (1, 1) branes and a CC

stack. There is again a collision of stacks as we take the mass from 0 to large values, which
changes the (1, 1) stack into an AA stack, and the CC stack into a couple of neighboring B
and C branes. Similarly, lifting a SO(2) stack splits the configuration into three separated
degenerations of types (1, 1), B and C.

One can argue in a similar fashion about what happens for other gauge groups that we
encounter in our lift: U(N) stacks induce U(1) dynamics on the probe, so no splitting occurs
at finite coupling since the theory is abelian, and thus IR-free. Sp(N) stacks induce SO(2)
dynamics on the probe, again non-confining. SO(8) stacks give rise to a N = 2 Nf = 4
SU(2) theory on the probe, which is conformal, so no IR deformation of the geometry
occurs. Similarly, SO(2n) stacks with n > 4 give rise to IR-free theories on the probe.

5 Instantons in F-theory and the 10 10 5H Yukawa coupling

So far, we have focused on discussing the F-theory model which will have non-perturbative
corrections to the 10 10 5H Yukawa coupling, but we have not yet discussed in detail the
properties of the instanton which generates the coupling. The reason for this is that most
known properties of euclidean branes in F-theory are known only from the properties of
the relevant instanton in the IIB model.

Charged zero modes in particular, which are the ones ultimately responsible for gen-
erating the Yukawa coupling, are still poorly understood from a purely F-theoretical point
of view. What we have in mind when making this statement is the description of F-theory
as M-theory with vanishing fiber. The properties of charged zero modes on the euclidean
M5 are not well understood. Nevertheless, F-theory is also IIB at strong coupling, and in
simple situations like ours the description in terms of euclidean D3 branes is still expected
to be mostly correct. See, for example, [21] for a recent paper which takes this viewpoint,
obtaining a number of rules for the spectrum of charged modes (these agree with the ones
obtained in IIB, except in the case where exceptional degenerations of the fiber appear).

What this means, in practice, is that the known computation of the superpotential
coupling is isomorphic to the one done in IIB, except for the issue of saturation of neutral
zero modes (τ̄ modes in particular). In this case there are more intrinsic ways of determining
this spectrum. The most well known way is using Witten’s characterization of fermionic
zero modes as elements of the cohomology of the structure sheaf of the divisor [12]. In
the rest of this section we will use this representation, together with the result in [21] that
the τ̄ mode can be identified with an element of H0,1(D), to argue that the τ̄ modes are
projected out in our context. Before going into that, we would also like to mention that one
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can also understand the absence of dangerous neutral fermionic modes using the strongly
coupled IIB viewpoint [25], so we already know what the answer should be.7 Nevertheless,
computing the cohomology is an instructive exercise, to which we now proceed.

We study an M5 brane instanton on the fourfold divisor D = DX/σ ∩DT 2 ∩D5, which
is the intersection of the base, fiber, and D5 divisors in the ambient toric sixfold XΣ′′ . The
presence or absence of the τ α̇ zero modes for this instanton are determined by the sheaf
cohomology group

H1(D,OD), (5.1)

which can be related to sheaf cohomologies onXΣ′′ via Koszul sequences. For toric varieties,
sheaf cohomology is equivalent to the Čech cohomology groups Ȟp(U ,L), where U is an
open cover and L is a line bundle on the toric variety. Thus, our task is to compute
Ȟ1(U ,OD) by calculating the Čech cohomology groups of various line bundles on XΣ′′ .

8

In describing the geometry of D, it is important to note that it is the intersection of
three divisors in the sixfold, whose normal bundles are given by

NX/σ = O(6I)

NT 2 = O(6J − 6K + 6L+ 6M) (5.2)

ND5 = O(J +K − L).

One can relate these objects on the ambient toric variety to the structure sheaf on D via
the Koszul sequence

0→ ∧3N∗ → ∧2N∗ → N∗ → OX
Σ
′′ → OD → 0, (5.3)

where N∗ is the dual of N ≡ NX/σ ⊕NT 2 ⊕ND5 . For practical purposes. we split this into
three short exact sequences as

0→ ∧3N∗ → ∧2N∗ → K1 → 0 (5.4)

0→ K1 → N∗ → K2 → 0

0→ K2 → OX
Σ
′′ → OD → 0,

each of which gives a long exact sequence in cohomology, as outlined in the appendix.
Looking to the parts of the long exact sequences relevant for the immediate calculation of
H1(D,OD), we have

· · · → H1(XΣ′′ ,OXΣ
′′ )→ H1(D,OD)→ H2(XΣ′′ ,K2)→ H2(XΣ′′ ,OXΣ

′′ )→ . . .

· · · → H2(XΣ′′ , N
∗)→ H2(XΣ′′ ,K2)→ H3(XΣ′′ ,K1)→ . . . (5.5)

· · · → H3(XΣ′′ ,∧
2N∗)→ H3(XΣ′′ ,K1)→ H4(XΣ′′ ,∧

3N∗)→ . . . ,

7And since in this case we have a weakly coupled limit of the system, we also know the answer from a

CFT analysis in IIB [51–54].
8We refer the reader to appendix A for the details of how to carry out these computations.
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one part for each short exact sequence. Calculating the cohomology of these line bundles
on toric varieties, we arrive at the results

H4(XΣ′′ ,∧
3N∗) = 0 H3(XΣ′′ ,∧

2N∗) = 0 H2(XΣ′′ , N
∗) = 0 (5.6)

H1(XΣ′′ ,OXΣ
′′ ) = 0 H2(XΣ′′ ,OXΣ

′′ ) = 0,

where Serre duality was useful for efficiently computing H4(XΣ′′ ,∧
3N∗). Using these

results, it is easy to see that
H1(D,OD) = 0. (5.7)

We see that the τ α̇ is projected out for this instanton, as one might expect, since it is the
lift of an O(1) instanton in IIB. Thus, since the τ α̇ modes are projected out and the cycle
D is rigid, we expect an M5 brane instanton on D to give a non-perturbative correction to
the 10 10 5H Yukawa coupling.

As a final word, there is a technical point that may be bothering the reader: the
instanton is on top of an Sp(2) stack of branes, and thus the fiber degenerates everywhere
over its worldvolume. From this point of view, computing the cohomology of the relevant
divisor of the fourfold seems to not be well-defined. Nevertheless, with the definition that
we have adopted here there are no issues, since cohomologies of line bundles on the ambient
toric space are always well-defined. This point was further explored and reinforced in [21],
where it was tested that the relevant cohomology does not change under blow-ups of the
geometry that smooth out the degeneration of the fiber.

6 Conclusions

In this paper we have addressed a number of conceptual and technical issues which arise
in the analysis of instanton effects in F-theory. The uncharged instanton zero modes,
which are of great phenomenological importance, are counted by the cohomology groups
H i(M,OM), whereM is a fourfold divisor wrapped by a vertical M5 brane. For example,
direct calculation of these groups allows one to show that the τ α̇ modes have been projected
out, which is necessary for the instanton to give contributions to the superpotential.

Performing these computations and others that arise in global F-theory compactifica-
tions requires having a good handle on the geometry of the Calabi-Yau fourfold Y . In a
generic Calabi-Yau this can be quite difficult, but the analysis of the geometry becomes
much more tractable in the case where Y is realized as a hypersurface or complete intersec-
tion in a toric variety A. In this work, we have employed such techniques to analyze some
properties of an interesting vertical M5 instanton in F-theory. We presented the details of
the IIB and fourfold geometry of this setup and discussed F-theoretic brane splitting that
is absent in the IIB limit. In addition, we discussed the computation of the Čech cohomol-
ogy of line bundles on arbitrary toric varieties and provide a working implementation of
this algorithm.

In section 2, we presented the Calabi-Yau threefold M
(dP9)2

2 , henceforth called X, as
the Calabi-Yau hypersurface in a four-dimensional toric variety XΣ. This manifold was
used in a IIB orientifold compactification in [33], where it was shown to have many nice
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phenomenological features, including the generation of the 10 10 5H Yukawa coupling by a
euclidean D3 instanton. We presented the details of this manifold which are relevant for our
analysis. In section 3, we performed the F-theory lift of the IIB orientifold compactification
on X, following [34]. For the sake of clarity, we presented the lift in two steps. First, we
presented the fourfold base X/σ as a hypersurface in a four-dimensional toric variety XΣ′

by properly modding out by the orientifold action σ. This requires a map which is 2-to-1
away from the O7-planes and 1-to-1 on them, which subsequently can be used to map
monomials which define X as a hypersurface in XΣ to monomials which define X/σ as a
hypersurface in XΣ′′ . The divisor class of these monomials determines the normal bundle
NXΣ

, and thus, via adjunction, the anticanonical bundle KX/σ. Next, we presented the
uplifted Calabi-Yau fourfold Y as a complete intersection of two hypersurfaces in a six-
dimensional toric variety XΣ′′ , one for the fiber and one for the base. The toric data
for the base was directly mapped over from XΣ′ , and determination of the toric data for
the fiber was greatly simplified by knowing the anticanonical bundle, which allows one to
determine the GLSM data for the homogeneous coordinates of the fiber directly from either
the Weierstrass or Tate form for the elliptic fibration.

In fact, the Tate form for the elliptic fibration is parameterized by sections an, which
are global sections of tensor powers of the anticanonical bundle. This allows one to write
down the precise form of the Tate sections an at a general point in moduli space, which
are homogeneous polynomials whose divisor class is determined by the divisor class of the
anticanonical bundle. We do this explicitly for the F-theory lift in section 4.1, which gives
an explicit form for both the Tate sections and the discriminant, allowing one to see the
location of seven branes as divisors in the base over which the fiber degenerates, as well as
their associated gauge group. At a generic point in moduli space, this data determines the
“minimal” gauge enhancements along the seven branes, but we showed a point in complex
structure moduli space which recovers, in F-theory, the proper location of the orientifold
and two of the three gauge seven branes seen on the IIB side. Interestingly, it is only in
Sen’s IIB limit that the proper enhancement of the third gauge seven brane is obtained.

In section 4.2 we explained the reason for this obstruction to lifting the SO(6) factor
in terms of gauge theory on a probe D3 brane. This also allowed us to make predictions
about which IIB brane configurations will exhibit the same phenomenon upon lifting to
F-theory. In the process, we described in some detail the behavior of D7 branes as we go
from large to vanishing flavor masses, explaining the somewhat puzzling appearance of a
SU(4) gauge enhancement out of a set of five branes in which no four are mutually local
(in the usual weakly coupled description of the SO(6) stack).

In section 5, we addressed the issue of instanton zero modes in the F-theory uplift
of the IIB orientifold compactification on X. Specifically, it was shown in [33] that a
euclidean D3 instanton wrapped on a divisor D5 ≡ D5 ∩X is a rigid O(1) instanton which
can generate the 10 10 5H Yukawa coupling. In the F-theory lift, we showed the absence
of the fermionic τ α̇ zero modes for a vertical M5 brane instanton wrapping the equivalent
divisor in the base, as well as the elliptic fiber, which is necessary for the generation
of the 10 10 5H Yukawa coupling. Showing that the τ α̇ mode is projected out requires
calculation of the cohomology group H1(D,OD), where D is the fourfold divisor which
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the M5 wraps. We compute this sheaf cohomology by calculating Čech cohomology of
line bundles on the ambient toric variety, which we discuss in detail in appendix A, and
running it through the long exact sequences in cohomology given by the splits of the
Koszul sequence. Specifically, we discuss Čech cohomology on toric varieties in general in
appendix A.1 and give an illustrative example on dP1 in appendix A.2. In A.3, we discuss
the Koszul sequence, which gives a long exact sequence in cohomology which allows one to
compute the cohomology H1(D,OD) by knowing information about Čech cohomology of
line bundles on the ambient toric variety. In appendix A.4, we provide some details about
where to find a ready-to-use computer implementation of the algorithm.

F-theory compactifications provide a rich field of study both for formal and phenomeno-
logical questions. The results in this paper nicely illustrate this connection: we set out to
study a particular model with some nice phenomenological features, and we were driven to
fascinating questions in Seiberg-Witten theory and algebraic geometry. There is no doubt
that there are still plenty of interesting phenomena to be elucidated in the quest for fully
realistic F-theory models.
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A Čech cohomology of line bundles over toric varieties

In section 5, we performed a calculation in Čech cohomology to show the absence of the τ α̇
mode for an O(1) instanton wrapping the divisor D in the elliptically fibered Calabi-Yau
fourfold Y . Recall that to perform the calculation, we needed to show H1(D,OD) = 0,
which involved calculating Čech cohomology of line bundles on the toric ambient space XΣ′′

and using a number of Koszul sequences to arrive at the desired result. In this appendix,
we explain in detail the steps involved in calculating such cohomologies on toric varieties,
and refer the reader to a code we have written which performs such computations. For the
sake of brevity, we assume that the reader is familiar with the main concepts used in the
study of toric geometry, but highly recommend [26–28] for an introduction and [29–31] for

– 17 –



J
H
E
P
0
1
(
2
0
1
1
)
0
7
3

a thorough treatment. For more details on Čech cohomology on toric varieties, see Chapter
9 of [30], which we follow closely here.9

A.1 General discussion

In general, the calculation of the Čech cohomology groups Ȟ(U ,F) for a sheaf F on X

requires knowledge of an open cover U of X, determination of the pth Čech cochains
Čp(U ,F), and determination of the differential maps dp, which are the maps between the
Čech cochains in the Čech complex

0→ Č0(U ,F) d0−→ Č1(U ,F) d1−→ . . .
dl−→ Č l−1(U ,F)

dl−1−−−→ Č l(U ,F)→ . . . (A.1)

We will define the differentials in section A.2 below. The pth Čech cochains keep track of
local sections, as can be seen from the definition

Čp(U ,F) ≡
⊕

(i0,...,ip)∈[l]p

F(Uσi0 ∩ · · · ∩ Uσip ), l = |U|, (A.2)

where (i0, . . . , ip) ∈ [l]p is a (p + 1)-tuple of elements in the set [l] ≡ {1, . . . , l}, which has
the ordering i0 < · · · < ip. As p increases, the sections become more and more local, and
the Čech complex can be viewed intuitively as encoding how increasingly local sections “fit
together”. Given this data and intuition, the pth Čech cohomology groups are defined to
be

Ȟp(U ,F) ≡ ker(dp)
im(dp−1)

, (A.3)

as usual. After determining the structure of the pth Čech cochains and the differential maps
dp, the Čech cohomology can be computed directly as the cohomology of the complex (A.1).

In the generic case, however, the computation might be further complicated by not
knowing, a priori, an open cover of X. Fortunately, in the case where X is a toric variety
XΣ, the affine toric variety Uσ associated with a cone σ is a patch on XΣ. Then there is a
natural choice for an open cover, namely

U ≡ {Uσ}σ∈Σmax , l = |Σmax|, (A.4)

where Σmax is the set of top-dimensional cones. Moreover, to determine the structure of
the pth Čech cochain in general, we must know the structure of F(Ui0 ∩ · · · ∩ Uip), which
requires knowing how the opens in U intersect. Again, it is a fortunate property of toric
varieties that the intersection of two opens is encoded in the intersection of two cones. For
example, if σ1, σ2 ∈ Σmax and τ = σ1 ∩ σ2 is a common face, then

Uσ1 ∩ Uσ2 = Uτ . (A.5)

Thus, for toric varieties, the relevant intersections of opens are known, and one can proceed
directly to determining the structure of the Čech cochains.

9The authors of [30] have kindly decided to provide recent copies of the book at the web address listed

in the references, until it is completed and published by AMS.
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The cochains we are interested in are the Čech cochains of a sheaf OXΣ
(D) on a toric

variety XΣ with the natural open cover U on the toric variety. On an open patch Uσ associ-
ated to some cone, not necessarily top-dimensional, OXΣ

(D)(U) is an OXΣ
-module finitely

generated by the set of monomials on Uσ of class [D] for the divisor D =
∑

ρ aρDρ. This
just means that an arbitrary α ∈ OXΣ

(D)(U) is a linear combination of these monomials
with coefficients that are functions on XΣ. The monomials are local sections on the patch,
so we write

Čp(U ,OXΣ
(D)) =

⊕
(i0,...,ip)∈[l]p

H0(Uσi0 ∩ · · · ∩ Uσip ,OXΣ
(D)). (A.6)

Determining the local sections of class [D] is not difficult. Considering the fact that
∏
ρ x

aρ
ρ

has class [D] for xρ the homogeneous coordinate associated with the one-dimensional cone
ρ ∈ Σ(1), there is a monomial of class [D] for each m ∈M , given by∏

ρ

x
〈m,uρ〉+aρ
ρ , (A.7)

where uρ ∈ N is the vector associated with the one-dimensional cone ρ and 〈., .〉 is the dot
product. It is of class [D] due to the fact that we have multiplied by a gauge invariant
product of homogeneous coordinates,

∏
ρ x
〈m,uρ〉
ρ .

Calculating the structure of the Čech cochains involves determining which of the mono-
mials are well-defined on a given patch. For example, if a monomial has 〈m,uβ〉 < −aβ for
β ∈ Σ(1), then the monomial is only well defined on patches where xβ 6= 0. This behavior
is captured in a simple way by the notion of “+” and “-” regions in the M lattice, where
the former is the halfplane 〈m,uβ〉 ≥ −aβ and the latter is the halfplane 〈m,uβ〉 < −aβ.
The M lattice is then partitioned by the set of lines 〈m,uρ〉 = −aρ ∀ρ ∈ Σ(1), where each
partition is a region in the M lattice categorized by a string of +’s and -’s, one for each
homogeneous coordinate. For example, on P4, a lattice point m in the region with sign
“−+ +−−” would have a corresponding monomial which is only well-defined on patches
where x1, x4, and x5 are non-zero. We will henceforth name such a region R−++−−, for
the sake of notation. How many lattice points are in this region, or whether it exists at all,
is highly dependent on the divisor D.

Given this intuition about local sections in terms of signed regions, we would like to
relate them directly to patches Uσ, since we are interested in expressions of the form (A.6).
We define

Pσ = {m ∈MR | 〈m,uρ〉 ≥ −aρ, ∀ρ ∈ σ(1)}, (A.8)

whose intersection with the M lattice contains all lattice points m whose corresponding
monomials are local sections of Uσ. More precisely,

H0(Uσi0 ∩ · · · ∩ Uσip ,OXΣ
(D)) =

⊕
m∈Pi0...ip∩M

C · χm, (A.9)

where χm and Pi0...ip are shorthand for the monomial corresponding to m and Pσi0∩···∩σip ,
respectively. This identification makes sense in terms of patches, because if m ∈ Pσ ∩M ,
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Coords Vertices Q1 Q2 Divisor Class
x u1=(1,0) 1 0 H

y u2=(0,1) 1 1 H + E

z u3=(-1,-1) 1 0 H

w u4=(0,-1) 0 1 E∑
i[Di] 3 2 3H + 2E

Figure 2. GLSM charges for dP1.

then its corresponding monomial is guaranteed to have positive exponent for the homo-
geneous coordinates xρ for all one-dimensional cones ρ in σ. This is necessary to be
well-defined on Uσ, since Dρ = {xρ = 0} ⊆ Uσ, ∀ρ ∈ σ(1). It is sufficient because xρ 6= 0
on Uσ for every ρ /∈ σ(1). One should note, of course, that a given Pσ is generically the
union of multiple signed regions, and moreover that a given signed region might contribute
to multiple Pσ for different cones in the fan.

Having the requisite tools for explicitly constructing the Čech cochains, it is straight-
forward to compute the differentials,10 and one can then directly compute the Čech coho-
mology groups

Ȟp(U ,OXΣ
(D)) ≡ ker(dp)

im(dp−1)
. (A.10)

The previous discussion was general but perhaps somewhat abstract. We now proceed to
illustrate how to apply these ideas in a simple but non-trivial example, dP1. As we will
see, the Čech complex gives a simple and systematic (albeit cumbersome, if done by hand)
way to compute line bundle cohomology.

A.2 Calculating Čech cohomology on dP1

As a concrete non-trivial example, we calculate an example of Čech cohomology for a line
bundle over the first del Pezzo surface, dP1. The del Pezzo surfaces are P1 × P1 and the
blow-up of P2 at n points, n = 0, . . . , 8, which are denoted dPn. The fan which specifies
dP1 as a toric variety is given in figure 2, and it is easy to see that the removal of u4, which
corresponds to the exceptional divisor of the blow-up, leaves us with the fan for P2. Hence,
this is dP1, also known as the first Hirzebruch surface F1.

To fix notation, the homogeneous coordinates x, y, z, and w are associated to the
rays u1, u2, u3, and u4, respectively. For this example, we choose to calculate the Čech
cohomology groups Ȟp(U ,OdP1(D)) for the divisor D = 5Dx−2Dw. For this divisor, there
are four lines which divide the M lattice into signed regions, given by

l1 : mx = −5, l2 : my = 0

l3 : mx +my = 0, l4 : my = −2,
(A.11)

10We do not give the general definition now, because we think it is more illustrative to state it when we

will use it in the detailed dP1 example.
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Figure 3. Signed regions in the M lattice corresponding to O(5Dx − 2Dw) over dP1. We have
denoted by mx and my the coordinate axes of the M lattice.

which correspond to the rays u1, u2, u3, and u4, respectively. The partitioned M lattice is
given in figure 3, where each region has been labeled with the appropriate sign according
to the conventions discussed in the previous section.

Calculationally, rather than considering which signed regions have monomials well-
defined on the intersection of a particular set of opens, it is useful to instead consider
on which intersections of opens a particular monomial is well-defined. In the end, this
essentially corresponds to considering the cohomological contribution of each point in the
M lattice. All m in a given signed region will have the same contribution. This is useful
since each point in the M lattice contributes independently to the cohomology. In other
words, there is a grading on cohomology which allows us to consider the contribution of
each m ∈M independently. We refer the reader to chapter 9 of [30] for more details.

For this reason, we would like to categorize those Pσ’s which contain the m’s cor-
responding to monomials well defined on a particular intersection, as a union of signed
regions. The result is

P1 =
⋃
R++•• P2 =

⋃
R•++• P3 =

⋃
R••++ P4 =

⋃
R+••+

P12 =
⋃
R•+•• P13 =

⋃
R•••• P14 =

⋃
R+•••

P23 =
⋃
R••+• P24 =

⋃
R•••• P34 =

⋃
R•••+

P123 =
⋃
R•••• P124 =

⋃
R•••• P134 =

⋃
R•••• P234 =

⋃
R••••

P1234 =
⋃
R••••,

(A.12)

where a • simply means that the union includes both the + and the − in that placeholder,
so that ∪R+•• = R+++∪R++−∪R+−+∪R+−−. This allows us to consider the contributions
of a particular m ∈M to a Čech cochain as a vector where different entries correspond to
different intersections of opens. Examples will come when we do the actual calculation.

The only technical aspect which must still be specified before actually computing the
kernels and images of the differentials dp is the definition and form of the differentials
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themselves. In general, they are maps from Čp(U ,F) to Čp+1(U ,F) defined by

(dpσ)i0...ip+1 =
p+1∑
k=0

(−1)kσi0...̂il...ip+1
|Ui0∩···∩Uip+1

, (A.13)

where îk indicates that this index is removed. For a given set of indices (i0, . . . , ip+1), this
specifies one component in an element of Čp+1(U ,F). As an example, the definition (A.13)
gives

(d1σ)134 = σ34|U1∩U3∩U4 − σ14|U1∩U3∩U4 + σ13|U1∩U3∩U4 (A.14)

for the case where l = 4, which is our case for dP1. Each component in an element of a
Čech cochain is specified by a (p + 1)-tuple of indices, where the components are ordered
in a vector according to the natural ordering on [l]p. Thus, equation (A.14) corresponds
precisely to the third row in d1, listed below.

All components of dpσ can be determined this way, which allows us to write the maps
as matrices. The result in our particular case is

0→ Č0(U ,OdP1(5Dx − 2Dw))

d0=

0BBBBB@
-1 1 0 0
-1 0 1 0
0 -1 1 0
0 -1 1 0
0 -1 0 1
0 0 -1 0

1CCCCCA
−−−−−−−−−−−−−→Č1(U ,OdP1(5Dx − 2Dw)) (A.15)

d1=

0B@ 1 -1 0 1 0 0
1 0 -1 0 1 0
0 1 -1 0 0 1
0 0 0 1 -1 1

1CA
−−−−−−−−−−−−−−−−−→Č2(U ,OdP1(5Dx − 2Dw))

d2=( -1,1,-1,1 )
−−−−−−−−−→Č3(U ,OdP1(5Dx − 2Dw))→ . . .

Notice that the definition of the differential, seen as a linear map between vector spaces,
does not require us to specify which monomial we are dealing with. This information
will only enter in the definition of the vector spaces Č•(U ,OdP1(5Dx − 2Dw)), specifying
which elements of the vector space are necessarily vanishing due to the monomial under
consideration not being well defined in the relevant patch.

Now all of the pieces are in place for a direct computation of cohomology. We emphasize
again that it is sufficient to consider the cohomology corresponding to a given m ∈ M ,
and then sum over the contributions from each m. Moreover, since all m’s in a given
signed region contribute to the overall cohomology in the same way, it is only necessary to
compute the cohomological contributions for each signed region and to then multiply that
contribution by the number of points in that region. This implies that all cohomological
contributions from non-compact regions must be zero, since there are an infinite number
of points, and the cohomology is finite. This means that we only need to calculate the
contributions from points in R+++− and R+−+−.
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Figure 4. The only signed region which contributes to the cohomology.

Let us study first the monomials in R+−+−. From equation (A.12) and the natural
ordering of (p+1)-tuples in [l]p, elements of the Čech cochains for a given m can be written


0
0
0
0

 · χm ∈ Č0(U ,OdP1(5Dx − 2Dw)),



0
a

b

c

d

0


· χm ∈ Č1(U ,OdP1(5Dx − 2Dw)),

(A.16)
e

f

g

h

 · χm ∈ Č2(U ,OdP1(5Dx − 2Dw)),
(
i
)
· χm ∈ Č3(U ,OdP1(5Dx − 2Dw)),

where a, b, c, d, e, f, g, h, i ∈ C. One can then consider the action of the appropriate dp’s on
the these elements, and it is a straightforward exercise in linear algebra to show that all of
the kernels and images are the same except for im(d0) = 0, ker(d1) = C. Thus, for each
m in this region, the contribution is ȟ•m = (0, 1, 0).

In order to count points in this region recall from the definition of signed regions that
“+”’s are inclusive while “-”’s are exclusive. With this in mind, only the filled dots in
figure 4 contribute. Thus, the contribution of this region to the cohomology is given by

ȟ•R+−+−(U ,OdP1(5Dx − 2Dw)) = (0, 7, 0). (A.17)

A similar argument in the R+++− region shows that it does not contribute to the
cohomology, and thus we conclude that

ȟ•(U ,OdP1(5Dx − 2Dw)) = (0, 7, 0). (A.18)

A.3 The Koszul complex11

Once we know the cohomology of line bundles on the ambient space, we can use an exact
sequence known as the Koszul complex to obtain the cohomology on subspaces of this

11We would like to acknowledge a number of useful discussions with L. Anderson on the contents of this

section.
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ambient space. Let us start with the case of induced line bundles on divisors of A. Denoting
as N∗ the dual of the normal bundle of our surface X on A, we have that:

0→ N∗ → OA → OX → 0 (A.19)

This formula does not require that A is toric. In the case of a divisor D of A, N∗ is the
line bundle O(−D). Furthermore, in order to obtain information about the cohomology of
a line bundle L on X, we can tensor the whole short exact sequence above by L, we get:

0→ O(L −D)→ OA(L)→ OX(L)→ 0 (A.20)

Any short exact sequence gives rise to a long exact sequence in cohomology in a standard
way. In our particular case we get:

0→ H0(A,O(L −D))→ H0(A,O(L))→ H0(X,O(L))→
→ H1(A,O(L −D))→ H1(A,O(L))→ H1(X,O(L))→
→ . . .→ Hd(A,O(L −D))→ Hd(A,O(L))→ Hd(X,O(L))→ 0

(A.21)

where d is the dimension of the ambient space.
From here we can read the dimensions of the cohomology groups. A couple of very

useful facts are that we can always split any exact sequence

0→ A→ B → C → D → . . . (A.22)

into two pieces:

0→ A→ B → X → 0 (A.23)

0→ X → C → D → . . . (A.24)

and that for any short exact sequence 0→ A→ B → C → 0 we have

dim(B) = dim(A) + dim(C), (A.25)

which allows one to compute the dimensions of the cohomologies in a straightforward
manner.

For the case of a complete intersection of three divisors in the ambient space (our case
in the main text), there is a useful general form for the Koszul complex, given by:

0→ ∧3N∗ → ∧2N∗ → N∗ → OA → OD1∩D2∩D3 → 0, (A.26)

where N is the sum of the normal bundles of the divisors, N ≡ ND1 ⊕ ND2 ⊕ ND3 .
After splitting this sequence into short exact sequences, one uses those sequences to arrive
at a number of long exact sequences in cohomology, which make it straightforward to
compute the relevant groups. For the complete intersection of more hypersurfaces, the
above sequence extends as one might expect.
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A.4 Computer implementation

We have implemented the algorithm described in appendix A.1 using a combination of
SAGE [55], C code and code from the Computational Homology Project [56].

The code and accompanying documentation can be downloaded at the web address:

http://www.sas.upenn.edu/ inaki/cech.html.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [SPIRES].
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[5] M. Cvetič, J. Halverson and R. Richter, Mass Hierarchies from MSSM Orientifold
Compactifications, JHEP 07 (2010) 005 [arXiv:0909.4292] [SPIRES].
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