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Abstract—Consider a network with an arbitrary topology

and arbitrary communication delays, in which congestion

control is based on additive–increase and multiplicative–

decrease. We show that the source rates tend to be dis-

tributed in order to maximize an objective function called

F h
A

(“F h
A

fairness”). We derive this result under the as-

sumption of rate proportional negative feedback and for the

regime of rare negative feedback. This applies to TCP in

moderately loaded networks, and to those TCP implemen-

tations that are designed to interpret multiple packet losses

within one RTT as a single congestion indication and do not

rely on re-transmission timeout. This result provides some

insight into the distribution of rates, and hence of packet

loss ratios, which can be expected in a given network with

a number of competing TCP or TCP-friendly sources. We

validate our findings by analyzing the parking lot scenario,

and comparing with previous results [1], [2], and an exten-

sive numerical simulation with realistic parameter settings.

We apply F h
A

fairness to gain a more accurate understanding

of the bias of TCP against long round trip times.

Keywords— Additive–Increase, Multiplicative–Decrease,

Fairness, Best–Effort, TCP, TCP–Friendly, TCP throughput-

loss formula, RTT, parking–lot, Stochastic Approximation,

ODE, Lyapunov.

I. INTRODUCTION

There is a continuing interest on throughput and fair-

ness issues of TCP [3] congestion avoidance. This interest

is particularly nourished by the proliferation of real–time

“stream” applications over the Internet (e.g. voice, video)

for which it is required to be TCP–Friendly, i.e. to fairly

coexist with already existing TCP applications.

In one of the pioneering works, Chiu and Jain [4] formu-

lated a set of basic principles of the additive–increase and

multiplicative–decrease congestion avoidance to achieve

efficiency and fairness, by analyzing the simple model of

a single bottleneck.

In [5] Kelly, Maulloo, and Tan showed that a large-

scale network deploying some specific form of additive–

increase and multiplicative–decrease congestion avoid-

ance tends to distribute rates according to proportional fair-

ness. This result is commonly misinterpreted as being ap-

plicable to congestion avoidance in the Internet with TCP.

Recently, Hurley, Le Boudec, and Thiran [6] showed

that in a network employing additive–increase and multi-

plicative–decrease, the source rates tend to be distributed

in order to maximize an objective function called FA. The

authors call this “FA fairness”. This result is obtained

by the limit mean ordinary differential equation (ODE)

method, for a network operating in the regime of rare neg-

ative feedback. The pivotal assumption of that work is

the rate proportional negative feedback, which the authors

claim to be more realistic than one which depends exclu-

sively on the overall load [5]. However, the result is re-

stricted to the homogeneous round–trip time (RTT) case

where the rates are updated synchronously.

In this paper, we extend the modeling of [6] to the het-

erogeneous RTT case. Our result is a generalization of FA
fairness, which we call F hA fairness. It gives the distribu-

tion of rates in a arbitrary network employing the additive–

increase and multiplicative–decrease method for conges-

tion control, with the assumption that negative feedback

is rare. We allow the round–trip times to differ from one

source to another. The rates tend to maximize an objec-

tive function called F hA, whose parameters reflect the rate

adaptation algorithm. To the best of our knowledge, this

is the first general result encompassing many of the rele-

vant system parameters, applicable to an arbitrary network

topology with multiple bottlenecks. Our results allows to

find a first order approximation of rate distributions; com-

bined with a loss-throughput formula such as [2], [7], this

gives a prediction of the loss rates. Extensive simulation

results confirm these predictions.

The novelty of our approach is an application of the

recent weak convergence results of decentralized asyn-

chronous stochastic approximation algorithms [8]. Our
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model essentially differs from [6] in that we do not as-

sume that rate–adaptation is performed synchronously by

all sources; in contrast, we use an asynchronous model

where every source updates its rate based on its own round

trip time interval. Unlike the synchronous model in [4],

[5] or [6], this allows us to address the case with different

round trip times. But even in the case where all round trip

times are equal, this gives a more accurate model. Indeed,

with the synchronous model, rate adjustment is based on

the most recent previous rates. In reality, the feedback re-

ceived by one source at the end of one round trip time in-

terval depends on the rates during the previous interval,

shifted in time by the delay required for feedback to reach

the sources. The synchronous model assumes implicitly

that feedback reaches sources instantaneously. We call this

assumption “stolen lag”. We show with our modeling that

the stolen lag assumption does not affect the distribution

of average rates; by simulation, we see however that it af-

fects the amplitude of oscillations. Note that our model

explicitly considers all communication delays.

We assume in this paper that the negative feedback re-

ceived by sources is rare, and is proportional to the source

rate. The rare negative feedback assumption is valid in a

reasonably loaded network; the proportional assumption

should be true with active queue management [9] (e.g.

RED [10]) applied to otherwise FIFO queues. In addition,

our model assumes a single rate updating per RTT; this fits

with TCP implementations designed to cope with multi-

ple packet losses within single RTT, i.e. that treat multiple

packet losses within one RTT as a single congestion signal,

and avoid re-transmission timeouts.

Our model does not incorporate the effect of the vari-

ation of RTT for one given source from one feedback in-

terval to the other. It is known that, for a network with

fixed windows [11], the variation of round trip times due to

queues building up has in itself a congestion avoidance ef-

fect, which is not captured by our modeling. Another limi-

tation is that we assume the rates to be piecewise constant,

i.e. to be adjusted only once per round trip time. Thus, the

effect of burstiness at the timescale of the round trip time is

not taken into account. In contrast, our study captures the

effect of the window or rate adaptation mechanism found

for example with TCP or ABR. Our results may be used as

a reference fairness measure in performance evaluations of

TCP–friendly rate adjustment algorithms.

In the next subsection we outline our main results.

A. Summary of the Main Results

We consider a network with multiple bottlenecks and

heterogeneous round–trip times. Then, under the condi-

tion that there is no substantial queuing delay variation,

and the network is operating in the regime of the rare neg-

ative feedback, the collection of rates x =( x1;:::;x i;::: )
is distributed such that x maximizes the objective function

F h
A(x) =

X
i2S

1

�i
log

xi

ri + �ixi
;

subject to the constraints
P

j2S Al ;j xj � cl , 8l 2 L. In the

formula, S is the set of sources, L the set of links, Al;i the

routing matrix (Al;i is 0 or 1), cl the capacity of link l, and

�i is the RTT for flow or source i. There is one flow per

source. The rate adaptation parameters are ri (additive–

increase element) and �i (multiplicative–decrease factor);

they may depend on source i.

The above result is applied to the parking–lot network

topology; we obtain a closed-form for the distribution of

rates. This allows us to verify the consistency of our re-

sult with existing work and with conducted simulations.

We find that the results in [1] are an asymptotic case

of F h
A fairness for small additive–increase/multiplicative–

decrease ratio relative to connection throughput.

We also gain a more accurate understanding of the bias

of TCP against long round trip times. We point out that it

is important to make the difference between a bias against

long RTTs (perhaps an undesirable feature) and a bias

against flows with many hops (perhaps a desired feature).

We see that the bias against flows with many hops is in the

nature of any rate adaptation algorithm based on additive–

increase and multiplicative–decrease. In contrast, a bias

against long RTTs can be attenuated with corrections such

as mentioned in [1] and [12]. Finally, we also confirm

throughput loss formulas, within the limitations of our

modeling.

B. Outline of the Paper

The paper is organized as follows. In Section II, the

main results are derived. Following the basic model def-

initions, feedback modeling is described in more detail.

Then, asymptotic convergence results of the decentralized

asynchronous stochastic approximation algorithms [8] are

sketched. In the rest of the section, objective function F h
A

of the algorithm of concern is derived and analyzed. In

Section III, F h
A result is applied to the parking–lot network

topology for which a closed-form rate distribution is com-

puted, and results are verified through numerical simula-

tion. In Section IV, the results are discussed and compared

to the related previous work. Implications of the result to

the Internet are addressed in Section V. In Section VI,

concluding remarks are given. In Appendix A we give the

main theorem of the underlying theory [8].
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Fig. 1. An illustration of the defined delays.

II. DERIVATION OF THE MAIN RESULTS

A. Model Setup

The notation is developed as follows. Let set L contain

network links. Then let cl and �l be the capacity and delay

of link l 2L , respectively. Let set S comprise sources

(flows) that are active on the given network. The rout-

ing setting we describe by routing matrix A =( Al;i;l 2
L; i 2 S), such that Al;i = 1, if flow i traverses link l, and

Al;i = 0, otherwise.1

Further, we define communication delays. Let �i;l de-

note delay from source i to link l, and let �l;i be the delay

from link l to source i. Then, set �i;j = �j;l+�l;i. Defin-

ing �i as the RTT of source i, clearly, �i = �i;l +�l;i, for

all l such that Al;i > 0. In Fig. 1, a sample network illus-

trates defined delays.

Let f�i;ngn�0 be a non-decreasing [0;1)-valued se-

quence of rate updating times of source i. Then, a num-

ber of rate updates of source i on the interval [0; t) is

Ni(t) =
P1

n=1 1f�i;n<tg.

Let fxi;ngn�0 be a [0;1)-valued stochastic process,

where xi;n is a rate of source i at the n-th update. Then,

define a continuous time interpolation on real time as

xi(t) = xi;n, for t 2 [�i;n; �i;n+1).

For b � a � 0 define a �-algebra of the form F i ;l
[a;b)

=

�(xj ;k : Al ;j ;Al ;i > 0;Nj (a��i ;j ) � k < Nj (b��i ;j )).

Finally, let F i
[a;b) = [l : Al;i>0F i ;l

[a;b)
.

An additive–increase and multiplicative–decrease algo-

rithm has the following form

xi;n+1 = xi;n + ri(1� Ii;n)� �iIi;nxi;n; (1)

where ri and �i are the additive–increase element and the

multiplicative–decrease factor, respectively. The random

sequence fIi;ngn�0 is a negative feedback indication with

values in f0; 1g. We assume that the negative feedback

indication Ii;n is based on the feedback received between

n-th and n+1-th rate updating. Consequently, it turns out

that Ii;n is measurable on �-algebra F i
[�i;n ;�i;n+1)

.

1We define Al;i on f0; 1g which can be extended to [0; 1] to accom-

modate for instance load sharing, etc. [6]

(n+ 1 )�n�(n� 1)�s t

� � �

n� � s < (n+ 1 )�

xi;n+1

xi;n�1

s� �

xj(s� �); j : Al;i; Al;j > 0

xi;n
xi(t)

Ii;n

Fig. 2. Feedback modeling for the HOMRTT case.

Now let us briefly comment on the special case ad-

dressed in [6], where it is assumed that all round–trip times

are equal, and the rates are updated synchronously. Fol-

lowing the definition of Ii;n in the full extent, it is rather

easy to see that Ii;n is a function of xj;n, xj;n�1, and

xj;n�2, for all j 2S such that Al ;i ;Al ;j > 0, depending

on values of �j;l. In the related work [4]–[6], it is com-

monly assumed that Ii;n is computed based on xj;n, for all

j 2 S such that Al;i; Al;j > 0, which is indeed an unreal-

istic assumption.

Let us assume that all flows traversing link l have equal

access delay to that link. Formally, �i;l =� j;l, for all

i;j 2 S , such that Al;i; Al;j > 0. Then, it follows that Ii;n
depends on xj;n�1, for all j 2 S such that Al;i; Al;j > 0.

We refer to this assumption as a HOMRTT assumption. In

addition, whenever xi;n is used where it should be xi;n�1
we refer to this as a stolen lag. Feedback modeling is il-

lustrated in Fig. 2.

B. Feedback Modeling

First, we introduce a notion of the link cost function

gl(�): [0;1) ! [0; 1], where l 2L . At a given time

t, the link cost is a function of the link load

fl(t) =
X
i2S

Al ;ixi (t ��i;l ): (2)

One can interpret gl(fl(t)) as a probability of marking

a single packet at time t. We are concerned with neg-

ative feedback indication, Ii;n, based on feedback re-

ceived within [�i;n; �i;n+1). Let us partition the interval

[�i;n; �i;n+1) into non-overlapping intervals [ak; bk) such

that xj(s), is constant for s 2 [ak � �i;j; bk � �i;j), for

all j 2 S such that Al;i; Al;j > 0.

We define M
i;l
a;b as an amount of negative feedback re-

ceived by source i from link l within interval [a;b ), which

is equal to a number of marked packets of the flow i by the

link l within interval [a� �i; b� �i).

Let P
i;l
a;b(�) and P i

a;b(�) be conditional probabilities given

F i;l
[a;b)

and F i
[a;b), respectively. Analogously, let E

i;l
a;b[�] and

Ei
a;b[�] be respective conditional expectations.
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Admitting the interpretation of gl(�) as a probability of

marking a single packet, it is easy to see that we do have a

binomial conditional probability

P
i;l
ak ;bk

(M i;l
ak;bk

= m) =

 
dxi;Ni(ak��i)(bk � ak)e

m

!
�

�gl(fl(a�i

k ))m[1� gl(fl(a
�i

k ))]dxi;Ni(ak��i)
(bk�ak)e�m;

(3)

where a�i

k is written in lieu of ak � �l;i. Note that

dxi;Ni(ak��i)(bk�ak)e corresponds to a number of packets

of flow i that are present on link l within [ak� �i; bk� �i).
Clearly, the expected amount of negative feedback is

E
i;l
ak ;bk

[M i;l
ak;bk

] = dxi;Ni(ak��i)(bk � ak)egl(fl(a�i

k )):

Similarly, let M i
a;b be an amount of negative feedback re-

ceived within [a;b ) by source i from all links l such that

Al;i > 0. It follows

P i
ak ;bk

(M i
ak ;bk

= 0 ) =
Y

l: Al;i>0

P
i;l
ak;bk

(M i;l
ak ;bk

= 0 );

and from (3) follows

P i
ak ;bk

(M i
ak ;bk

= 0 ) =

=
Q

l: Al;i>0
[1� gl(fl(a

�i
k ))]dxi;Ni(ak��i)

(bk�ak)e:
(4)

By definition of [ak; bk) we have

P i
�i;n;�i;n+1

(M i
�i;n;�i;n+1

= 0 ) =
Y
k

P i
ak;bk

(M i
ak ;bk

= 0 ):

(5)

Finally, Ii;n =1 , if source i has received an indica-

tion, within [�i;n; �i;n+1), that at least one packet has been

marked, thus

P i
�i;n;�i;n+1

(Ii;n = 1 ) =P i
�i;n;�i;n+1

(M i
�i;n;�i;n+1

� 1)=

= 1� P i
�i;n;�i;n+1

(M i
�i;n;�i;n+1

= 0 ):
(6)

Let us examine (6) for the HOMRTT case. Here we have

a single partition of [�i;n; �i;n+1), hence, from (4)–(6) fol-

lows

P i
�i;n;�i;n+1

(Ii;n = 1 ) = 1�
Y

l: Al;i>0

[1� gl(fl)]
dxi;n�1�e;

(7)

where �i;n+1 � �i;n = � , for all i 2S , n � 0, and

fl stands for fl(�i;n � �l;i)=
P

j2S Al ;jxj ;n�1. In

the limit case gl(�) ! 0, limited development yields

[1� gl(fl)]
dxi;n�1�e ' 1�dxi;n�1�egl(fl), then replacing

this in (7), and neglecting the higher order products, yield

P i
�i;n;�i;n+1

(Ii;n = 1 )'
X
l2L

Al ;igl (fl )dxi ;n�1�e: (8)

Therefore, it is shown that, under the rare negative feed-

back assumption, (7) degenerates to the rate proportional

feedback as is implicitly assumed in [6]. However, note

that (8) depends on xi;n�1 and not on xi;n.

C. Asymptotic Convergence

Traditional theory of the stochastic approximation al-

gorithms [13]–[14] is concerned with an algorithm of the

general form

xi;n+1 = xi;n + nHi;n(xi;n; �i;n);i 2 S;

where xi;n is defined on R, Hi;n(�): R � R ! R,

�i;n : R ! R is a random noise, and n a step size. It

is assumed that components xi;�, i 2S , are updated syn-

chronously, facilitating the association of continuous inter-

polation xi(t) to discrete process fxi;ngn�0 on the “natu-

ral” common iterate time fngn�0. However, it follows

that for an asynchronous updating one has to work in real

time, or at least an appropriately scaled real time [8]. In

general, for decreasing n, in respect to n, convergence

with probability one can be obtained, while for constant

small n � , only convergence in probability can be

proven (the weak convergence). In the rest of this sec-

tion we briefly sketch results of [8] that are applied in our

work. For a complete treatment of the underlying theory

the reader is referred to [8].

Let f��i;kgk�0 be a random sequence of updating in-

tervals of fxi;kgk�0, i 2S . Then denote (scaled) real

updating time of xi;n as

�

i;n = 

n�1X
k=0

��

i;k; (9)

and a continuous interpolation on the iterate time �

i (t) =

�

i;n, for t 2 [n; (n+1 )). Further, let N


i (t) is a number

of updates of fxi;kgk�0 before t=. Formally,

N

i (t) = 

1X
n=1

1f�
i;n

<t=g: (10)

From the definitions, it turns out that N

i (�


i (t))= n,

t 2 [n; (n+ 1 )), i.e. N

i (�) is inverse of �


i (�).

Then, let x̂

i (t) = x


i;n, t 2 [�i;n; �


i;n+1), is a continuous

interpolation on scaled real time, and x̂(�) = ( ^xi (�); i =
1; 2; : : : ; S ), S = jSj . From definitions of “time” pro-

cesses (9) and (10) it follows x

i (t)=̂ x


i (�


i (t)), and

x̂

i = x


i (N


i (t)).

Furthermore, let �
i;j;n be a non-negative random vari-

able representing a scaled (multiplied by ) communica-

tion delay between source i and source j at the n-th rate

updating of source i.
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Finally, the decentralized asynchronous algorithm can

be written in the form

x

i;n+1 = �[ai;bi]

�
x

i;n + H


i;n(x̂j(�


i;n+1 ��

i;j;n))
�
=

= x

i;n + H


i;n(x̂j(�


i;n+1 ��

i;j;n))+ Z

i;n;i 2 S;

(11)

where �[ai;bi](�) denotes projection of the argument on

[ai; bi], for the constrained x on C = [a1; b1] � [a2; b2] �
: : :� [aS ; bS ], and Z


i;n is a reflection term.

Let for all i, F
i ;n and F;+

i;n be non-decreasing �-

algebras measuring the past data (including x

i;0, H


j;k, and

��

j;k, j 2S ) available on [0; �i;n+1), and [0; �i;n+1], re-

spectively. Then, with P

i;n and P

;+
i;n denote respective

conditional probabilities, and analogously E

i;n and E

;+
i;n

conditional expectations.

Subsequently, we have the following conditions. It is

assumed that

fH
i;n; � �


i;n; ;i;n g; (12)

and �
i;j;n, �;+

i;j;n are uniformly integrable. We consider

the Martingale difference noise [8], for which we have

E

i;nH


i;n = h


i;n(x̂


j (�


i;n+1 ��

i;j;n); j 2 S) + �

i ;n ;

where h

i;n(�) are real-valued functions continuous in

n and , �

i;n is asymptotically negligible noise, and

supn�T= �

i;j;n ! 0. There are real-valued functions

u

i;n(�) that are strictly positive (infn;;x;� u


i;n(x;� ) > 0)

and are continuous uniformly in n and , and non-negative

random variables �;+
i;j;n such that

E
;+
i;n ��


i;n+1 = u


i;n+1(x̂


j (�


i;n+1 ��;+

i;j;n+1); j 2 S);
(13)

where supn�T= �
;+
i;j;n ! 0; inprobabilit y a s ! 0.

There are continuous real-valued functions �hi(�) such that

for each x 2 C , 2

lim
m;n;

1

m

n+m�1X
k=n

[hi;k(x)� �hi(x)]=0 : (14)

There are continuous real-valued functions �ui(�) such that

for all x 2 C ,

lim
m;n;

1

m

n+m�1X
k=n

E
;+
i;n [ui;k(x)� �ui(x)]=0 : (15)

Suppose

lim
m;n;

n+m�1X
k=n

E

i;n�


i;k = 0; inmean : (16)

2In (14), (15), and (16), limm;n; � limm!1;n!1;!0, simulta-

neously in any way.

Finally, from the Theorem [8] (Appendix A) particularly

follows that, for the unconstrained algorithm, the weak

convergence subsequence x̂ is the limit set of ODE

_̂xi =
�hi(x̂)

�ui(x̂)
;i 2 S: (17)

Thus, the limit mean ODE is the same as in the syn-

chronous case, except for an additional weight factor that

takes into account frequency of the updating.

D. F h
A Fairness

We identify H

i;n of (11) in the algorithm (1) as

H

i;n = ri � (ri + �ixi;n)1f�i;n<P i

i;n+1
(I

i;n

=1)g; (18)

where f�i;ngn�0 is a sequence of independent random

variables uniformly distributed on [0; 1].3 Then,

E

i;n+1H


i;n = ri � (ri + �ixi;n)P


i;n+1(I


i;n = 1 );

where P

i;n+1(I


i;n = 1 )is given by (6).

In the limit case, as  ! 0, and n !1 , we neglect

scaled delays �i;j , then the probability of negative feed-

back is

P

i;n+1(I


i;n = 1 ) =x̂i(�

;�
i;n+1)��i;n

X
l2L

Al;igl(f̂l(�
;�
i;n+1)):

For ��i;n = �i, for all n > 0, the mean vector field is

�hi(x̂(t))= ri � x̂i(t)(ri + �ix̂i(t))�i
X
l2L

Al ;igl (f̂l (t))

(19)

where f̂l(�) =
P

j2S Al ;j^xj (�).
Seemingly, �ui(x̂)= �i, then with (19) the limit mean

ODE (17) becomes

_̂xi =
ri

�i
� x̂i(ri + �ix̂i)

X
l2L

Al ;igl (f̂l ): (20)

Following the same steps as in [6] we express ODE (20) as

_̂xi = x̂i(ri + �ix̂i)
@JhA(x̂)

@x̂i
; (21)

where

JhA(x̂) =
X
i2S

1

�i
log

^xi

ri + �i^xi
�G(^x); (22)

and by definition G(x̂)=
P

l2LGl (f̂l ), where Gl(�) is a

primitive of gl(�).
3Note that instead of ri and �i it should be written ri and �i , where

ri = ri and �i = �i , but we abuse this for notation simplicity.
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It is easy to see that Jh
A is strictly concave and conse-

quently has a unique maximum over any bounded region.

It turns out that Jh
A is Lyapunov for ODE and with an

unique attractor, for which Jh
A is maximized.

Along the same lines as in [6], one can neglect the sec-

ond term in (22). Then, it follows that the rates x are dis-

tributed such that x maximizes

F h
A(x) =

X
i2S

1

�i
log

xi

ri + �ixi
(23)

subject to the constraintsX
j2S

Al ;j xj � cl ; 8l 2 L: (24)

D.1 F h
A asymptotic limits

Let us write (23) in the following form

F h
A(x) =

X
i2S

1

�i
log

1

�i

�
X
i2S

1

�i
log

�
1 +

ri

xi�i

�
: (25)

Then we develop the second term to obtain

F h
A(x) =

X
i2S

1

�i
log

1

�i
�
X
i2S

1

�i

1X
n=1

(�1)n�1
n

�
ri

�ixi

�n

;

for xi >r i=�i. By the limited development for xi >>

ri=�i we obtain that rates x are distributed such that xmax-

imizes

F h+
A (x) = �

X
i2S

ri

�i�ixi
; (26)

subject to (24).4 Note that we skip the first term in (25)

that is not relevant for maximization in respect to x. In

the opposite case, xi <<r i=�i, for all i 2S , by simple

manipulation we obtain an objective function

F h�
A (x) =

X
i2S

1

�i
log xi: (27)

We use (26) and (27) in Section V to understand the bias

of TCP against long RTTs.

III. AN EXAMPLE OF F h
A FAIRNESS – PARKING–LOT

In this section we consider a parking–lot topology de-

picted in Fig. 3. In this scenario we distinguish class

0 flows, traversing tandem of I links, and class i flows

traversing a single link i, i =1 ; 2; : : : ; I . Let ni be the

number of flows belonging to class i.

4For TCP congestion avoidance ri =1 =�i and ri =1 =(2�i) for

not delayed ACKs and delayed ACKs, respectively. Henceforth, (26)

can be safely applied to the respective cases as long as the number of

packets per RTT, xi�i >> 2, and xi�i >> 1, for all i 2 S .

Feasibility constraints n0x0+nixi = ci, i = 1; 2; : : : ; I ,
allow us to express (23) in terms of x0 as follows

Fh
A(x0) =

n0

�0
log

x0

r0 + �0x0
+

IX
i=1

ni

�i
log

ci � n0x0

rini + �i(ci � n0x0)
: (28)

In the sequel, we suppose

ci = c;r i = rI ; �i = �I ; ni = w;i = 1; 2; : : : ; I ; n0 = v:

(29)
Then, (28) becomes

Fh
A(x0) =

v

�0
log

x0

r0 + �0x0
+ TIw log

c� vx0

rInI + �I (c� vx0)
; (30)

where TI
�
=
PI

i=1
1
�i

.

Lemma 1 (parking–lot) F h
A–fairness distribution for the

parking–lot scenario with (29) is

x0 =
�B �

p
B2 � 4AC

2A
; (31)

where
A = v2r0�I �w2TIrI�0�0
B = �r0(v(wrI + 2c�I ) +w2TIrI�0)

C = r0c(wrI + c�I);

for v2r0�I � w2rI�0TI�0 6= 0, otherwise

x0 =
c(wrI + c�I)

v(wrI + 2c�I) + w2TIrI�0
: (32)

Then,

xi =
c� vx0

w
;

for i = 1; 2; : : : ; I .

Proof: Proof is simple and is same as in [6].

Subsequently, with x0 >>r 0=�0 and xi >>r I=�I , for

each i =1 ; 2; : : : ; I , the first–order approximation (26)

yields5

x0

c
=

1

v + w
q
TI

rI�0�0
r0�I

; (33)

or in a simplified case �i = �I , for i = 1; 2; : : : ; I , so that

TI =
I
�I

,

x0

c
=

1

v + w
q
I rI�0�0
r0�I�I

: (34)

Finally, we consider a few special cases for some rea-

sonable parameters setup as is given in Table I. It can be

observed that various fairness objectives are achieved de-

pending on the end-system parameters and RTTs.

5In [6] it is referred to this case as limc!1 x0=c, which is encom-

passed in xi >>r i=�i, for ri <1 and �i > 0.
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x0

� � �x2

�out0

�in2

c2; �2

xI

� � �

c1; �1 cI ; �I

�out
I

�out1 �out2

�in0

�in1 �in
I

x1

Fig. 3. Parking–lot topology.

TABLE I

FRACTION OF CAPACITY c GIVEN TO A CLASS 0 FLOWS, FOR

THE PARKING–LOT, WITH xi >>r i=�i FOR ALL i 2 S .

Fairness x0=c parameters setup

FA
1

v+w
p
I

r0 = rI , �0 = �I ; r0 = K�0, rI = K�I

Proportional
1

v+wI
r0 = rI , �0 = I�I

Max-min
1

v+w
r0 = KI�0, rI = K�I

TCP-Reno
1

v+wI
p
I

r0 = 1=�0, rI = 1=�I , �0 = I�I

Remarks: Line 1 – FA–like result [6] is achieved for homoge-

neous RTTs, and additive-increase parameters proportional to the

RTTs. Line 2 – Proportional fairness result holds for the HET-

RTT network and equal values of ri and �i for all sources. Line

3 – Max-min fairness can be obtained by indicated parameters

setting. Line 4 – Indicates rate distribution for TCP Reno and

the HETRTT network (def. Section III-A), which complies to the

other results mentioned in Section III-A.

A. Simulation Results

We perform an extensive numerical simulation study of

the parking–lot scenario shown in Fig. 3. Let �ini and �outi

be access delays of class i flow, as depicted in Fig. 3. Note

that the definition of the parking–lot encompasses both a

single bottleneck with different RTTs (I = 1), and a mul-

tiple bottleneck case, as is considered separately in [1]. To

facilitate computation, all delays and rate updating inter-

vals are set as multiples of " > 0. All events corresponding

to the rate updating are aligned in respect to the sequence

of " slots. We use the same form of the link cost function

as is suggested in [6]

gl(fl) =

(
0;f l < 0�
fl=c�d
1�d

�p
;d � fl � 1

1;f l > 1

;

where c is a link capacity, d 2 [0; 1], and p > 0.

We consider all combinations of the simulation pa-

rameters that are set as follows: I = f2; 5g, v;w =
f1; 2; 6; 12g, c = f250; 625g, d = f0; 0:5; 1g, and p =

f1; 2; 5; 10g. Hence, there are a total of 768 settings, and

we believe that this covers a wide range of realistic situ-

ations. In addition, it is noteworthy that all simulations

are obtained for TCP-like parameters, and not for the limit

small values. Total simulation time is set equal to 500 the

largest RTT. Each average value is obtained over four sim-

ulation runs, excluding the initial 20% of the trace to elim-

inate initial transient. All confidence intervals are com-

puted as 95% of confidence. For all simulation results,

the claim of [6] that the results substantially deviate for

the d =1 case is confirmed, therefore, these results are

plotted differently. Hereinafter, we refer to the parking–lot

with all access delays equal to zero as a HETRTT; formally

�ini = �outi = 0, for all i = 0; 1; : : : ; I . In the sequel, scat-

ter plots of the F h
A analytical throughput against the corre-

sponding simulation result for class 0 flows are shown.

In Fig. 4 and 5 the HOMRTT network is considered with

stolen lag and no stolen lag assumption, respectively. The

simulations confirm what follows from the model (Section

II-D) that rates are distributed according to F h
A regardless

wheather the feedback is based on the last rate updating or

on the value that is one lag behind.

In Fig. 6 and 7, for the HETRTT scenario, the FA and

F h
A analytical results are plotted against respective simu-

lation counterparts. It is evident that the F h
A matches the

simulation results by taking into account diversity of the

RTTs.

Fig. 8 demonstrates how the additive–increase propor-

tional to the RTT [1], for the HETRTT network, corrects

the bias against the connections with long RTTs, thus the

simulation results conform to both FA and F h
A fairness.

In Fig. 9 we consider the parking–lot with 2 links, such

that all access delays are zero except the egress link of

class 1 flows and ingress link of class 2 flows, which are

set equal and varied such that the network setting gradually

shifts from the HETRTT case (the leftmost point, Fig. 9)

to the case where �1 and �2 are double of �0 (the rightmost

point, Fig. 9). The results substantiate the validity of F h
A
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Fig. 4. HOMRTT with the stolen lag, �i =0 :2 s, ri =5 ,

�i = 0:5 for all flows.
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Fig. 5. HOMRTT with no stolen lag, �i =0 :2 s, ri =5 ,

�i = 0:5 for all flows.

and illustrate how the system operates according to differ-

ent fairness criteria depending on RTT.

IV. DISCUSSION AND RELATED WORK

To simplify the presentation let us consider the HOM-

RTT network with synchronous rate updating and common

RTT, � , where fxkgk�0 represents a sequence of rate vec-

tors. In Section II-A we argued that n+1-th rate updating

xn+1 is based on the feedback depending on xn�1, and

not on xn, as is commonly assumed in the existing work,

e.g. [4]–[6]. Recall that we refer to this as the stolen lag.

From the weak convergence it follows that the stolen lag is

not relevant in respect to the limit mean rate distribution.

However, the rate dynamics with no stolen lag has a higher

variance.
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Fig. 6. HETRTT, FA vs. simulation, �0 = 0:2 s, �i = �0=I , for

i = 1; 2; : : : ; I, and ri = 5, �i = 0:5 for all flows.
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Fig. 7. HETRTT, F h

A
vs. simulation, �0 = 0:2 s, �i = �0=I , for

i = 1; 2; : : : ; I, and ri = 5, �i = 0:5 for all flows.

Intuitively, this can be explained as follows. Let us as-

sume that the network operates in the steady state and the

packet–loss ratio is small and constant. Then, negative

feedback Ii;n is mainly driven by either xi;n or xi;n�1, for

the stolen lag and no stolen lag, respectively. During the

period of rate decreasing, at n+1-th rate updating, rate xi;n

is further decreased with probability proportional to either

xi;n, or xi;n�1, for the stolen lag and no stolen lag, respec-

tively. Since xi;n�1 � xi;n, it follows that with a higher

probability the rate is further decreased with no stolen lag,

compared to the stolen lag case. Analogous reasoning ap-

plies also for a period of the rate increasing. This implies a

higher variance of the rate for the case with no stolen lag.

We substantiated the above argument by Markov chain

modeling of a discrete process x, for which we computed
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Fig. 8. HETRTT, additive-increment proportional to RTT, ri =
K�i, K = 25, �i =0 :5, �0 =0 :2 s, �i = �0=I , i =

1; 2; : : : ; I.
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Fig. 9. Impact of the RTT on rate distribution, c =250 , I = 2,

v = 3, w = 2, �0 = 0:2, �i = 0:1 � 0:4, �1 = �2 = � =

5" = 0:05.

stationary distribution, for both cases. However, due to

the space limitations these results are not shown here. In-

stead, in Fig. 10 and 11, the HOMRTT simulation results

are shown for both the stolen lag and no stolen lag case,

respectively. Traces of the utilization of link 1, in Fig. 10c

and 11c, particularly demonstrate observed phenomena.

Furthermore, it turns out that for the parking–lot topol-

ogy, analyzed in Section III, the throughput of flows

traversing multiple bottlenecks (34) fully conforms to the

results obtained in [1]. Let W (�) be a real–valued strictly

positive function, then for TCP it generally holds ri =
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Fig. 10. HOMRTT with the stolen lag, c = 250, � =0 :2,

ri = 5, �i = 0:5, I = 2, v = 3, w = 2, d = 0:5, p = 5, (a)

rate distribution, (b) rate traces, and (c) utilization of link 1.

W (�i)=�i, thus (34) becomes

x0

c
=

1

v +w
p
I �0�I

r
W (�I )
W (�0)

;

which is exactly the same form, for both a single bottle-

neck (I =1 ) with different RTTs, and multiple bottle-

necks, as obtained by simplified modeling in [1].

V. APPLICATION TO THE INTERNET

A. Bias Against Connections with Long RTTs

Our fundamental result allows us to better understand

the bias of TCP against connections with long round trip

times.
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Fig. 11. HOMRTT with no stolen lag, c = 2500, � =0 :2,

ri = 5, �i = 0:5, I = 2, v = 3, w = 2, d = 0:5, p = 5, (a)

rate distribution, (b) rate traces, and (c) utilization of link 1.

First, for any congestion control mechanism, if the dis-

tribution of rates tends to maximize a concave utility func-

tion, then flows with many hops are likely to receive a

small rate [5]. Since F h
A is concave with xi, this is true

with our system, whatever the rate adaptation parameters

ri and �i are. This is probably a desired bias, since flows

with many hops use more network resources. In practice,

many hops often mean larger RTT, but not always.

Second, both the specific values of the rate adaptation

parameters, ri and �i, and the update frequency 1=�i also

play a role (�i is the RTT for source i). With TCP–Reno,

with no delayed ACKs, we have:

� ri = MSSi=�i – in the congestion avoidance phase, with

no delayed ACKs, the window is effectively increased by

one packet per RTT (resp. 1=2 packet for delayed ACKs).
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Fig. 12. Residual bias against long RTT connections, HETRTT,

�I = �0=I , I = 4, v = 3, w = 2, Kc
= K=c.

In the formula, MSSi is the packet size for source i.

� �i =0 :5 – when a loss is detected, the target window

size is divided by a factor 2.

This results in an obvious bias against long RTTs: the

increase element ri is smaller, and less frequent for long

RTTs.

A fix to this undesired bias has been proposed in [1]; it

consists in setting the increase element to ri = K�i, where

K is a common constant. This is actually done by multi-

plying the window increase parameter by �2i , considering

that the rate is equal to the window size divided by �i. In

the limiting case where rates xi are large, we can apply the

first order development (26) and obtain that the rates tend

to maximize �Pi2S
1
xi

, thus there is no bias against long

RTTs in this case (but the bias against many hops does

exist). However, the non-linear nature of F h
A indicates that

this is not always true. If some rates are small, for example

in a very loaded network, then their utility function equals

to 1
�i
(� log(K�i)+log xi), or if this holds for all flows,

then the distribution of rates tends towards weighted pro-

portional fairness (27), with a weight equal to the inverse

of the RTT. Thus there might still remain an undesirable

negative bias against long RTTs for precisely those sources

that are not able to obtain a large rate. We can verify this

bias in the results illustrated in Fig. 12. However, note

that in practice, the case where sources have small rates

might not correspond to the regime of rare negative feed-

back, which is assumed in our paper. A verification by

simulation is thus required, and remains to be done.

B. TCP throughput-loss formula

In the steady–state, supposing that gl(�) << 1, qi
�
=P

l2LAl ;igl(fl ) corresponds to the packet loss–ratio. In

the limit case _x� =0 , as t !1 , from the limit mean

ODE (20) one can obtain

x�i =

s
ri

�i�iq
�
i

; as q�i ! 0: (35)
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Fig. 13. Correction of the TCP throughput-loss formula (not

delayed ACKs).

For a TCP connection, (35) is referred to as a TCP

throughput–loss formula

x�i =
C

�i
p
q�i

pck =s; (36)

where, from (35), C =
p
2 (resp. C = 1), for not delayed

ACKs ri =1 =�i (resp. for delayed ACKs ri =0 :5=�i),
and in both cases �i =1 =2. The reported measurements

[2] indicate that C varies substantially for different TCP

implementations.

TABLE II

LSE CORRECTION OF THE TCP THROUGHPUT-LOSS

FORMULA (ov er q�i 2 [10�4; 10�1]for �i 2 [10ms600ms] ).

ACK Type LSE(Ĉ), � = 0:5 LSE(Ĉ, �)

not delayed ACK 1:2997 1:1863, 0:5274
delayed ACK 0:9377 0:8731, 0:5215

In the derivation of (35) we used a conditional proba-

bility of negative feedback equal to xi�i
P

l:Al;i>0 gl(fl).
However, in Section II-B it is shown that, in general,

conditional probability of negative feedback has the form

1 � Ql:Al;i>0 [1� gl(fl)]
xi�i , from which the former ex-

pression follows for gl(�)! 0. In reference to [2], we con-

sider a single bottleneck so that in the steady state gl � q�i
is the packet loss–ratio. Hence, using the exponential form

of the probability of negative feedback in the limit mean

ODE, _x� =0 , as t !1 , yields a throughput–loss for-

mula of the form

ri � (ri + �ix
�
i )[1� (1� q�i )

x�i �i ] = 0: (37)

Let y�i be a solution of (37) and x�i be given by (35). Then

we compute a correction factor C� = y�iC=x�i , which is

plotted in Fig. 13. It is evident that C� depends signif-

icantly on the loss–ratio q�i . We computed Least Square

Error (LSE) fitting of the function xi = Ĉ=(�iq
�
i ) to the

solution of (37), in respect to parameters (Ĉ , � =0 :5),

and (Ĉ, �), over values of q�i and �i as indicated in Table

II. Finally, it turns out that the fitted values (Table II) are in

agreement with the parameters fitted to the measured data

of a set of TCP implementations [2].

VI. CONCLUSION

We have shown that under certain reasonable assump-

tions, congestion avoidance based on additive–increase

and multiplicative–decrease shares throughput according

to a generalization of FA fairness, which explicitly ac-

counts for communication delays and differences in round

trip times. It is important to note that this influence does

not come into play because of the delayed feedback to the

end-systems, but it is a fundamental consequence of the

diversity of the rate updating intervals. It is demonstrated

that different fairness objectives can be achieved depend-

ing on the values of additive increments and RTTs. It is

shown that throughput results [1] are an asymptotic case

of F h
A, for small additive–increase/multiplicative–decrease

ratio relatively to connection throughput. We also gave

some insight into the bias against flows with long round

trip times. Further research should concentrate on analyz-

ing the impact of RTT variations due to queueing.
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APPENDIX

I. THE LIMIT MEAN ODE

Theorem 1 ([8], Ch. 12.3, p. 364–365) Assume (12)-(16).

Then

fxi (�); �i (�); x̂(�); N
i (�); i 2 S g

is tight in D4jSj [0;1). Let  index a weakly convergent

subsequence whose weak sense limit we denote by

(xi(�); �i(�); x̂(�); Ni(�); i 2 S):

Then the limits are Lipschitz continuous with probability

one and

xi(t) = x̂i(�i(t)); x̂i(t) = xi(Ni(t)) (38)

Ni(�i(t))= t: (39)

Also,

�i(t) =

Z t

0
�ui(x̂(�i(s)))ds; (40)

_xi(t) = �hi(x̂(�i(t)))+ zi(t); (41)

_̂xi =
�hi(x̂)

�ui(x̂)
+ ẑi;i 2 S; (42)

where the zi and ẑi serve the purpose of keeping the paths

in the interval [ai; bi].

If LC is asymptotically stable in the sense of Lyapunov,

then 8� > 0 9 T� > 0 s.t. for t � T�, jjx̂(t); LC jj < �.

Also, 8T > T�,

limsup


P

(
sup

T��t�T
jjx̂(t); LC jj� �

)
= 0: (43)

For large T and T1 >T , x̂(�), t 2 [T;T 1], spends

nearly all of its time in a small neighborhood of LC . Now,

drop the constraint set C and suppose that fx̂n; ;n g is

bounded with probability one. Then the above conclusions

continue to hold with zi(t) = ẑi(t) = 0 and LC replaced

by some limit set of (42).


