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∗

L , and constraints from the Bc → τ ν̄τ lifetime, each

of which has significant impact on the fit. A global fit to a general set of Wilson coefficients

of an effective low-energy Hamiltonian is presented, the solutions of which are interpreted

in terms of hypothetical new-physics mediators. From the obtained results we predict se-
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FB , the τ polarization asymmetries PD(∗)
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longitudinal D∗ polarization fraction FD
∗

L . The latter shows presently a slight tension with
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pact. We also discuss the potential change due the very recently announced preliminary

RD(∗) measurement by the Belle collaboration.
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1 Introduction

The success of the Standard Model (SM) has reached its climax with the discovery of the

Brout-Englert-Higgs boson [1–3], which seems to suggest the simplest scenario where the

electroweak spontaneous symmetry breaking is linearly realized. In spite of its success as a

low-energy effective field theory (EFT), there are both experimental signals and conceptual

issues that cannot be accommodated in the SM framework and, therefore, motivate the

search of New Physics (NP) beyond the SM. In this context, the series of anomalies in

semi-leptonic B-meson decays, recently reported by several experiments, have caught a
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great attention in the scientific community. The unexpected deviations seem to appear in

both b→ c and b→ s semi-leptonic decay transitions when different generations of leptons

are involved, see ref. [4] for a recent review.

The b→ c transitions are of particular interest, because the necessary NP effect would

be comparable with the tree-level contribution of the SM, which in turn would require NP

to be either rather light or strongly coupled to the SM particles. Deviations from the SM

predictions in those modes have been recently observed by the BaBar [5, 6], Belle [7–9] and

LHCb [10, 11] collaborations in the ratios

RD(∗) ≡ B(B → D(∗)τ ν̄τ )

B(B → D(∗)ℓν̄ℓ)
, (1.1)

where B represents the branching ratio of the decay and ℓ denotes the light leptons, i.e., ℓ =

e, µ. The combination of these measurements performed by the Heavy Flavour Averaging

Group (HFLAV) [12] reads

Ravg
D = 0.407± 0.039± 0.024 and Ravg

D∗ = 0.306± 0.013 ± 0.007 , (1.2)

with a correlation of −20%, which shows a tension of 4.4σ with our SM predictions (see

also [12–18]),

RSM
D = 0.300+0.005

−0.004 and RSM
D∗ = 0.251+0.004

−0.003 , (1.3)

to be discussed below.1 Apart from the above observables, also the recent LHCb measure-

ment [19] of the Bc → J/Ψ ratio,

RJ/ψ ≡ B(Bc → J/ψτν̄τ )

B(Bc → J/ψµν̄µ)
= 0.71± 0.17± 0.18 , (1.4)

deviates from the SM predictions RSM
J/ψ ≈ 0.25–0.28 [20–31]. This points naively into the

same direction, although the central value is in fact so large that it cannot be accommodated

with NP contributions either.

These deviations could be interpreted as hints at lepton flavour universality violation

(LFUV), which cannot be accommodated in the SM and therefore suggest the existence

of NP. The lack of evidence of similar discrepancies in K and π semi-leptonic and purely

leptonic decays, or in electroweak precision observables, favours a scenario in which the

potential NP contribution responsible for LFUV is only coupled to the third generation of

leptons and quarks. The fact that in universality ratios large parts of the hadronic uncer-

tainties cancel, renders underestimated theory uncertainties as an explanation extremely

unlikely. This remains true considering recent discussions of radiative corrections [32, 33],

see also, e.g., refs. [34, 35] for earlier discussions. The correct inclusion of radiative correc-

tions is, however, very important for the forthcoming precision analyses.

However, recent measurements of RD∗ by LHCb [11] and Belle [9], which identify the

final τ through its hadronic decays, result in values more compatible with the SM and

yield a downward shift in the average that might suggest that the anomaly is smaller than

indicated by the above numbers.2

1Note that this prediction does not rely on experimental inputs, but includes only part of the 1/m2
q

corrections in heavy quark effective theory.
2The average of these measurements, only, agrees with the SM at the level of 1-1.5σ.
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Our work aims at a better understanding of the nature of these anomalies, assuming in

the following that they are indeed due to NP contributions and not due to underestimated

systematic uncertainties or statistical fluctuations. Instead of considering any specific NP

model, we follow a bottom-up approach, in which the available experimental input is used

to constrain any possible higher-scale effect and in this way infer information on NP without

prejudice. We do exploit, however, the consequences of the apparent absence of NP close

to the electroweak scale. Only afterwards we investigate which indications for more specific

NP scenarios can be inferred. Numerous discussions can be found in the literature [16, 36–

68], where the b → cτ ν̄τ transitions are studied from a model-independent point of view.

However, most of these works restrict their analyses to either effects from a single NP

operator or a single heavy particle mediating the interaction. We will adopt the most

general possible scenario under a set of well-motivated assumptions instead.

In addition to the ratios defined in eq. (1.1) we consider the normalized experimental

distributions of Γ(B → D(∗)τ ν̄τ ) measured by BaBar [6] and Belle [7]. Although this shape

information was shown to provide quite stringent constraints in refs. [6, 42, 46, 49, 69], it

has been so far ignored in most phenomenological analyses. We also analyze the effect of

including the recently announced value for FD
∗

L by the Belle collaboration [70],

FD
∗

L = 0.60± 0.08 (stat) ± 0.04 (syst), (1.5)

which differs from its SM prediction by 1.6σ, and discuss its consequences in detail. Other

related observables, such as PD∗

τ [9] and RJ/ψ [19], are not included due to their large

experimental uncertainties, but are predicted from our fits. Very recently, the Belle collab-

oration has announced a new preliminary measurement of RD and RD∗ [71, 72]:

RBelle
D = 0.307± 0.037± 0.016 and RBelle

D∗ = 0.283± 0.018± 0.014 , (1.6)

with a correlation of −54%. This result is compatible with the SM at the 1.2σ level.

Including this measurement in the global average yields

Ravg,new
D = 0.337± 0.030 and Ravg,new

D∗ = 0.299± 0.013 , (1.7)

which reduces the significance of the anomaly slightly; however, it still amounts to 4σ

relative to the above SM prediction.3

We present at the end of section 3 an updated analysis, including in the fit these

preliminary data, and discuss their implications.

Our paper is organized as follows: in section 2, the theoretical framework used in this

work is presented, and the physical observables and experimental inputs are defined. In

section 3, we discuss our global χ2 fit and detail the resulting values of the fitted parameters.

The interpretation of these results and their relation to NP are given in section 4, where

we complete our discussion with several additional fits, relaxing some of the assumptions.

A set of predictions for relevant observables, for which measurements will be published or

improved soon, is presented in section 5. Finally, we draw conclusions in section 6. Some

technical details are relegated to the appendices.

3We find a milder reduction in the overall significance of the anomaly than what was stated in the Belle

presentation. We obtain χ2 = 20.0 for 2 d.o.f. for the new average. Relative to the SM prediction quoted

by HFLAV [12] the significance is reduced to 3.4σ.
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2 Theoretical framework

2.1 Effective Hamiltonian

We adopt the most general SU(3)C ⊗ U(1)Q-invariant effective Hamiltonian describing

b → cℓν̄ℓ transitions at the bottom quark scale, not considering the possibility of light

right-handed neutrinos:

Hb→cℓν
eff =

4GF√
2
Vcb
[

(1 + CVL)OVL +CVROVR +CSR
OSR

+CSL
OSL

+CTOT

]

+h.c.. (2.1)

The above fermionic operators are given by4

OVL,R
= (c̄ γµbL,R)

(

ℓ̄LγµνℓL
)

, OSL,R
= (c̄ bL,R)

(

ℓ̄RνℓL
)

, OT = (c̄ σµνbL)
(

ℓ̄RσµννℓL
)

,

(2.2)

and are weighted by the corresponding Wilson coefficients Ci, which are, in general, lepton

and flavour dependent, and parametrize any possible deviation from the SM, i.e., CSM
i ≡ 0.

This effective Hamiltonian forms the basis of our analysis, restricted only by a minimal set

of well-motivated assumptions:

• Possible NP contributions are assumed to be present only in the third generation

of leptons. This is motivated by the absence of experimental evidence of deviations

from the SM in tree-level transitions involving light leptons; specifically, precision

measurements like the ratio B(τ → µντ ν̄µ)/B(τ → eντ ν̄e) = 0.9762± 0.0028 [73] and

the analysis of b → c(e, µ)ν̄(e,µ) transitions in ref. [57] constrain potential effects to

be negligible in the present context.

• The coefficient CVR is assumed to be lepton-flavour universal in our main fit. This

statement can be derived [74–76] in the context of the Standard Model Effective Field

Theory (SMEFT) [77, 78], which is the appropriate effective theory in the presence

of a sizeable energy gap above the electroweak scale if the electroweak symmetry

breaking is linearly realized. The experimental facts that no new states beyond the

SM have been found so far up to an energy scale of approximately 1TeV and that

measurements of the Higgs couplings are all consistent with the SM expectations

support this scenario. In this case, CVR is strongly constrained from b→ c(e, µ)ν̄(e,µ)
data [57], and we set it to zero for convenience. If the assumption of linearity is

relaxed, a non-universal CVR coefficient can be generated [76]; we will consider this

case separately.

• The CP-conserving limit is taken, so all Wilson coefficients Ci are assumed to be real.

This is mostly done for convenience; however, none of the measurements related to the

B anomalies refers to a CP-violating observable. Possible CP-violating contributions

have been analyzed before in, e.g., refs. [49, 63, 64, 79, 80]. Note that in the presence

of such couplings other observables can become relevant, like electric dipole moments,

see, e.g., [81, 82]. This assumption will be briefly commented in section 3.
4Note that in full generality, the neutrino flavour can be different from the charged-lepton one. However,

phenomenologically these situations are very similar, apart from the fact that no interference with the SM

occurs when the two flavours are different. We do not consider this possibility in the following.
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2.2 Form factors

The relevance of hadronic uncertainties in the determination of |Vcb| has opened an in-

tense debate about the most adequate way to parametrise the relevant hadronic form

factors [15–18, 83–86]. It has been suggested that the accuracy of the usually adopted

Caprini-Lellouch-Neubert (CLN) parametrisation [87] has been probably overestimated

and the current experimental precision requires to use more generic functional forms such

as the one advocated by Boyd, Grinstein and Lebed (BGL) [88–90]. However, we note that

the observables considered here are mostly ratios, reducing the overall form-factor sensitiv-

ity. We consider a heavy quark effective theory (HQET) [91, 92] parametrization, including

corrections of order αs, ΛQCD/mb,c and partly Λ2
QCD/m

2
c , mostly following [16, 57]. In the

heavy-quark limit all form factors either vanish or reduce to a common functional form, the

Isgur-Wise function ξ(q2) [93]. Thus, it is convenient to factor out ξ(q2) by defining [16]

ĥ(q2) = h(q2)/ξ(q2) . (2.3)

The leading Isgur-Wise function can be more conveniently expressed in terms of the

kinematical parameters

ω(q2) =
m2
B +m2

D(∗) − q2

2mBmD(∗)

and z(q2) =

√

ω(q2) + 1−
√
2

√

ω(q2) + 1 +
√
2
. (2.4)

The variable ω(q2) is the inner product of the B and D(∗) velocities, so that ω = 1

corresponds to the zero-recoil point, q2max = (mB − mD(∗))2, where ξ(q2max) = 1. The

conformal mapping z(q2) encodes in a very efficient way the analyticity properties of the

form factors, transforming the cut q2 plane into the circle |z| < 1 [94], so that a perturbative

expansion in powers of z(q2) has an optimized convergence. Up to O(z4) corrections, ξ(q2)

can be written as5

ξ(q2) = 1− ρ2 [ω(q2)− 1] + c [ω(q2)− 1]2 + d [ω(q2)− 1]3 +O([ω − 1]4) (2.5)

= 1− 8ρ2z(q2) + (64c− 16ρ2) z2(q2) + (256c− 24ρ2 + 512d) z3(q2) +O(z4) ,

and it is characterized through the parameters ρ2, c and d.

The functions ĥ(q2) introduce corrections of order ΛQCD/mb,c and Λ2
QCD/m

2
c via the

subleading Isgur-Wise functions χ2,3(ω), η(ω) at order 1/mc,b and l1,2(ω) at order 1/m2
c ,

parametrized by the parameters {χ2(1), χ
′
2(1), χ

′
3(1), η(1), η

′(1)} and {l1(1), l2(1)}, respec-
tively. They also include the corrections of order αs. The detailed parametrization of the

different form factors can be found in refs. [16, 57]. The main difference to the latter article

is the introduction of the z3 term in the leading Isgur-Wise function, that renders the fit

compatible with the extrapolation of the recent lattice data [83, 96] to large recoil.

We updated the corresponding fit to the inputs from lattice quantum chromodynamics

(QCD) [83, 96–98], light-cone sum rules [99] and QCD sum rules [100–102] (see [57] for

details); note that this fit does not make use of experimental data, thereby rendering the

5The phenomenological necessity to include orders higher than z2 in this expansion has first been found

in [95].
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Parameter Value

ρ2 1.32± 0.06

c 1.20± 0.12

d −0.84± 0.17

χ2(1) −0.058± 0.020

χ′

2(1) 0.001± 0.020

χ′

3(1) 0.036± 0.020

η(1) 0.355± 0.040

η′(1) −0.03± 0.11

l1(1) 0.14± 0.23

l2(1) 2.00± 0.30

Table 1. Inputs used to determine the form factors in the HQET parametrization as in [16]. The

first three parameters determine the leading Isgur-Wise function, while the last seven enter in the

1/mc,b and 1/m2
c corrections. The correlations between these parameters can be found in table 11

of appendix A.

form factors independent of the NP scenario considered. The results obtained for the 10

form-factor parameters are given in table 1, while the corresponding correlation matrix can

be found in table 11 of appendix A.

2.3 Observables and experimental input

We collect the formulae for the main observables entering our analysis. Starting with

B → D(∗)τ ν̄τ decays, we obtain from the effective Hamiltonian of eq. (2.1) their differential

decay rates as a function of the general set of Wilson coefficients [40, 103]:

dΓ(B̄ → Dτν̄τ )

dq2
=

G2
F |Vcb|2

192π3m3
B

q2
√

λD(q2)

(

1− m2
τ

q2

)2

×
{

|1 + CVL + CVR |2
[(

1 +
m2
τ

2q2

)

Hs,2
V,0 +

3

2

m2
τ

q2
Hs2
V,t

]

+
3

2
|CSR

+ CSL
|2Hs

S + 8 |CT |2
(

1 +
2m2

τ

q2

)

Hs2
T

+3Re
[

(1 + CVL + CVR)
(

C∗
SR

+ C∗
SL

)] mτ
√

q2
Hs
SH

s
V,t (2.6)

− 12Re [(1 + CVL + CVR)C
∗
T ]

mτ
√

q2
Hs
TH

s
V,0

}

,

and

dΓ(B̄ → D∗τ ν̄τ )

dq2

=
G2
F |Vcb|2

192π3m3
B

q2
√

λD∗(q2)

(

1− m2
τ

q2

)2

×
{

(

|1 + CVL |2 + |CVR |2
)

[(

1 +
m2
τ

2q2

)

(

H2
V,+ +H2

V,− +H2
V,0

)

+
3

2

m2
τ

q2
H2
V,t

]

– 6 –
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−2Re
[

(1 + CVL)C
∗
VR

]

[(

1 +
m2
τ

2q2

)

(

H2
V,0 + 2HV,+HV,−

)

+
3

2

m2
τ

q2
H2
V,t

]

+
3

2
|CSR

− CSL
|2H2

S + 8 |CT |2
(

1 +
2m2

τ

q2

)

(

H2
T,+ +H2

T,− +H2
T,0

)

+3Re
[

(1 + CVL − CVR)
(

C∗
SR

− C∗
SL

)] mτ
√

q2
HSHV,t

−12Re [(1 + CVL)C
∗
T ]

mτ
√

q2
(HT,0HV,0 +HT,+HV,+ −HT,−HV,−)

+12Re [CVRC
∗
T ]

mτ
√

q2
(HT,0HV,0 +HT,+HV,− −HT,−HV,+)

}

, (2.7)

where λD(∗)(q2) ≡ λ(m2
B,m

2
D(∗) , q

2) = [(mB −mD(∗))
2 − q2] [(mB +mD(∗))

2 − q2].

The helicity amplitudes, which encode the information from the hadronic form factors,

can be found in the appendix B. The values of the quark and meson masses and other

experimental inputs used in our analysis are listed in table 10 of appendix A.

Besides the semi-leptonic processes included in the fit, the pure leptonic decay Bc →
τ ν̄τ is crucial in determining the direction of potential NP effects, since it strongly con-

strains the axial (CVR − (1 + CVL)) and, especially, the pseudo-scalar (CSR
− CSL

) contri-

butions [47, 104]:

B(Bc → τ ν̄τ ) = τBc

mBc
m2
τf

2
Bc
G2
F |Vcb|2

8π

(

1− m2
τ

m2
Bc

)2

×
∣

∣

∣

∣

1 + CVL − CVR +
m2
Bc

mτ (mb +mc)
(CSR

− CSL
)

∣

∣

∣

∣

2

. (2.8)

From these expressions, four classes of observables are obtained that are determined

in experimental analyses:

• The ratios RD(∗)

Experimental measurements of the ratios RD and RD∗ have been published by

BaBar [5, 6], LHCb [10, 11], and Belle [7–9] (see also [71]) using different tech-

niques. These results have been averaged by the HFLAV collaboration, giving the

values listed in eq. (1.2) [12]. The results for each experiment and their average are

also shown in figure 1, with and without the result from refs. [71, 72].

As mentioned above, these ratios are advantageous both theoretically and experimen-

tally, as they allow for the cancellation of uncertainties, specifically the CKM factors

and leading form factor uncertainties on the theoretical side.

• Differential distributions of the decay rates Γ(B → D(*) τ ν̄τ )

Belle and BaBar have also provided data on the measured q2 distributions for B →
D(∗)τ ν̄τ [5, 7]. We show the reported binned values in appendix A, table 9. Since

the global normalizations of these distributions are effectively already included via

the values for RD(∗) in these analyses, they are not independent degrees of freedom.

This can be taken into account either by introducing a free normalization factor for

– 7 –
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Figure 1. Measurements forRD andRD∗ , averaged for each experiment where applicable (contours

corresponding to 68% CL), our SM prediction and the global average (performed by HFLAV on

the left, by us including the new preliminary Belle measurement [71, 72] on the right; filled ellipses

correspond to 68 and 95% CL).

the distributions as in ref. [49] or by normalizing the differential binned distributions

in the following way:

Γ̃(B → D(∗)τ ν̄τ )bin ≡ Γ(B → D(∗)τ ν̄τ )bin
∑

all bins

Γ(B → D(∗)τ ν̄τ )bin
, (2.9)

which keeps the information about the shape of the distribution, independently of

the global normalization. The treatment of systematic uncertainties and correlations

follows ref. [49].

• The leptonic decay rate Bc → τ ν̄τ

While this decay is not expected to be measured in the foreseeable future, it can still

be used as a constraint in the following way: a 30–40% upper bound can be derived

from the Bc lifetime [47, 49, 105]. A more stringent 10% bound has been recently

obtained from LEP data at the Z peak [106], and it may become even stronger by

performing the analysis with the full L3 data [107]. However, this bound assumes the

probability of a b quark hadronising into a Bc meson to be the same at LEP (e+e−),

the Tevatron (pp̄) and LHCb (pp), which exhibit very different transverse momenta.

This is known to be a bad approximation in the case of b-baryons, see ref. [12]. The

bound also makes use of the SM theoretical prediction for B(Bc → J/Ψℓν̄ℓ). See also

ref. [63] for a more detailed discussion.

In our fits, we will compare the two options of imposing the upper bounds B(Bc →
τ ν̄τ ) < 10% (30%). The bounds are used in a way that only points in the parameter

space that fulfill this constraint will be considered.6

6The uncertainty due to the precise numerical value of Vcb (which might to a small extent also be affected

by NP) is considered to be included in these bounds.
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• The longitudinal polarization fraction FD
∗

L

A measurement of the D∗ longitudinal polarization fraction, defined as

FD
∗

L =
ΓλD∗=0(B → D(∗)τ ν̄τ )

Γ(B → D(∗)τ ν̄τ )
, (2.10)

has been recently announced by the Belle collaboration [70]. The explicit expression

for ΓλD∗=0(B → D(∗)τ ν̄τ ) is given in appendix C. Being normalized to the total

rate, this observable also enjoys the advantages of the other ratios. To study the

implications of this measurement, we perform one fit with it and one without it.

3 Fit and results

In order to extract the information on the NP parameters Ci, we perform a standard χ2

fit. The χ2 function can be splitted in two parts,

χ2 = χ2
exp + χ2

FF , (3.1)

where χ2
exp contains the experimental information discussed in the last subsection (again

a sum of the three main contributions) and χ2
FF the information on the form factors dis-

cussed in section 2.2 in the form of pseudoobservables with the “experimental” information

presented in table 1. Each individual χ2 is defined as:

χ2(yi) = F T (yi)V
−1 F (yi) , F (yi) = fth(yi)− fexp , Vij = ρijσiσj , (3.2)

with yi denoting the input parameters of the fit, i.e., yi = {CVL , CSL
, CSR

, CT , ρ
2, c, d,

χ2(1), χ
′
2(1), χ

′
3(1), η(1), η

′(1), l1(1), l2(1)}, ρij the correlation between the observables

i and j, and σi the uncertainty of the observable i. In the above equation, fth represents

the theoretical expression for a certain observable and fexp its experimental value. The

contribution from the limit on the branching fraction of Bc → τ ν̄τ is implemented as a

Heavyside Theta function, its contribution being zero for parameter combinations where

the limit is obeyed and infinity for those where it is not. The uncertainty of a parameter yi
is determined as the shift ∆yi in that parameter, where the minimization of χ2|yi=ymin

i +∆yi

varying all remaining parameters in the vicinity of the minimum leads to an increase of

∆χ2 = 1.

3.1 Standard Model

We start by discussing the situation in the SM, corresponding to Ci ≡ 0. The global fit

to the data discussed above does actually appear to be reasonable: we obtain χ2
min = 65.5

for, naively, 57 degrees of freedom (d.o.f.), corresponding to a naive confidence level (CL)

of ∼ 20%. However, these numbers are misleading for the following reason: the systematic

uncertainties added to the dΓ/dq2 distributions have been chosen to be maximally conser-

vative. Therefore, it can be expected that the corresponding χ2 contribution is reduced;

this is indeed seen since the contribution from these distributions is χ2
min,dΓ ∼ 43 for, again
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naively, 54 d.o.f.. Considering instead the contribution from RD(∗) , we do of course repro-

duce the well-known puzzle, i.e., we obtain χ2 = 22.6 for 2 d.o.f., corresponding to a 4.4σ

tension. Note also that the limit from the Bc lifetime is irrelevant in the SM fit.

These observations imply that also NP scenarios should not be judged simply by χ2

vs. d.o.f., but by the improvement they yield when compared to the SM.

3.2 New physics

Since the Wilson coefficients enter each observable bilinearly (the coefficient of the left-

handed vector operator being (1 + CVL)), there is a degeneracy between a set of Wilson

coefficients and a mirror minimum with

C
′

VL
= −2− CVL and C

′

i = −Ci for i = SR, SL, T . (3.3)

The two sets of Wilson coefficients give identical predictions for all observables and con-

sequently have the same χ2 value.7 In the following, we will always discuss the closest

minimum to the SM scenario, i.e., with smaller |CVL |, and will omit the sign-flipped solu-

tion; this corresponds to considering only values CVL ≥ −1.

The global fit to the data described in section 2.3 without including the longitudinal

polarization yields a unique global minimum (for CVL > −1) with χ2
Min 1 = 34.1 for 53

d.o.f.; in addition, we find two local minima, with χ2
Min 2 = 37.5 and χ2

Min 3 = 58.6,

the latter of which is, however, highly disfavoured by the differential distributions. We

summarize the results for the NP parameters in table 2. Including the recently announced

longitudinal polarization in the global fit, we find that the overall structure for the lower two

minima remains the same; however, this observable reduces slightly the available parameter

space for the NP parameters. The central values of the scalar NP parameters are smaller

for the global minimum, while the 1σ-ranges remain almost constant. The most striking

effect is that the already less favoured local minimum disappears. The results for the

NP parameters in this context can be found in table 3. In both cases the form factor

parameters reproduce their input distributions up to very small shifts. For illustration we

show graphically in figure 2 the NP parameters for the different minima obtained in the two

scenarios. There are important correlations between the NP parameters obtained from the

fit. We illustrate them in the two-dimensional plots in figure 3 for the different scenarios.

The contours shown there are relative to the global minimum.

We note that the distributions for, especially, the scalar parameters are highly non-

gaussian. Reasons are the way the upper limit on B(Bc → τ ν̄τ ) is included and the fact that

the first two minima overlap to some extent. The former is also the reason for the strong

asymmetry in the uncertainties for CSL,R
. Since only their sum and difference enter B → D

and B → D∗ decays, respectively, these parameters are furthermore highly correlated. The

local minima are not very deep, resulting in complications in the determination of the

uncertainties for the Wilson coefficients at these points.

The fit results for the RD and RD∗ ratios at the different minima are presented in

figure 4. As expected, the predictions obtained from the fit are compatible at the 1σ level

7This discrete degeneracy is what is left of the continuous rephasing invariance when considering complex

contributions, i.e., the invariance under shifting all coefficients by the same complex phase.
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Figure 2. Wilson coefficients for the minima obtained in the global fit with and without including

the FD
∗

L
polarization. On the left (right) panel, B(Bc → τ ν̄τ ) < 10% (30%). See tables 2 and 3 for

the explicit values.

Min 1 Min 2 Min 3 Min 1 Min 2 Min 3

B(Bc → τν) 10% 30%

χ2
min/d.o.f. 34.1/53 37.5/53 58.6/53 33.8/53 36.6/53 58.4/53

CVL
0.17+0.13

−0.14 0.41+0.05
−0.06 −0.57+0.23

−0.24 0.19+0.13
−0.17 0.42+0.06

−0.06 −0.54+0.23
−0.24

CSR
−0.39+0.38

−0.15 −1.15+0.18
−0.08 0.06+0.59

−0.19 −0.56+0.49
−0.17 −1.33+0.25

−0.08 −0.14+0.69
−0.18

CSL
0.36+0.11

−0.35 −0.34+0.12
−0.19 0.64+0.13

−0.49 0.54+0.10
−0.46 −0.16+0.13

−0.22 0.81+0.12
−0.58

CT 0.01+0.06
−0.05 0.12+0.04

−0.04 0.32+0.02
−0.03 0.01+0.07

−0.05 0.12+0.04
−0.04 0.32+0.02

−0.03

Table 2. NP parameters for the minima obtained from the χ2 minimization and 1σ uncertainties.

There are, in addition, three corresponding sign-flipped minima, as indicated in eq. (3.3). In the

first three columns, the constraint B(Bc → τ ν̄τ ) ≤ 10% has been applied, whereas in the last three

columns, this requirement has been relaxed to B(Bc → τ ν̄τ ) ≤ 30%.

Min 1b Min 2b Min 1b Min 2b

B(Bc → τν) 10% 30%

χ2
min/d.o.f. 37.6/54 42.1/54 37.6 /54 42.0/54

CVL
0.14+0.14

−0.12 0.41+0.05
−0.05 0.14+0.14

−0.14 0.40+0.06
−0.07

CSR
0.09+0.14

−0.52 −1.15+0.18
−0.09 0.09+0.33

−0.56 −1.34+0.57
−0.08

CSL
−0.09+0.52

−0.11 −0.34+0.13
−0.19 −0.09+0.68

−0.21 −0.18+0.13
−0.57

CT 0.02+0.05
−0.05 0.12+0.04

−0.04 0.02+0.05
−0.05 0.11+0.03

−0.04

Table 3. NP parameters for the minima obtained from the χ2 minimization including FD
∗

L
and

their 1σ uncertainties. There are, in addition, the corresponding sign-flipped minima, as indicated

in eq. (3.3).
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Figure 3. Allowed regions for all possible combinations of two Wilson coefficients for different

scenarios: blue areas (lighter 95% and darker 68% CL) show the minima without FD
∗

L and with

B(Bc → τ ν̄τ ) ≤ 30%. The yellow lines display how the 95% CL bounds change when B(Bc → τ ν̄τ ) ≤
10%. The dashed lines show the effect of adding the observable FD

∗

L for both B(Bc → τ ν̄τ ) ≤ 30%

(purple) and for B(Bc → τ ν̄τ ) ≤ 10% (orange).

with the experimental data, in the case of Min 1 and Min 1b essentially reproducing them.

From the fit results without including FD
∗

L , the following information can be extracted:

• The reduction of the global χ2 by 31.4 (31.7) for 4 NP parameters implies a strong

preference of NP compared to the SM, taking the present data set at face value and

B(Bc → τ ν̄τ ) ≤ 10% (30%).

• There is no absolute preference of a single Wilson coefficient in the sense that for the

global minimum each individual Wilson coefficient is compatible with zero within at

most 1.1σ.

• On the other hand, considering scenarios with only a single Wilson coefficient present,

there is a clear preference for CVL : removing the other three Wilson coefficients

increases χ2 only by 1.4, corresponding to 0.14σ. Hence, Min 1 is well compatible

with a global modification of the SM, that is, CVL being the only non-zero coefficient.

• The other two minima are numerically further away from the SM; instead of a single

dominant contribution, there are several sizeable Wilson coefficients whose contribu-

tions partly cancel each other in some observables. These minima also imply different

values for the fitted observables: Min 2 corresponds to a slightly worse fit for both,
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Figure 4. Predictions for RD (higher numerical values) and RD∗ (lower numerical values) for

the minima obtained in the fit, both with and without including FD
∗

L
, with B(Bc → τ ν̄τ ) ≤ 10%

and B(Bc → τ ν̄τ ) ≤ 30%. The experimental values are represented by the horizontal black lines,

with their corresponding uncertainties (grey bands). The blue lines show the SM predictions,

RD = 0.300+0.005

−0.004 (upper blue line) and RD∗ = 0.251+0.004

−0.003 (lower blue line).

RD(∗) and their q2 distributions, while Min 3 fits RD(∗) perfectly, but is essentially

already excluded by the (rather coarse) measurements of the distributions available.

• All minima saturate the constraint B(Bc → τ ν̄τ ) ≤ 10% (30%). Relaxing the upper

bound allows for a larger splitting between the two scalar Wilson coefficients, and the

contribution of the scalar operators gets enlarged. This constraint is consequently the

main argument at low energies disfavouring a solution with only scalar coefficients.

Any such solution would require a lower value for RD∗ by about 2σ.

• Having solutions with relevant contributions from all Wilson coefficients illustrates

the importance of taking into account scalar and tensor operators in the fit.

• The fit results for the form factor parameters reproduce their input values displayed in

table 1 up to tiny shifts. This implies that the uncertainties of the experimental data

with tauonic final states are large compared to the hadronic uncertainties. Differently

stated, while the ranges obtained for the NP parameters are obtained in fits varying

all form factor parameters simultaneously with the NP ones, they are essentially

determined by the experimental uncertainties at the moment.

• Generalizing the fit to complex Wilson coefficients does not improve the minimal χ2

value, but opens up a continuum of solutions. Hence complex Wilson coefficients can

explain the anomalies as well as real ones, but they do not offer any clear advantages

regarding the fit quality, so they have not been considered here for simplicity. It

should be mentioned, however, that in specific models the option of complex Wil-

son coefficients can open up qualitatively new solutions, as for example the model

proposed in ref. [79], where only the coefficients CSL,T (CSL
∼ CT ) are present, re-

quiring a non-vanishing imaginary part in order to accommodate the experimental
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data. This fact implies correlations with new observables like electric dipole mo-

ments, which can then be used to differentiate this model from solutions allowing for

real coefficients [82].

• As discussed above, for each minimum given in table 2 there is a degenerate solution,

see eq. (3.3).

Including the recent measurement of the longitudinal polarization FD
∗

L in the global

fit, the above statements hold up to the following differences:

• Still there is no clear preference for a single Wilson coefficient. The central values

for the scalar coefficients are smaller for the global minimum, such that the bound

from the Bc lifetime is not saturated even in the 10% case. As a consequence, the

minimum does not change when allowing for larger values of B(Bc → τ ν̄τ ), only the

allowed parameter ranges increase.

• The second local minimum (previously referred to as Min 3) disappears.

It is not straightforward to compare our fit with the results from other analyses in the

literature, because we are including the information from the q2 distributions that has

been ignored in previous fits with the exception of refs. [42, 46, 49, 69]. Besides that,

some works include additional observables such as RJ/ψ or slightly different bounds on

B(Bc → τ ν̄τ ). Nevertheless, comparing the findings of previous fits with our results is

quite enlightening since it illustrates the relevance of the additional observables we are

considering.

Generic fits to the RD(∗) world averages in eq. (1.2), with the effective Hamiltonian

of eq. (2.1) [16, 36–61, 63, 64], have shown the existence of many possible solutions, some

of them involving only one or two Wilson coefficients. Including the B(Bc → τ ν̄τ ) upper

bound reduces the number of allowed possibilities, but several different scenarios remain

still consistent with the data. Dropping the binned q2 distributions from our fit, we can

easily reproduce all those solutions. However, most of them lead to differential distributions

in clear conflict with the BaBar and Belle measurements. While a sizeable new-physics

contribution to some Wilson coefficient can easily generate the needed enhancement of the

B → D(∗)τ ν̄τ rates, it tends to distort the shape of the differential distributions in a way

than can no-longer accommodate the data, similarly to what happens for Min 3. Once

the full experimental information on RD(∗) (rates and binned distributions) is taken into

account, the χ2 minimization only gives the three solutions shown in table 2, and when

including FD
∗

L in the fit, the number of solutions is further reduced to two.

Finally, a few comments on the very recent measurement of RD and RD∗ released

in Moriond by Belle [71, 72] are in order. It should be kept in mind, however, that these

results are still preliminary. Including the new average in the fit (see figure 1), we find again

qualitatively similar solutions as before, as can be seen by comparing the numerical results

in tables 3 and 4. We show for simplicity only the solutions with B(Bc → τ ν̄τ ) < 10%;

increasing this limit results again essentially in larger ranges for especially the scalar Wilson

coefficients, although the new global minimum now does saturate this limit, so also the
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Min 1b Min 2b

χ2
min/d.o.f. 37.4/54 40.1/54

CVL
0.09+0.13

−0.11 0.35+0.04
−0.07

CSR
0.14+0.06

−0.67 −1.27+0.66
−0.07

CSL
−0.20+0.58

−0.03 −0.30+0.12
−0.51

CT 0.007+0.046
−0.044 0.091+0.029

−0.030

Table 4. Minima and 1σ uncertainties obtained from the global χ2 minimization, including the

new preliminary result measured by Belle on the RD(∗) ratios and the FD
∗

L polarization, using

B(Bc → τ ν̄τ ) < 10%. There are, in addition, the corresponding sign-flipped minima, as indicated

in eq. (3.3).

central values do change. Again all individual coefficients are roughly compatible with zero

at 1σ. CVL alone also still provides an excellent fit to all the data, now with a smaller central

value of ∼ 0.08. Interestingly, the fit with only CT is improved by the new results, which,

however, does not correspond to a simple single-mediator scenario, as discussed below.

However, related to that observation, also the fit in the scenario of ref. [79] improves by

∆χ2 = −1.8 (for B(Bc → τ ν̄τ ) < 30%).

4 Interpretation of results

In section 3 we have described the global fit to the available data on b→ cτ ν̄τ transitions

in terms of the Wilson coefficients of an EFT framework defined at the b-quark mass

scale. The EFT in this range is conventionally called Weak Effective Theory (WET)

and is composed of the five lightest quarks and the three generations of leptons, and

ruled by the SU(3)C ⊗ U(1)Q gauge symmetry. This is a valid approach assuming —

as strongly suggested by all available collider data — that no new degree of freedom

exists coupling to this channel with a mass around or lower than the b quark. However,

ultimately the goal is to gain insight into the high-energy structure of the theory. To that

aim, renormalization-group techniques are used to relate the coefficients extracted in our

analysis to those relevant at the scale of the potential new high-energy degree(s) of freedom.

This process involves several scales and thresholds, see figure 5.

The relation to the coefficients at the electroweak scale is determined by QCD and are

known [108–111]. Above the electroweak (EW) scale, the Lagrangian has not undergone

spontaneous symmetry breaking and, therefore, the fermionic fields should be expressed

in terms of weak eigenstates rather than mass eigenstates. Moreover, the top quark, the

electroweak gauge bosons and the Higgs boson have to be considered as new degrees of

freedom in the theory. The relevant framework at this scale is the full SM, with the addition

of the effects of NP. For relatively low NP scales . 1TeV, the relevant new degrees of

freedom can be included explicitly. However, the suggested absence of new degrees of

freedom below ∼ 1TeV allows us to parametrize any NP contribution in the framework of

another effective theory. This can be the so-called SMEFT under the conditions specified
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Figure 5. Relevant scales for the study of the B anomalies. The dashed lines indicate the thresholds

between different EFTs.

in section 2, or a more general framework with a non-linear representation for the Higgs,

see, e.g., refs. [112, 113].

In SMEFT, the effective lagrangian can be expanded in inverse powers of the NP scale,

ΛNP, i.e.,

LNP =
∑

d=6

1

Λd−4
NP

∑

i

C
(d)
i O(d)

i , (4.1)

built from a series of higher-dimensional operators in terms of the SM fields and invariant

under the SM gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y [77]. A convenient complete and

non-redundant basis of dimension-six operators is the Warsaw basis [78]. In order to relate

both EFTs, the matching between the WET theory and the SMEFT has to be performed

at the EW scale [74, 75, 110, 111, 114, 115]. The matching onto the basis in the non-linear

case [116, 117] is given in ref. [76].

Finally, one has to consider the running from ΛEW to ΛNP [60, 118–121]. The corre-

sponding equations can be solved numerically, but also analytically to very good approxi-

mation [122].

As an illustration of the effect of the running, we show the relation between the WET

Wilson coefficients at µb ≈ 5GeV and the SMEFT Wilson coefficients at an hypothetical

NP scale of Λ = 1TeV, calculated in refs. [60, 121], which can be trivially inverted:

CVL(µb) = −1.503 C̃VL(Λ) ,

CSL
(µb) = −1.257 C̃SL

(Λ) + 0.2076 C̃T (Λ) ,

CSR
(µb) = −1.254 C̃SR

(Λ) , (4.2)

CT (µb) = 0.002725 C̃SL
(Λ)− 0.6059 C̃T (Λ) .

For a discussion of the notation used for the SMEFT Wilson coefficients in the Warsaw

basis see appendix E.

With the coefficients at the potential NP scale at hand, one can try to go beyond the

EFT framework and get an idea about which class of NP might be responsible for the

observed pattern: at the scale Λ, the coefficients Ci should result from integrating out the

– 16 –



J
H
E
P
0
9
(
2
0
1
9
)
1
0
3

Spin Q.N. Nature Allowed couplings SMEFT WET

0 S1 ∼ (3̄, 1, 1/3) LQ qcLℓL, dRu
c
R, u

c
ReR C̃VL

, C̃SL
, C̃T CVL

, CSL
, CT

0 S3 ∼ (3̄, 3, 1/3) LQ qcLℓL C̃VL
CVL

0 R2 ∼ (3, 2, 7/6) LQ uRℓL, qLeR C̃SL
, C̃T CSL

, CT

0 H2 ∼ (1, 2, 1/2) SB qLdR, ℓLeR, uRqL C̃SR
, C̃SL

CSR
, CSL

, CT

1 V2 ∼ (3̄, 2, 5/6) LQ dcRγµℓL, e
c
RγµqL C̃SR

CSR

1 U1 ∼ (3, 1, 2/3) LQ qLγµℓL, dRγµeR C̃VL
, C̃SR

CVL
, CSR

1 U3 ∼ (3, 3, 2/3) LQ qLγµℓL C̃VL
CVL

1 W ′

µ ∼ (1, 3, 0) VB ℓLγµℓL, qLγµqL C̃VL
CVL

Table 5. Spin, SU(3)C ⊗ SU(2)L ⊗ U(1)Y quantum numbers, nature (LQ = leptoquarks, SB =

scalar boson and VB = vector boson) and allowed interactions of the possible candidates to mediate

b→ c transitions. In our notation, Ψc
L ≡ (ΨL)

c.

new heavy degrees of freedom. In table 5, the quantum numbers of all possible candidates

able to participate in the b → c transitions are listed and their nature is identified (see

also [42]). We note that, in some cases, a given NP mediator may contribute to more than

one Wilson coefficient, thus resulting in correlations among them. In appendix D, we list

the effective Lagrangians obtained after integrating out each of the possible heavy degrees

of freedom. We show in the last two columns of table 5 the set of Wilson coefficients

to which the new degrees of freedom contribute, both in the SMEFT and in the WET.

The RGE running changes the relative size of these coefficients, as seen above, and causes

mixing among the operators OSL
and OT . When considering such specific classes of models,

generally other constraints apply. Specifically, searches for the corresponding mediators can

exclude a large part of the parameter space, or even the whole scenario (like the W ′) [123–

125]. In the following we will not discuss these constraints, but simply give examples for

how the required coefficients could be generated, irrespective of their actual viability.

We are now in a position to interpret the different solutions obtained in the fit shown

in table 2 and table 3. Let us focus first on the scenarios where FD
∗

L is not included. The

minimum with highest χ2, Min 3, presents relevant contributions from the operators OSL

and OT . The origin of these Wilson coefficients could be explained, for instance, with the

presence of the scalar leptoquarks R2 ∼ (3, 2, 7/6) or S1 ∼ (3̄, 1, 1/3), whose contributions

to the Lagrangian at the NP scale are given in appendix D. An additional mediator would

be necessary to generate the sizeable contribution to CVL , however, in the former case.

Min 2, which exhibits non-zero values for all Wilson coefficients, could be explained by

combinations of several candidates, for instance S1 and H2. Also for Min 1 there are

different possibilities, since the fit does not single out a specific coefficient. However, the

simplest option remains the scenario where the only relevant contribution is proportional

to the SM one, i.e., all Wilson coefficients but CVL are compatible with zero at 1.1σ. This

possibility could be generated, for instance, by the effect of a W
′

boson,

Leff ⊃ −
g̃ℓνℓ g̃

†
du

M2
W ′

(ℓ̄LγµνℓL)(ūLγ
µdL) , (4.3)
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with MW ′/(g̃ℓνℓ g̃
†
du)

1/2 ∼ 2TeV. For a sequential W ′ with SM couplings, one would need

MW ′ ∼ 0.2TeV, which is already ruled out by direct searches [126]. More exotically, but

more realistically given the aforementioned high-energy constraints, one could explain the

modification on the OVL operator by introducing leptoquarks (LQs), such as the vector

U3 ∼ (3, 3, 2/3) or the scalar S1 ∼ (3̄, 3, 1/3) LQs. However, extra symmetries in the

UV regime would have to be assumed in order to guarantee that other flavour transitions

compatible with the SM are respected.

In figure 6 we show the dependence of selected observables on individual Wilson coeffi-

cients. The left-top panel in figure 6 shows that it is straightforward to achieve consistency

with the experimental measurements for RD(∗) by shifting only the Wilson coefficient CVL ,

i.e., modifying the SM coefficient. The polarization observables show a good potential to

differentiate between different contributions. Particularly interesting is the longitudinal

polarization fraction in B → D∗τ ν̄τ , shown in the bottom-right panel, for which the Belle

collaboration recently announced a first measurement [70]. As this sub-figure shows, it is

difficult to accommodate it at 1σ for any of the individual Wilson coefficients [127]. The

only contributions allowing for a significantly larger value of this observable than in the

SM are those from scalar operators; however, values accommodating FD
∗

L are in conflict

with the bound from B(Bc → τ ν̄τ ) < 10% (dashed lines), and extending this bound to 30%

still does not allow to accommodate its central value. This figure therefore indicates why

none of the fit scenarios yields values for FD
∗

L in the 1σ range; we take this as a motivation

to investigate the consistency of the different measurements in more detail.

In order to do so, we use the fact that only three combinations of the four Wilson

coefficients enter B → D∗τ ν̄τ observables as well as the leptonic Bc decay: CVL , CT and

the pseudo-scalar coefficient CP ≡ CSR
−CSL

. Every observable therefore results in a non-

trivial constraint in the CP −CVL plane if CT is fixed to some value. We show the preferred

parameter ranges obtained for the individual observables in figure 7, for a representative

set of CT values. The combination of RD∗ and the bound on B(Bc → τ ν̄τ ) determines

a narrow strip in this parameter plane, dominated by the former for the bound on CVL
and the latter for the bound on CP . The overlap of the other observables varies with the

value for CT ; however, there is no value of CT for which all 1σ bands overlap. In fact,

the 1σ range for FD
∗

L cannot be reached by any NP parameter combination in this setup,

when only imposing the B(Bc → τ ν̄τ ) constraint of 10% or even 30% and at the same

time requiring a positive shift in RD∗ . Agreement can presently be achieved at the 2σ

level; nevertheless, a confirmation of the present central values with higher precision could

indicate the inconsistency between the data and any NP with flavour-universal CVR .

This potential incompatibility would suggest one of several possibilities:

1) One of our theoretical assumptions is incorrect and the SMEFT cannot be applied

at the electroweak scale. This could happen if one or several of the following cases

apply: (a) There is an insufficient gap between the electroweak and the NP scale, i.e.,

there are new degrees of freedom close enough to the EW scale to invalidate an EFT

approach. (b) The electroweak symmetry breaking is non-linear, changing also the

character of the observed Higgs-like particle. In that case CVR could contribute to
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Figure 6. Individual contributions of the Wilson coefficients of the WET Hamiltonian in different

observables (∆X ≡ X − XSM): correlation between ∆RD and ∆RD∗ , and ∆RD∗ , ∆PD
∗

τ
and

∆FD
∗

L
as a function of the Wilson coefficients. Left-top panel: the experimental central value is

denoted by a black cross and the 1σ, 2σ and 3σ uncertainties by yellow rings. Right-top and bottom

panels: experimental central values are displayed by a solid yellow line and their 1σ uncertainty by

a yellow band. Dashed lines indicate regions excluded by the constraint B(Bc → τ ν̄τ ) < 10%.

the fitted observables, because it would no-longer be necessarily flavour universal. (c)

There are additional light degrees of freedom like right-handed neutrinos [128–130],

yielding additional operators.

Note that we also assumed the semi-leptonic decays with light leptons to be free

from NP. However, the corresponding constraints are so strong that even relaxing

this assumption would not significantly change our analysis [57].

2) An unidentified or underestimated systematic uncertainty in one or several of the

experimental measurements.

In any case, the upcoming experimental studies of not only the LHCb collaboration, but also

the Belle II experiment which started to take data will hopefully resolve this question soon.
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Figure 7. Allowed regions at 1σ from FD
∗

L (blue), RD∗ (green), PD∗

τ (gray grid) and the q2

distribution of Γ(B → D∗τ ν̄τ ) (red), together with the region satisfying the bound B(Bc → τ ν̄τ ) <

10% (orange).

For completeness of our discussion, we have consequently performed the fit relaxing

the condition of flavour universality on CVR . As a consequence of adding CVR as an extra

d.o.f. to fit, the number of solutions is enlarged. As shown in figure 8, one finds now four

different solutions (plus their sign-flipped counterparts), given numerically in table 6.

The doubling of minima can be understood qualitatively in the following way: B →
D is dominated by the combination of Wilson coefficients corresponding to the vector

coupling CV = 1 + CVL + CVR , while B → D∗ is dominated by the axial-vector coupling

CA = CVR − (1 + CVL). Their rates are correspondingly roughly given by |CV,A|2. For

CVR ≡ 0 we have CV = −CA, and the only remaining discrete symmetry is that discussed

in section 3.2, the second solution being eliminated by our choice CVL > −1. With a

finite coefficient CVR , these two solutions become four ({CA = ±|CA|, CV = ±|CV |}), since
now |CA| 6= |CV |; two of those are again eliminated by our choice for CVL , leaving two

solutions per minimum with CVR ≡ 0. This degeneracy is broken by interference terms,

notably Re(CAC
∗
V ) in B → D∗, but also the interference with scalar and tensor operators.

Nevertheless, this approximate degeneracy explains the doubling of solutions for finite CVR .
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Min 4 Min 5 Min 6 Min 7

χ2
min/d.o.f. 32.5/53 33.3/53 37.6/53 38.9/53

CVL
−0.91+0.10

−0.09 −0.85+0.20
−0.10 0.14+0.14

−0.12 0.35+0.08
−0.08

CVR
1.89+0.19

−0.22 −1.58+0.23
−0.22 0.02+0.21

−0.24 0.34+0.18
−0.18

CSR
−0.44+0.12

−0.45 −0.33+0.52
−0.16 0.10+0.15

−0.59 −0.68+0.54
−0.14

CSL
−1.34+0.49

−0.12 0.56+0.23
−0.54 −0.12+0.65

−0.15 −0.92+0.58
−0.11

CT −0.22+0.10
−0.11 0.19+0.10

−0.10 0.01+0.09
−0.07 −0.02+0.08

−0.07

Table 6. Minima with their 1σ uncertainties obtained from the global χ2 minimization, including

FD
∗

L and B(Bc → τ ν̄τ ) < 10% in the fit while allowing for CVR
6= 0. There are, in addition, the

corresponding sign-flipped minima, as indicated in eq. (3.3).

Figure 8. Allowed regions in the CVR
− CVL

plane, for the global fit including FD
∗

L , restricting

B(Bc → τν) ≤ 10%. Lighter and darker blue areas show regions with 95% and 68% CL, respectively.

Left: all four minima shown in the chosen parameter convention with CVL
> −1, relative to the

global minimum. Center: the two minima with CVL
∼ −1, without restricting CVL

> −1, see text.

Right: the two minima with |CVR,L
| < 1, relative to Min 6.

As can be seen from the comparison of table 6 with table 3, the previous global

minimum, Min 1b, remains a solution of this more general fit, now called Min 6. Min 7 is

again relatively close to Min 6, however with a significant contribution from CVR and hence

qualitatively different from Min 2 in the previous fits. The new global minimum Min 4 and

the close-lying Min 5 improve the agreement of the fit with the data significantly. However,

in these scenarios the SM coefficient is almost completely cancelled and its effect replaced

by several NP contributions. These are hence fine-tuned scenarios, and should be taken

with a grain of salt.

We have also analyzed the individual observables in B → D∗ and the bound on B(Bc →
τ ν̄τ ) for this case. This is illustrated in figure 9, for different benchmark values of CVL and

CT , in the plane CVR − CP . The figure shows again the allowed regions at 1σ for the

different observables. In accordance with the above reduction for χ2
min, we observe that in

this case it is possible to have an overlap of all the bands. However, it is still not possible to

reach the central value for the longitudinal polarization fraction, and as mentioned above,

this scenario corresponds to a highly fine-tuned combination of parameters.
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Figure 9. Allowed regions at 1σ from FD
∗

L (blue), RD∗ (green), PD
∗

τ (gray grid) and the q2

distribution of Γ(B → D∗τ ν̄τ ) (red), together with the region satisfying the bound B(Bc → τ ν̄τ ) <

10% (orange), with CVR
6= 0.

5 Predictions

We use our global fits from section 3 to predict selected observables that are either not

measured yet, but expected to be measured soon, or presently measured with uncertainties

that are larger than those from the fits. These additional measurements serve two purposes:

firstly, they provide additional information that is theoretically related, but experimentally

independent (to varying extent) from existing measurements, thereby helping to establish

NP and excluding underestimated systematic uncertainties as the source for the anomaly.

Secondly, they can provide experimental information on combinations of Wilson coefficients

that are not or only weakly constrained so far, thereby allowing to distinguish different

NP scenarios.

We will first present the predictions for observables of the key modes B → D(∗)τ ν̄τ ,

before focusing on other semi-leptonic decays, specifically Λb → Λc τ ν̄τ and Bc → J/ψ τ ν̄τ .
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5.1 Predictions for B → D
(∗)

τ ν̄τ observables

We start by analyzing the q2 distributions of several angular observables. While these

distributions can be very effective in distinguishing different NP scenarios, they are difficult

to measure, due to the missing information on the neutrinos. The angular dependence

of the differential decay width B → D(∗)ℓν can be parametrized by three independent

angular coefficients,

d2ΓD
(∗)

dq2 d cos θℓ
= a

(∗)
ℓ (q2)− b

(∗)
ℓ (q2) cos θℓ + c

(∗)
ℓ (q2) cos2 θℓ , (5.1)

which are in principle experimentally accessible. Here, θℓ is the angle between the D(∗)

and charged-lepton three-momenta in the ℓ–ν center-of-mass frame. An angular observ-

able commonly defined in the literature is the forward-backward asymmetry, which is

determined by the b
(∗)
ℓ (q2) coefficient according to the following expression:

AD(∗)

FB (q2) ≡ b
(∗)
ℓ (q2)

/

dΓD
(∗)

dq2

=

(

∫ 0

−1
d cos θℓ

d2ΓD
(∗)

dq2d cos θℓ
−
∫ 1

0
d cos θℓ

d2ΓD
(∗)

dq2d cos θℓ

)/

dΓD
(∗)

dq2
. (5.2)

This observable yields complementary information, since it does not contribute for quan-

tities integrated over the full range of cos θℓ. One can also decompose the differential

branching ratio according to the two possible polarizations of the charged (τ) lepton, giv-

ing rise to another observable named τ polarization asymmetry:

PD(∗)

τ (q2) =





dΓD
(∗)

λτ=1/2

dq2
−
dΓD

(∗)

λτ=−1/2

dq2





/

dΓD
(∗)

dq2
, (5.3)

where λτ is the helicity of the τ lepton, and dΓD
(∗)

λτ
/dq2 is the differential decay width of

B → D(∗)τ ν̄τ for a given helicity λτ .

Analogously, one can extract from the angular distribution in the secondary D∗ → Dπ

decay the fraction of longitudinally polarised D∗ mesons by constructing the following ob-

servable:

FD
∗

L (q2) =
dΓλD∗=0

dq2

/

dΓD
∗

dq2
. (5.4)

In figure 10, we show the q2 dependence of the B → D(∗)τ ν̄ observables defined above, for

the two solutions obtained in the global fit including FD
∗

L , Min 1b and Min 2b, together

with their SM prediction.

Using these observables, Min 2b could rather clearly be differentiated from both the

SM and Min 1b. The same is not true for Min 1b and the SM, for the simple reason that

this minimum is compatible with only shifting the SM coefficient at 1σ. In that case the

SM predictions are unchanged, which means that the width of the red bands is due to the

possible presence of additional NP operators. Precise measurements of these distributions

could hence show the existence of operators other than OVL .
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Figure 10. Predictions and 1σ uncertainty on the q2 dependence of the B → D(∗)τ ν̄τ observables,

for the solutions of the fit including the Moriond result and FD
∗

L . An upper bound of B(Bc →
τ ν̄τ ) ≤ 30% has been adopted. The predictions of Min 1b, Min 2b and the SM are represented by

a red, yellow and blue band, respectively.

Given the aforementioned difficulty with measuring q2 distributions, typically the in-

tegrated observables are measured first, defined as

O =
1

ΓD
(∗)

∫ q2max

m2
τ

dq2 O(q2) , (5.5)

where O(q2) refers to the numerator in the ratios, i.e., numerator and denominator

have to be integrated separately. The Belle collaboration has in fact released re-

sults for two integrated quantities, the τ polarisation asymmetry PD∗

τ = −0.38 ±
0.51 (stat) +0.21

−0.16 (syst) [131], and the recently announced longitudinal polarisation of the

D∗ meson, FD
∗

L = 0.60± 0.08 (stat) ± 0.04 (syst) [70, 132]. In figure 11, we show the pre-

dictions for the integrated observables of B → D(∗)τ ν̄τ , together with their experimental
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Figure 11. The upper panels show the predictions of selected observables for the different minima

without (Min 1, Min 2 and Min 3) and with (Min 1b, Min 2b) the inclusion of FD
∗

L
in the fit. The

shaded areas show the experimental results at 1σ where applicable. On the left (right) panel, a

bound of B(Bc → τ ν̄τ ) ≤ 10% (30%) has been applied. The lower panel shows the predictions of

the same observables for the two minima obtained in the fit including F
D

∗

L
and the preliminary

Belle result, with a bound of B(Bc → τ ν̄τ ) ≤ 10% and 30%, and for the SM (first column).

values where available. Clearly already the integrated observables provide a possibility to

distinguish the different NP scenarios. The fitted values for F
D∗

L
are closer to the experi-

mental results for the fits including this observable, which is to be expected. However, they

fail to reproduce the measurement within 1σ, as discussed above, which renders a more

precise measurement of this quantity an exciting prospect.

5.2 Predictions for other observables

5.2.1 Predictions for RΛc

Another observable that could shed light on the R
(∗)
D

puzzle is the Λb → Λcτ ν̄τ decay, in

particular the universality ratio

RΛc
=

B(Λb → Λcτ ν̄τ )

B(Λb → Λcℓν̄ℓ)
. (5.6)

This decay mode has not been observed yet, but LHCb has the potential to perform this

measurement in the near future.
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a
f+
0 0.8146± 0.0167 a

h+

0 0.9752± 0.0303 m
f+,⊥

pole 6.332GeV

a
f+
1 −4.8990± 0.5425 a

h+

1 −5.5000± 1.2361 mf0
pole 6.725GeV

af00 0.7439± 0.0125 ah⊥

0 0.7054± 0.0137 m
g+,⊥

pole 6.768GeV

af01 −4.6480± 0.6084 ah⊥

1 −4.3578± 0.5114 mg0
pole 6.276GeV

af⊥0 1.0780± 0.0256 a
h̃⊥,+

0 0.6728± 0.0088 m
h+,⊥

pole 6.332GeV

af⊥1 −6.4170± 0.8480 a
h̃+

1 −4.4322± 0.3882 m
h̃+,⊥

pole 6.768GeV

a
g⊥,+

0 0.6847± 0.0086 ah̃⊥

1 −4.4928± 0.3584

a
g+
1 −4.4310± 0.3572

ag00 0.7396± 0.0143

ag01 −4.3660± 0.3314

ag⊥1 −4.4630± 0.3613

Table 7. Central values and uncertainties of the nominal form-factor parameters for Λb →
Λcℓνℓ [133, 134].

On the theoretical side, the differential decay rate Λb → Λcℓν̄ℓ has been calculated in

terms of the helicity amplitudes [133, 134]:

dΓ(Λb → Λcℓν)

dq2
=

G2
F |Vcb|2
348π3

q2
√
Q+Q−

m3
Λb

(

1− m2
ℓ

q2

)2
[

AV A1 +
m2
ℓ

2q2
AV A2 +

3

2
ASP3

+ 2

(

1 +
2m2

ℓ

q2

)

AT4 +
3mℓ
√

q2
AV A−SP5 +

6mℓ
√

q2
AV A−T6

]

, (5.7)

where Q± = (mΛb
± mΛc

)2 − q2. The superindices V A indicate vector and axial-vector

contributions (CVR ± CVL), SP scalar and pseudoscalar (CSR
± CSL

), and T tensor con-

tributions (CT ). Being a baryonic decay, this mode is sensitive to different combinations

of Wilson coefficients than B → D(∗)τ ν̄τ . We use the parametrization of the QCD form

factors from refs. [133, 134], which take the simple form:

f(q2) =
1

1− q2/(mf
pole)

2

[

af0 + af1(z
f (q2))2

]

, zf (q2) =

√

tf+ − q2 −
√

tf+ − t0
√

tf+ − q2 +
√

tf+ − t0

. (5.8)

The numerical values of the corresponding form-factor parameters, extracted from lattice

data [133, 134], are displayed in table 7. Other relevant experimental inputs are summarized

in table 10.

Figure 12 shows the predicted ratio RΛc and its uncertainty for the three minima of

table 2 (Min 1, Min 2 and Min 3) and the two minima including FD
∗

L of table 3 (Min 1b

and Min 2b), with the upper limit B(Bc → τν) ≤ 10%, and the SM prediction. The errors

considered here just take into account the variation of the Wilson coefficients and the

parametric error for the lattice input. Other systematic errors are not shown. In all cases

the predicted value of RΛc is above the SM expectation. This agrees with the observation

made in ref. [63] that the measured enhancement of the ratios R(∗)
D implies an enhancement

of RΛc
for any model of new physics described by the effective Hamiltonian (2.1). The

prediction closest to the SM is obtained with the unstable minimumMin3, which disappears

when FD
∗

L is included, because it involves a larger value of CT .
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Figure 12. Predictions for RΛc
(left) and RJ/ψ (right) for the minima of table 2 and table 3, with

an upper bound B(Bc → τν) ≤ 10%. The SM prediction is shown as a blue band. The experimental

value of RJ/ψ is given by the gray band.

5.2.2 Predictions for RJ/ψ

The ratio

RJ/ψ =
B(Bc → J/ψτν̄τ )

B(Bc → J/ψµν̄µ)
= 0.71± 0.17± 0.18 , (5.9)

has been recently measured by LHCb with the run-1 dataset (3fb−1) [19]. We have not

included this observable in our fit because the hadronic uncertainties are not at the same

level as for the observables related to B → D(∗) transitions and the experimental error is

large. Instead, the predictions for this observable are computed and compared with the

current data. The experimental uncertainties are expected to be significantly reduced with

the larger statistics already accumulated at LHCb.

The differential decay rate for this transition can be expressed in a similar way than

the B̄ → D∗ distribution in eq. (2.7) [135]:

dΓ(Bc → J/ψℓν̄)

dq2

=
G2

F |Vcb|
2

192π3mBc

q2
√

λJ/ψ(q2)

(

1−
m2

ℓ

q2

)

×

{

(|1 + CVL
|2 + |CVR

|2)

[(

1 +
m2

ℓ

2q2

)

(

H2
V,+ +H2

V,− +H2
V,0

)

+
3

2

m2
ℓ

q2
H2

V,t

]

−2Re
[

(1 + CVL
)C∗

VR

]

[(

1 +
m2

ℓ

2q2

)

(

H2
V,0 + 2HV,+ ·HV,−

)

+
3

2

m2
ℓ

q2
H2

V,t

]

+
3

2
|CSL

− CSR
|2H2

S + 8 |CT |
2

(

1 +
2m2

ℓ

q2

)

(

H2
T,+ +H2

T,− +H2
T,0

)

+3Re
[

(1 + CVL
− CVR

)
(

C∗

SL
− C∗

SR

)] mℓ
√

q2
HS ·HV,t

−12Re [(1 + CVL
)C∗

T ]
mℓ
√

q2
(HT,0 ·HV,0 +HT,+ ·HV,+ −HT,− ·HV,−)

+12Re [CVR
C∗

T ]
mℓ
√

q2
(HT,0 ·HV,0 +HT,+ ·HV,− −HT,− ·HV,+)

}

, (5.10)
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where λJ/ψ(q
2) =

[

(mBc
−mJ/ψ)

2 − q2
] [

(mBc
+mJ/ψ)

2 − q2
]

is the usual Källén function

and Hi are the hadronic helicity amplitudes, similar to the ones used for the decay rates

of section 2, which can be found in appendix B.

The predicted values of RJ/ψ for the minima of tables 2 and 3 as well as for the

SM, are given in the right panel of figure 12. Again the errors considered here just take

into account the variation of the Wilson coefficients and the parametric error for the lattice

input. For this observable, there are additional theoretical uncertainties associated with the

parametrization of the form factors, which are difficult to quantify. Given the large errors,

the predictions from all minima are in agreement with the experimental measurement. We

note that the prediction from the global minimum is the one that approaches closest to the

experimental measurement, albeit only slightly.

6 Conclusions

In this work we have analysed the new-physics parameter space able to explain the current

anomalies in b → cτν data, taking the available experimental information at face value,

i.e., disregarding the possibility that these anomalies could originate in underestimated

systematic uncertainties or statistical fluctuations. We have performed a global fit to

the available data in b → cτ ν̄τ transitions, adopting an EFT approach with a minimal

set of assumptions: 1) NP only enters in the third generation of fermions. 2) There

is a sizeable energy gap between NP and the electroweak scale, the EFT operators are

SU(2)L ⊗ U(1)Y invariant and the electroweak symmetry breaking is linearly realized. 3)

All Wilson coefficients are real (CP is conserved). We have tested the impact of the

latter assumption, but did not find an improved description of the data. In contrast to

previous works, we considered the q2 distributions measured by BaBar and Belle. Moreover,

we study the effect of including the recently announced FD
∗

L measurement by the Belle

collaboration in the fit. A comparison with earlier analyses, either not including the q2

distributions, the FD
∗

L measurement, or considering smaller sets of operators, precisely

illustrates the benefits of our fit: as described in section 3, most of the NP solutions found

in previous fits are disfavoured once all the information considered in this work is added.

We performed the global fit in different scenarios. As a baseline, we considered the

full dataset before the announcement of the FD
∗

L measurement with the subset of oper-

ators implied by our assumptions, i.e. with a flavour-universal coefficient CVR . We then

performed extensive comparisons to datasets including the recent FD
∗

L measurement, the

preliminary Belle measurement of RD(∗) , and different bounds on B(Bc → τ ν̄τ ), as well as

a second parameter set, allowing for a non-universal CVR .

In the baseline fit, three minima have been obtained, given in table 2. The global

minimum, referred to in the text as Min 1, has an excellent χ2; while none of the fitted

Wilson coefficients are required to be non-zero for this minimum, the simplest interpretation

of this solution is a global modification of the SM: setting all Wilson coefficients but CVL
to zero increases the χ2 only by ∆χ2 = 1.4, implying an even better fit. The other two

solutions are local minima which numerically exhibit stronger deviations from the SM,

with larger contributions of the tensor and scalar operators. While the global minimum
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is compatible with a SM-like scenario, Min 2 and Min 3 require additional operators.

For instance, they could involve scalar LQs with quantum numbers R2 ∼ (3, 2, 7/6) or

S1 ∼ (3̄, 1, 1/3).

The measurement of the D∗ longitudinal polarization fraction FD
∗

L has quite a strong

impact on our EFT analysis. It removes Min 3 as a solution for the fit, which was, how-

ever, already strongly disfavoured by the differential distributions. Figure 7 illustrates the

tension between the present measurement of FD
∗

L , the bound on B(Bc → τ ν̄τ ), and the

observation ∆RD∗ > 0 : the set of operators considered within our assumptions cannot

accommodate all three observations at 1σ for any combination of Wilson coefficients. In-

deed, including the FD
∗

L measurement in the fit increases the minimal χ2 significantly also

for the two lower-lying minima (Min 1b and Min 2b), see table 3.

We find that most of the minima saturate the upper bound B(Bc → τ ν̄τ ) ≤ 10%,

and it is interesting to study the effect of changing this constraint on the fit. As shown

in tables 2 and 3, adopting a more conservative upper bound of B(Bc → τ ν̄τ ) ≤ 30%

we find the same number of minima; they are qualitatively similar to the previous ones,

but with larger central values and ranges of the scalar Wilson coefficients, specifically their

pseudoscalar combination. While even this larger upper bound is saturated in most of our

fits, the overall decrease in χ2 is small.

The fact that FD
∗

L cannot be accommodated within 1σ for CVR = 0 could have impor-

tant consequences, should the present value be confirmed with higher precision. This led

us to investigate the scenario with non-zero CVR as a possible resolution of this tension on

the theory side. We find that its inclusion helps to reduce the tension among the experi-

mental B → D∗ data, and it is now possible to satisfy all constraints at 1σ, as illustrated

in figure 9. The global fit including CVR leads to four different minima, as figure 8 shows.

Two of these minima have a significantly lower χ2 than the previous fits, however, they

correspond to fine-tuned solutions where the SM coefficient becomes very small and its

effect is substituted by several sizeable NP contributions, especially CVR . This scenario

seems therefore not to be a satisfactory resolution of the tension.

We have also presented predictions for selected b → cτ ν̄τ observables, such as RΛc
,

RJ/ψ or the forward-backward asymmetries and τ polarization in B → D(∗)τ ν̄τ , which

have not been included in the fits because either they have not been measured yet or their

current experimental values have too large uncertainties. We have studied these observables

for the different solutions emerging from our fits, finding that they provide complementary

information to the existing data. This is displayed in figures 10, 11 and 12. The future

measurement of these observables could both establish NP in these modes and allow for a

discrimination among the currently favoured scenarios.

We conclude that the anomaly in b → cτ ν̄τ transitions remains and can be addressed

by NP contributions. Apart from RD(∗) , also the differential q2 distributions, FD
∗

L and

B(Bc → τ ν̄τ ) are important to constrain NP, leaving only two viable minima in the global

fit. Our general EFT approach does not allow to identify uniquely the potential mediator,

since the global minimum can be generated by several combinations of parameters. The

generality of our analysis on the other hand allows to use the obtained parameter ranges

in more general SMEFT analyses. An improved measurement of FD
∗

L close to its present
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Min 1b Min 2b

χ2
min/d.o.f. 37.4/54 40.4/54

CVL
0.09+0.13

−0.12 0.34+0.05
−0.07

CSR
0.086+0.12

−0.61 −1.10+0.48
−0.07

CSL
−0.14+0.52

−0.07 −0.30+0.11
−0.50

CT 0.008+0.046
−0.044 0.093+0.029

−0.030

Table 8. Minima and 1σ uncertainties obtained from the global χ2 minimization, including the

new HFLAV world average on the ratios RD and RD∗ [12] and the FD
∗

L polarization, using B(Bc →
τ ν̄τ ) < 10%. There are, in addition, the corresponding sign-flipped minima, as indicated in eq. (3.3).

central value holds the exciting potential to invalidate this general approach, which would

have major implications, like a Higgs sector different from the SM one, the existence of NP

particles relatively close to the electroweak scale, or new light degrees of freedom. As we

have shown, additional measurements will be able to clarify these questions.

Note added in proof. After the submission of our paper for publication, the HFLAV

collaboration released a new world average of the RD and RD∗ ratios [12]:8

Ravg,new
D = 0.340± 0.027± 0.013 and Ravg,new

D∗ = 0.295± 0.011± 0.008 , (6.1)

with a correlation of -0.38. These averages give a 3.7σ discrepancy with respect to our SM

prediction instead of the 3.1σ calculated by HFLAV. The slightly larger significance with

respect to the value quoted by HFLAV is due to our different SM prediction and has three

aspects: slightly smaller central value and uncertainty for RD∗ , as well as the inclusion of

the correlation between the SM predictions for RD and RD∗ . Regarding the central value,

note also the ∼ 1σ lower central value of the SM prediction for RD∗ in [137] compared

to [17] after taking into account new data for B → D∗ℓν.

In table 8 we update the results of our baseline fit with the new HFLAV averages

(assuming a lepton universal CVR and including the longitudinal D∗ polarisation, FD
∗

L ).

As the reader may notice and can be expected, the results shown in table 8 are very

similar to those shown in table 4, with central values for the Wilson coefficients, in general,

slightly closer to the SM.
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Belle BaBar

q2 (GeV2) B → Dτν B → D∗τν q2 (GeV2) B → Dτν B → D∗τν

4.0–4.53 24.0± 16.3 5.4± 9.3 4.0-4.5 23.8± 12.1 0.6± 7.1

4.53–5.07 27.8± 15.2 3.4± 8.1 4.5–5.0 15.8± 11.8 23.6± 9.5

5.07–5.6 22.0± 14.0 −3.8± 6.8 5.0–5.5 27.0± 10.5 22.4± 7.7

5.6 - 6.13 28.4± 14.4 12.1± 8.4 5.5–6.0 45.1± 13.1 20.8± 7.8

6.13–6.67 16.2± 14.8 8.0± 9.4 6.0–6.5 46.9± 13.3 20.0± 7.5

6.67–7.2 44.5± 15.5 24.7± 8.2 6.5–7.0 39.7± 13.6 38.8± 8.6

7.2–7.73 14.2± 16.3 2.7± 7.8 7.0–7.5 31.7± 12.4 44.4± 9.2

7.73–8.27 −3.1± 15.3 28.7± 9.2 7.5–8.0 47.4± 14.9 49.3± 10.3

8.27–8.8 16.1± 15.2 30.8± 8.5 8.0–8.5 33.7± 14.0 40.0± 9.4

8.8–9.33 37.2± 15.5 24.9± 7.6 8.5–9.0 17.7± 13.2 37.3± 9.5

9.33–9.86 19.3± 15.2 15.0± 6.8 9.0–9.5 −0.7± 13.1 38.4± 9.8

9.86–10.4 37.0± 15.5 14.8± 5.1 9.5–10.0 6.9± 14.3 31.7± 11.0

10.4–10.93 −1.0± 14.2 16.3± 5.1 10.0–10.5 35.4± 16.0 31.9± 10.5

10.93–11.47 20.0± 13.1 — 10.5–11.0 2.8± 12.1 16.7± 10.4

11.47–12.0 3.4± 10.9 — 11.0–11.5 1.7± 11.3 —

11.5–12.0 6.5± 8.9 —

Table 9. Measured q2 distributions for B → D(∗)τν events by Belle [7] (left) and BaBar [6] (right).

Prometeo/2017/053], the Spanish Centro de Excelencia Severo Ochoa Programme [Grant

SEV-2014-0398] and the DFG cluster of excellence Origin and Structure of the Universe.
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A Additional experimental and theoretical inputs

The binned distributions for B → D(∗)τν from BaBar and Belle are given in table 9 and

additional experimental inputs used in our analysis are summarized in table 10.

The correlation matrix of the input HQET parameters given in table 1, used to deter-

mine the hadronic form factors, is given in table 11.

B Helicity amplitudes

The helicity amplitudes of B̄ →Mτν̄τ (M = D,D∗) transitions, HλM
i,λ , are defined through

the hadronic matrix elements [40]

HλM
VL,R,λ

= ǫ∗µ(λ) 〈M(λM )| c̄γµ(1∓ γ5)b
∣

∣B̄
〉

,

HλM
SL,R,λ

= 〈M(λM )| c̄γµ(1∓ γ5)b
∣

∣B̄
〉

, (B.1)

HλM
T,λλ′ = −HλM

T,λ′λ = ǫ∗µ(λ)ǫ
∗
ν(λ

′) 〈M(λM )| c̄σµν(1− γ5)b
∣

∣B̄
〉

,
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Parameter Value Comments

mD+ (1869.65± 0.05) · 10−3 GeV [73]

mD0 (1864.83± 0.05) · 10−3 GeV [73]

mD∗ (2006.85± 0.05) · 10−3 GeV [73]

mD∗+ (2010.26± 0.05) · 10−3 GeV [73]

mB+ (5279.32± 0.14) · 10−3 GeV [73]

mB0 (5279.63± 0.15) · 10−3 GeV [73]

mBc
(6274.9± 0.8) · 10−3 GeV [73]

τBc
(0.507± 0.009) · 10−12 s [73]

fBc
(0.434± 0.15)GeV [138]

mΛb
(5619.690± 0.17)10−3 GeV [73]

mΛc (2286.465± 0.14)10−3 GeV [73]

RJ/ψ 0.71± 0.17± 0.18 [19]

mJ/ψ (3096.900± 0.06)10−3 GeV [73]

Table 10. Experimental inputs used in the analysis.

ρ2 c d χ2(1) χ2(1)
′ χ3(1)

′ η(1) η(1)′ l1(1) l2(1)

ρ2 1

c 0.82 1

d −0.57 −0.91 1

χ2(1) −0.29 −0.22 0.13 1

χ2(1)
′ 0.01 0.13 −0.13 0.00 1

χ3(1)
′ 0.89 0.75 −0.51 0.00 −0.01 1

η(1) 0.09 0.13 −0.14 −0.01 0.01 0.01 1

η(1)′ −0.08 0.04 −0.08 0.03 0.00 −0.07 0.28 1

l1(1) −0.03 0.01 −0.05 0.00 0.00 0.01 0.34 −0.15 1

l2(1) −0.01 0.00 0.00 0.00 −0.01 −0.01 0.00 0.00 0.01 1

Table 11. Correlation matrix of the inputs in table 1, used to determine the form factors in the

HQET parametrization.

where λM (= s for D and 0,±1 for D∗) and λ (= 0,±1, t) are the helicities of the D(∗)

meson and the intermediate boson, respectively, in the B rest frame. The amplitudes for

B̄ → D transitions are:

Hs
V,0(q

2) ≡ Hs
VL,0

(q2) = Hs
VR,0

(q2) =

√

λD(q2)

q2
F1(q

2) ,

Hs
V,t(q

2) ≡ Hs
VL,t

(q2) = Hs
VR,t

(q2) =
m2
B −m2

D
√

q2
F0(q

2) ,
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Hs
S(q

2) ≡ Hs
SL

(q2) = Hs
SR

(q2) ≃ m2
B −m2

D

mb −mc
F0(q

2) , (B.2)

Hs
T (q

2) ≡ Hs
T,+−(q

2) = Hs
T,0t(q

2) = −
√

λD(q2)

mB +mD
FT (q

2) ,

and for B̄ → D∗:

HV,±(q
2) ≡ H±

VL,±
(q2) = −H∓

VR,∓
(q2) = (mB +mD∗)A1(q

2)∓
√

λD∗(q2)

mB +mD∗

V (q2) ,

HV,0(q
2) ≡ H0

VL,0
(q2) = −H0

VR,0
(q2)

=
mB +mD∗

2mD∗

√

q2

[

−(m2
B −m2

D∗ − q2)A1(q
2) +

λD∗(q2)

(mB +mD∗)2
A2(q

2)

]

,

HV,t(q
2) ≡ H0

VL,t
(q2) = −H0

VR,t
(q2) = −

√

λD∗(q2)

q2
A0(q

2) ,

HS(q
2) ≡ H0

SR
(q2) = −H0

SL
(q2) ≃ −

√

λD∗(q2)

mb +mc
A0(q

2) , (B.3)

HT,±(q
2) ≡ ±H±

T,±t(q
2) =

1
√

q2

[

±(m2
B −m2

D∗)T2(q
2) +

√

λD∗(q2)T1(q
2)
]

,

HT,0(q
2) ≡ H0

T,+−(q
2) = H0

T,0t(q
2)

=
1

2mD∗

[

−(m2
B + 3m2

D∗ − q2)T2(q
2) +

λD∗(q2)

m2
B −m2

D∗

T3(q
2)

]

.

The form factors F0(q
2), F1(q

2) and FT (q
2) appearing in the D matrix elements are

defined by

F1(q
2) =

1

2
√
mBmD

[

(mB +mD)h+(q
2)− (mB −mD)h−(q

2)
]

,

F0(q
2) =

1

2
√
mBmD

[

(mB +mD)
2 − q2

mB +mD
h+(q

2)− (mB −mD)
2 − q2

mB −mD
h−(q

2)

]

, (B.4)

FT (q
2) =

mB +mD

2
√
mBmD

hT (q
2) ,

while the D∗ helicity amplitudes involve the functions

V (q2) =
mB +mD∗

2
√
mBmD∗

hV (q
2),

A1(q
2) =

(mB +mD∗)2 − q2

2
√
mBmD∗(mB +mD∗)

hA1(q
2),

A2(q
2) =

mB +mD∗

2
√
mBmD∗

[

hA3(q
2) +

mD∗

mB
hA2(q

2)

]

, (B.5)

A0(q
2) =

1

2
√
mBmD∗

[

(mB +mD∗)2 − q2

2mD∗

hA1(q
2)− m2

B −m2
D∗ + q2

2mB
hA2(q

2)

− m2
B −m2

D∗ − q2

2mD∗

hA3(q
2)

]

,
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and

T1(q
2) =

1

2
√
mBmD∗

[

(mB +mD∗)hT1(q
2)− (mB −mD∗)hT2(q

2)
]

,

T2(q
2) =

1

2
√
mBmD∗

[

(mB +mD∗)2 − q2

mB +mD∗

hT1(q
2)− (mB −mD∗)2 − q2

mB −mD∗

hT2(q
2)

]

, (B.6)

T3(q
2) =

1

2
√
mBmD∗

[

(mB −mD∗)hT1(q
2)−(mB +mD∗)hT2(q

2)− 2
m2
B−m2

D∗

mB
hT3(q

2)

]

.

The reduced functions ĥi(q
2) = hi(q

2)/ξ(q2) take the form [16]

ĥ+ = 1 + α̂s

[

CV1 +
ω + 1

2
(CV2 + CV3)

]

+ (εc + εb) L̂1 ,

ĥ− = α̂s
ω + 1

2
(CV2 − CV3) + (εc − εb) L̂4 ,

ĥS = 1 + α̂sCS + (εc + εb)

(

L̂1 − L̂4
ω − 1

ω + 1

)

, (B.7)

ĥT = 1 + α̂s (CT1 − CT2 + CT3) + (εc + εb)
(

L̂1 − L̂4

)

,

for B → D, and

ĥV = 1 + α̂sCV1 + εc

(

L̂2 − L̂5

)

+ εb

(

L̂1 − L̂4

)

,

ĥA1 = 1 + α̂sCA1 + εc

(

L̂2 − L̂5
ω − 1

ω + 1

)

+ εb

(

L̂1 − L̂4
ω − 1

ω + 1

)

,

ĥA2 = α̂sCA2 + εc

(

L̂3 + L̂6

)

,

ĥA3 = 1 + α̂s (CA1 + CA3) + εc

(

L̂2 − L̂3 + L̂6 − L̂5

)

+ εb

(

L̂1 − L̂4

)

,

ĥP = 1 + α̂sCP + εc

[

L̂2 + L̂3 (ω − 1) + L̂5 − L̂6 (ω + 1)
]

+ εb

(

L̂1 − L̂4

)

, (B.8)

ĥT1 = 1 + α̂s

[

CT1 +
ω − 1

2
(CT2 − CT3)

]

+ εcL̂2 + εbL̂1 ,

ĥT2 = α̂s
ω + 1

2
(CT2 + CT3) + εcL̂5 − εbL̂4 ,

ĥT3 = α̂sCT2 + εc

(

L̂6 − L̂3

)

,

for B → D∗. The explicit expressions of the ω(q2)-dependent factors L̂1...6 and the O(αs)

corrections Ci can be found in ref. [16].

The helicity amplitudes of Bc → J/ψ can be expressed in the same way as for B → D∗,

with the replacements B → Bc andD
∗ → J/ψ and inserting the corresponding form factors.

The vector and axial-vector form factors have been calculated in the small q2 region, using

a perturbative QCD factorization approach, and extrapolated to higher values of q2 with

a more model-dependent parametrization [27, 135]:

V c(q2) = V c(0) exp
[

0.065 q2 + 0.0015 (q2)2
]

,

Ac0(q
2) = Ac0(0) exp

[

0.047 q2 + 0.0017 (q2)2
]

,
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Ac1(q
2) = Ac1(0) exp

[

0.038 q2 + 0.0015 (q2)2
]

, (B.9)

Ac2(q
2) = Ac2(0) exp

[

0.064 q2 + 0.0041 (q2)2
]

,

where V 0
c = 0.42± 0.01± 0.01, Ac0(0) = 0.59± 0.02± 0.01, Ac1(0) = 0.46± 0.02± 0.01 and

Ac2(0) = 0.64 ± 0.02 ± 0.01 [27]. For the tensor form factors the quark-level equations of

motion are adopted [40]:

T c1 (q
2) =

mb +mc

mBc
+mJ/ψ

V c(q2) ,

T c2 (q
2) =

mb −mc

mBc
−mJ/ψ

Ac1(q
2) , (B.10)

T c3 (q
2) = −mb −mc

q2
{

mBc

[

Ac2(q
2)−Ac2(q

2)
]

+mJ/ψ

[

Ac2(q
2) +Ac1(q

2)− 2Ac0(q
2)
]}

.

C Longitudinal polarization F
D

∗

L

The B → D∗τ ν̄τ differential decay width into longitudinally-polarized (λD∗ = 0)D∗ mesons

is given by

dΓD
∗

λD∗=0

dq2
=

G2
F |Vcb|2

192π3m3
B

q2
√

λD∗(q2)

(

1− m2
τ

q2

)2

×
{

|1 + CVL − CVR |2
[(

1 +
m2
τ

2q2

)

H2
V,0 +

3

2

m2
τ

q2
H2
V,t

]

+
3

2
|CSR

− CSL
|2H2

S + 8 |CT |2
(

1 +
2m2

τ

q2

)

H2
T,0

+ 3Re[(1 + CVL − CVR)(C
∗
SR

− C∗
SL

)]
mτ
√

q2
HSHV,t

− 12Re[(1 + CVL − CVR)C
∗
T ]

mτ
√

q2
HT,0HV,0

}

, (C.1)

where the helicity amplitudes are defined in appendix B.

D UV Lagrangian

Possible new mediators contributing to the effective Hamiltonian of eq. (4.1) and their

relative effective Lagrangian are summarized in table 12.

E Warsaw basis

The operators describing the SMEFT in the Warsaw basis are given by [77, 78],

O(3)
lq =

(

ℓ̄γµτ
Iℓ
) (

q̄γµτ Iq
)

,

O(1)
lequ =

(

ℓ̄je
)

εjk

(

q̄ku
)

,

Oledq =
(

ℓ̄je
) (

d̄qj
)

, (E.1)

O(3)
lequ =

(

ℓ̄jσµνe
)

εjk

(

q̄kσµνu
)

,
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Spin NP mediator Contribution Relevant effective Lagrangian (+ h.c.)

0

(3̄, 1, 1/3) ∼ φ
OVL

∝ 1
2M2

φ
(dLγµuL)(νLγ

µeL)

OSL
, OT ∝ 1

M2
φ

[

(uRdL)(eRνL)− 1
4 (uRσµνdL)(eRσ

µννL)
]

(3, 2, 7/6) ∼
(

φ5/3, φ2/3
)

OSL
, OT ∝ 1

M2
φ2/3

[

(eRνL)(uRdL) +
1
4 (eRσµννL)(uRσ

µνdL)
]

(3̄, 3, 1/3) ∼ (φ4/3, φ1/3, φ−2/3) OVL
∝ 1

M2
φ1/3

(dLγµuL)(νLγ
µeL)

(1, 2, 1/2) ∼ (h+2 , h
0
2)

OSR
∝ 1

M2

h
+
2

(uLdR)(eRνL)

OSL
∝ 1

M2

h
+
2

(uRdL)(eRνL)

1

(3̄, 2, 5/6) ∼ (φµ4/3, φ
µ
1/3) OSR

∝ 1
M2

φ
−1/3

(eRνL)(uLdR)

(3, 1, 2/3) ∼ φµ
OVL

∝ 1
M2

φ
(uLγµdL)(eLγ

µνL)

OSR
∝ 1

M2
φ
(uLdR)(eRνL)

(3, 3, 2/3) ∼ (φµ5/3, φ
µ
2/3, φ

µ
−1/3) OVL

∝ 1
M2

φ2/3

(νLγµeL)(dLγ
µuL)

(1, 3, 0) ∼ (W ′µ
+ ,W ′µ

0 ,W ′µ
−
) OVL

1
M2

W ′
+

(eLγµνL)(uLγ
µdL)

Table 12. Possible fields contributing to the effective Hamiltonian of eq. (4.1), at dimension 6:

leptoquarks are denoted by φ and a second Higgs doublet as h2. Their quantum numbers (SU(3),

SU(2), U(1)Y ), contribution to the EFT operators and their relevant effective Lagrangian after

integrating them out are described for each new field. Their SU(2) decomposition is explicitly

shown after the “∼”.

where τ I are the Pauli matrices and εjk is the totally antisymmetric tensor with ε12 = +1.

The fields q and ℓ are the quark and lepton SU(2)L doublets, respectively, and u, d, e are the

right-handed SU(2)L singlets. Neglecting the small corrections proportional to the CKM

factors Vub and Vcb, the relevant contributions to the b → cτν transitions originate in the

Wilson coefficients [C
(3)
lq ]3323 ≡ C̃VL , [C

(1)
lequ]3332 ≡ C̃SR

, [Cledq]3332 ≡ C̃SL
and [C

(3)
lequ]3332 ≡

C̃T , where [CX ]ijkl denotes the coefficient of the corresponding operator OX with flavour

indices i, j, k, l. The effective Lagrangian relevant for the description of the B anomalies is

therefore given by

LSMEFT ⊃ 1

Λ2
NP

(

C̃VL [O(3)
lq ]3323 + C̃SR

[O(1)
lequ]3332 + C̃SL

[Oledq]3332 + C̃T [O(3)
lequ]3332

)

.

(E.2)

Notice that there is a correspondence between the effective operators at the SMEFT basis

with those at the WET basis, according to:

O(3)
lq ↔ OVL , O(1)

lequ ↔ OSR
, Oledq ↔ OSL

, O(3)
lequ ↔ OT , (E.3)

which allow us to use the notation C̃i for the Wilson coefficients at the SMEFT basis, with

the aim of making the discussion more intuitive for the reader.
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