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Abstract
Critical physical issues can be specifically tackled with the global full-f
gyrokinetic code GYSELA. Three main results are presented. First, the self-
consistent treatment of equilibrium and fluctuations highlights the competition
between two compensation mechanisms for the curvature driven vertical charge
separation, namely, parallel flow and polarization. The impact of the latter on
the turbulent transport is discussed. In the non-linear regime, the benchmark
with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport
scaling with ρ∗ is found to depend both on ρ∗ itself and on the distance to the
linear threshold. Finally, a statistical steady-state turbulent regime is achieved
in a reduced version of GYSELA by prescribing a constant heat source.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Gyrokinetic codes are now mature enough to address experimentally relevant pieces of physics
[1–4]. In this framework, global and full-f codes allow one to specifically address physical
issues of outermost importance in fusion devices. Due to their huge demands in terms of both
numerical memory and CPU time consumption, such full-f simulations have become possible
only very recently. On the one hand, simulating a whole part of the tokamak cross-section
allows one to capture large scale transport events, eventually leading to non-local transport
and turbulence spreading. In particular, such processes can bring new ingredients into the
physics governing scaling laws. On the other hand, full-f codes solve self-consistently solve
the equilibrium and the fluctuations, without any scale separation assumption. In this case,
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properly defining the gyrokinetic equilibrium is crucial to discriminate between instability
driven fluctuations and time evolution towards the equilibrium. Besides, non-equilibrium
initial states can also impact the turbulence dynamics itself. Finally, full-f codes open the
route towards more realistic flux driven models, where the turbulence drive is no longer ensured
by a prescribed gradient or fixed thermal baths at the boundaries, but by an incoming heat and/or
particle source such as in the experiments.

This paper focuses on some of the physical implications of global and full-f gyrokinetic
codes. The 5D GYSELA (GYrokinetic SEmi-LAgrangian) code is used to model the ion
temperature gradient (ITG) driven turbulence with a semi-Lagrangian numerical scheme [5].
The model is detailed in section 2. The problem of solving the gyrokinetic equilibrium,
especially in full-f codes such as Gysela, is addressed in section 3. As reported earlier [6], the
code has already been benchmarked, both linearly and non-linearly against the CYCLONE
test case [7]. In section 4, a further validation based on non-linear comparisons with the ORB5
code [8] is presented. Results on the ρ∗ scaling of the turbulent transport, ρ∗ being the ratio
of the ion Larmor radius ρi to the minor radius a, are reported in section 5. Consistently
with previous works, the correlation time and correlation length are found to be consistent
with the gyroBohm, respectively Bohm, scaling at small ρ∗ and above the linear threshold,
respectively, at large ρ∗ and close to the threshold. Finally, turbulence in the flux driven regime
is investigated with a reduced 3D gyrokinetic model, used as a paradigm, section 6. The bursty
character of the dynamics, as well as the departure from the Maxwellian, is reported.

2. Gyrokinetic system solved by GYSELA

The model focuses on the turbulent transport driven by the collisionless ITG driven instability
in the electrostatic regime. The simplified geometry consists of concentric toroidal magnetic
flux surfaces with circular poloidal cross-sections. The magnetic field is �B = (B0R0/R)(�eϕ +
(r/qR0)�eθ ). B0 and R0 are the magnetic field and the major radius of the torus at the magnetic
axis, with R = R0+r cos θ . �eθ and �eϕ are the unit vectors in the two periodic directions, poloidal
and toroidal, respectively. The safety factor profile is q(r) = 0.854 + 2.184(r/a)2. In the low
frequency turbulence regime ω � ωc = eiB0/mi, the gyrokinetic description is appropriate.
v‖ is the velocity parallel to the magnetic field, and the magnetic moment µ = miv

2
⊥/(2B) is

an adiabatic invariant. GYSELA solves the time evolution of the 5D guiding-centre distribution
function f̄ (r, θ, ϕ, v‖, µ, t):

∂t f̄ + (�vE + �vD) · �∇⊥f̄ + (v‖/R)∂ϕf̄ + v̇‖∂v‖ f̄ = 0 (1)

with �∇⊥ = (∂r , 1/r∂θ ). �vĒ = �B × �∇(J .φ)/B2 is the electric drift velocity and φ the electric
potential. The gyroaverage operator J corresponds to the zero order Bessel function J0(k⊥ρi)

in Fourier space, ρi being the ion Larmor radius. It is replaced by a Padé approximation in the
code [9]. At low β, the curvature drift velocity is equal to �vD = ((miv

2
‖ + µB)/eB3) �B × �∇B.

In the large aspect ratio limit, miv̇‖ = eiE‖ − µ∇‖B + mv‖�vE · �∇B/B with ∇‖ = 1/R[∂ϕ +
(1/q(r))∂θ ]. The self-consistency is ensured by the quasi-neutrality constraint, the electrons
being assumed adiabatic:

− 1

n0(r)
∇⊥ ·

[
n0(r)

B0ωc

∇⊥φ

]
+

e

Te(r)
[φ − 〈φ〉] = 1

n0(r)
[nGi(r, θ, ϕ) − nGiinit (r, θ)]. (2)

The polarization term (first term on the left-hand side) accounts for the difference between the
ion guiding-centre density nGi = 2πB(r, θ)/mi

∫
dµ

∫
dv‖J .f̄ and the particle density. The

brackets 〈·〉 refer to the flux surface average 〈·〉 = 1/(2π)2
∫ ∫ ·dθ dφ. The correction term
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nGiinit is equal to nGiinit = 2πB(r, θ)/mi
∫

dµ
∫

dv‖J .finit , finit being the initial distribution
function. More details on the system are given in [6].

Since the electrons are adiabatic, there is no net particle transport. Hence, the radial density
profile remains constant in time. f is a prescribed Maxwellian at both radial boundaries, with
two different temperatures. finit is either a local Maxwellian or a canonical Maxwellian,
as discussed in section 3. Perturbations are added as a sum of (m, n) Fourier modes with
random phase and small magnitude. m and n are the poloidal and toroidal wave numbers,
respectively. The quasi-neutrality equation (2) is solved in Fourier space for the poloidal and
toroidal directions, while finite differences are used in the radial direction. The gyrokinetic
equation (1) is solved with a semi-Lagrangian scheme [10], which has already proven to
be powerful in a reduced 4D version of the code, focusing on the slab branch of the ITG
turbulence in the drift-kinetic limit [5]. Significant effort has been devoted to improving the
code parallelization [11,12], which is especially difficult for Eulerian-like numerical schemes.
The present version exhibits an efficacity of about 70% on 1024 processors.

3. Non-linear simulations with a global full-f code

Several publications [13, 14] have stressed the importance of initializing gyrokinetic
simulations with a well-defined equilibrium. In the absence of collisions, an equilibrium
distribution function fulfils [Heq, feq] = 0, with [., .] the Poisson bracket. The equilibrium
gyrokinetic Hamiltonian Heq depends on the motion invariants only, namely, the energy E ,
the magnetic moment µ and the toroidal momentum Pϕ . Consequently, any function of E ,
µ and Pϕ will satisfy the equilibrium conditions. A convenient form is provided by a local
Maxwellian where the radius is replaced by an effective radial coordinate r̄ function of the
invariants [15,16]. This corresponds to the so-called canonical Maxwellian initialization fCM.
In such an equilibrium, the curvature drift which induces a vertical charge polarization is
compensated by the ion parallel flow. This flow, analogous to the Pfirsch–Schlüter current
carried by the electrons, naturally emerges from the v‖ dependence of Pϕ . Indeed, the
distribution function fCM is not even in v‖ unlike the local Maxwellian fLM. fLM does not
carry any parallel flow and the charge separation gives rise to a large scale electric field. In
this case, the charge separation tends to be compensated by the polarization flow. The early
dynamics of the resulting electric potential φ can be predicted analytically, as will be detailed in
a forthcoming publication. At leading order, it is governed by the curvature drift. In particular,
it is found that φ ≈ φ00 +φs

10 sin θ +φc
10 cos θ , with eφ00/T0 ∝ ρ2

∗(ωct)
2 and eφs

10/T0 ∝ ρ2
∗ωct ,

consistently with the numerical simulations. Such a ρ2
∗ dependence does not mean that these

flows remain weak at small ρ∗. Indeed, an upper boundary of the time duration of the growth
of these flows is given by the time at which the parallel dynamics counterbalances the charge
polarization. In the end, the saturation level of these flows is significant and of the order of a
few tenths of T0/e. Conversely, the cosine component φc

10 is orders of magnitude smaller. The
sin θ component φs

10 grows first, linearly in time, as a result of the up–down asymmetry of the
curvature drift. The oscillatory behaviour at the geodesic acoustic mode (GAM) frequency is
recovered at later times, when the E ×B drift is no longer negligible and enters the dynamics.

An interesting question is whether such sheared flows, which result from the
re-arrangement of non-equilibrium initialization, can durably prevent the onset of turbulence.
Two simulations at ρ∗ = 5 × 10−3 and with the same initial temperature gradient—well above
the threshold—are compared. They only differ by their initial distribution function, either
canonical or Maxwellian. The time evolution of the heat diffusivity is plotted in figure 1. The
turbulent transport is clearly delayed when starting from an initial local Maxwellian, by about
1 500 ω−1

c in this case. As seen in the inset, the effective growth rate is reduced for the local
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Figure 1. Time evolution of the turbulent transverse diffusivity χ⊥ (ρ∗ = 1/200) when initializing
the distribution function with a canonical equilibrium or a local Maxwellian. Top panel: zoom in
log-lin scale.

Maxwellian (from γCM ≈ 2.3 10−3ωc to γLM ≈ 1.5 10−3ωc), when sheared flows are present.
Such a picture qualitatively agrees with a reduction of the effective linear growth rate by the
shearing rate. Also, the turbulence overshoot at the end of the linear phase is smeared out.
However, both simulations yield similar diffusivities in the turbulent regime, as exemplified
by the values at the end of the simulations, see figure 1.

4. Non-linear benchmarks with ORB5 code

The GYSELA code has been benchmarked against the CYCLONE test case [7], both linearly
and non-linearly, as reported earlier [6]. Also, the now standard test of poloidal flow screening
in the collisionless regime [17] has been performed successfully. Here, we report first results
of the non-linear comparison with the ORB5 code [8]. Both codes are global and model the
same gyrokinetic equations. However, ORB5 uses a completely different numerical scheme.
It is a δf Particle-in-Cell (PIC) code. Here, the perturbed part of the distribution function
δf = f − finit is sampled by a random distribution of markers, according to the Monte Carlo
method. The positions of the markers are evolved in time following the characteristics of the
gyrokinetic equation (Lagrangian method). The time evolution uses a 4th order Runge–Kutta
scheme and the quasi-neutrality equation is solved with a 3D finite element method. The
gyroaverage is approximated by an adaptive numerical average. Another difference resides
in the zonal flow term φ̄ which is approximated by φ00 in GYSELA, while the full geometric
coupling is kept in ORB5. Finally, the right-hand side of the quasi-neutrality equation is
Fourier-filtered along the magnetic field lines (m = nq(s) ± �m) in ORB5. This leads to
a reduction of the statistical noise associated with the PIC discretization by filtering out the
non-physical high k‖ modes [18].

The parameters for the benchmark are based on the CYCLONE test case [7]. The
minor radius is a = 0.625 m, the inverse aspect ratio ε = a/R = 0.36 and the magnetic
field on axis B0 = 1.91 T. The initial temperature gradients are given by d log T/dr =
−L−1

T [−1+cosh−2((r −0.1a)/0.04)+cosh−2((r −0.9a)/0.04)] with the conditions Te(r/a =
0.5) = Ti(r/a = 0.5) = 2 KeV. The ratio of the temperature gradient length over the density
one is LT /Ln = 0.21. Notice that the mean temperature profile is not frozen. As a result of
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Figure 2. Time evolutions of the turbulent transverse diffusivity χ⊥ (top) and of the normalized
temperature gradient (bottom) in GYSELA and ORB5 for ρ∗ = 1/184.7.

the turbulent heat flux, the temperature gradient decreases with time. The boundary conditions
are somewhat different in both codes: while the temperature is kept constant at both radial
boundaries in GYSELA, leading to steep gradients within thin boundary layers, the core boundary
temperature is free to evolve in ORB5, leading to a decaying turbulence regime.

The two simulations are at ρ∗ = 1/184.7. GYSELA uses about 1 billion grid points in
the 5D phase space, while ORB5 uses about 33 millions of grid points in space with 256
millions of pseudo-particles. Both simulations ran roughly 36 hours on 128 processors,
using machines of similar performances. The time evolutions of the transverse diffusivity
χ⊥, normalized to the gyroBohm diffusivity χgB = ρ2

s cs/Ln (cs is the sound speed), and of the
normalized temperature gradient R0/LT are plotted in figure 2. Both quantities are averaged
over flux surfaces, as well as over the radial interval 0.4 � r/a � 0.6. The time is shifted
by about −7.103ω−1

c for the ORB5 simulation so as to account for the longer transient at the
beginning of this code. First, one observes that GYSELA and ORB5 yield the same level of
turbulent transport in the non-linear regime. Also, such magnitudes of χ⊥ are in agreement
with those reported in other gyrokinetic simulations [7]. Second, the temperature profile
relaxes faster in ORB5 than in GYSELA. Such a difference could result from the difference in
the boundary conditions: while the whole profile freely evolves in ORB5, the temperature is
kept constant at the radial boundaries in GYSELA. Also note that, at a given value of R0/LT ,
ORB5 predicts a larger transport than GYSELA. Such a mismatch could result from the intrinsic
difference between full-f and δf schemes. Indeed, the equilibrium electric field is self-
consistently computed in GYSELA (cf section 3). This likely leads to a larger magnitude of
the zonal component φ00 and of the resulting poloidal velocity shear in GYSELA, possibly
reducing the turbulent transport level. This benchmark will be further detailed in a future
publication.

5. Transport scaling with ρ∗

The kinetic equation exhibits scale invariance properties [19]. As a consequence, the energy
confinement time τE is expected to be governed by a set of key dimensionless parameters. A
key quantity is the ρ∗ parameter, since the present devices cannot access the small ρ∗ values
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expected in ITER, of the order of 2×10−3. In the JET tokamak, the most performing discharges
have 2–3 times larger ρ∗. Furthermore, in the empirical scaling laws of τE , the power exponent
of ρ∗ is the largest, namely, ωcτE ∝ ρ−2.8

∗ . Such a power law is consistent with the so-called
gyroBohm scaling (χ⊥ ≈ ρ∗χB and χB = ρ2

i ωc), so that ωcτE ≈ ωca
2/χ⊥ ∝ ρ−3

∗ . After
the pioneering works used fluid models to investigate this critical issue [20], two recent
gyro-kinetic simulations [1, 21] report a transition from Bohm to gyroBohm scaling when
ρ∗ decreases towards ITER-like values. Two open issues remain: what is the ρ∗ value of
this transition? What is the physical mechanism? So far, two main explanations have
been proposed. On the one hand, shear flow stabilization leads to χ⊥ ≈ ρ∗χB(1 − αρ∗)
[22]. This results from the scaling of the E × B shearing rate like γE ≈ ρ∗γlin, with
γlin ≈ (kθρi) cs/(RLT )1/2 the linear growth rate of the instability in the absence of shear
flow. On the other hand, large scale transport events can lead to large correlation lengths of the
form λc ≈ (aρi)

1/2. In this case, non-diffusive transport or turbulence spreading is expected
to be at work. The latter mechanism leads to the same type of scaling for the diffusivity at
small ρ∗, namely, χ⊥ ≈ ρ∗χB/(1 + αρ∗) [23]. Such physics can only be addressed with global
codes.

A ρ∗ scan has been performed with GYSELA to study this question. Three values have been
analysed, ranging from large (ρ∗ = 2 × 10−2) to intermediate (ρ∗ = 10−2 and ρ∗ = 5 × 10−3)
values. Since the equilibrium is allowed to evolve in GYSELA, the mean temperature profile
tends to relax towards the threshold (at R/LT ≈ 6) in the turbulent regime. Such dynamics are
apparent in figure 3. The dotted line refers to the best fit of the Lawrence Livermore National
Laboratory results (flux-tube PIC code) for the CYCLONE case [7]. Also, the three cases
do not start from the same temperature gradient. This results from the difficulty in matching
radial profiles at different ρ∗, when initializing with a canonical distribution function [15]
(see section 3). The correlation length and time of the electric potential fluctuations are
presented in figures 4 and 5 for two different choices of t0: either when the system is still
well above the threshold (figures 4(a) and (b)), i.e. rather early in the simulation, or close
to the threshold (figures 5(a) and (b)), at the end of the simulation. For both values of t0,
the three curves are not far from overlapping with the time lag �t normalized to a/cs. This
suggests a rather weak dependence on ρ∗ of the correlation time, whatever the departure from
the threshold and the magnitude of ρ∗. This scaling is expected when the correlation time
scales like τc ≈ a/cs. This is the case when the correlation is governed either by the parallel
dynamics (τc ≈ qR/v‖ ≈ a/cs at fixed aspect ratio R/a) or by the turbulence broadening
(τc ≈ �ω−1 ≈ ω−1

∗ ∝ a/cs at kθρi = const). The small mismatches observed in figure 4(a)
for the case ρ∗ = 5 × 10−3 suggest that the correlation time weakly departs from this scaling
at small ρ∗ and far from the threshold. Since the correlation time seems to roughly scale like
τc ≈ a/cs, the Bohm or gyroBohm scalings would correspond to correlation lengths of the
order λc ≈ (aρi)

1/2 or λc ≈ ρi, respectively. Such scalings are systematically checked
for the two sets of analyses, above (figure 4(b)) and close to (figure 5(b)) the threshold.
The conclusions are that λc seems to scale like the ion Larmor radius ρi at small ρ∗ and
above the threshold and like (aρi)

1/2 at large ρ∗ and close to the threshold. Bohm scaling is
expected close to the threshold, due to possible long-lived structures reminiscent of linear global
modes.

In summary, the ρ∗ scaling appears to depend on both the distance to the threshold and on
ρ∗: our results are consistent with Bohm-like scaling close to the threshold and for large ρ∗,
while gyroBohm scaling seems to prevail above the threshold at small ρ∗. These results are
consistent with previous publications. They put forward the need to go towards flux driven
simulations, so as to reach a statistical steady-state with a well-defined mean temperature
profile.
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6. Flux driven gyrokinetics

Most present gyrokinetic simulations set the system out of equilibrium by imposing two thermal
baths as radial boundary conditions. As shown here, such a system then evolves leading to the
relaxation of the gradients in the area of interest of the simulation domain. This evolution stops
as the turbulence approaches the threshold where transport becomes very weak. In practice,
during such a relaxation time, limited statistics are available to investigate the physics of
scaling laws. An alternative approach is to maintain the system at prescribed gradients by
prescribing ad hoc sources to maintain them. In the latter case, it is an issue to determine
the impact of such a fluctuating source on the turbulent transport properties. As achieved
in standard fluid codes, a more physical drive can be obtained by prescribing a source term
in the system that imposes a given flux and analyzes the gradients as the response of flux
driven turbulent transport. However, when going to gyrokinetic simulations this one-to-one
relationship between a flux and a gradient is not as straightforward. Indeed, the gradients that
are measured, say the temperature gradient, stem from a moment of the distribution function
while the source term must be defined for each velocity of the distribution function and can
thus generate gradients of higher moments of the distribution function.

First calculations of gyrokinetic flux driven systems [24] have been performed with a
reduced gyrokinetic model that has been derived for deeply trapped ion turbulence [9, 25].
This system is 3D with two dimensions in real space, namely, a radial coordinate and an angle,
and 1D in velocity space, the chosen coordinate being the energy. In such a system the source
term is implemented at a small radius (core heat source) in the vicinity of the core boundary
layer where a vanishing gradient of the distribution function is imposed (symmetry conditions).
To satisfy the boundary conditions a buffer zone with strong radial diffusion is imposed. In the
simulations reported here, the source term is located at the boundary of the core buffer zone.
Statistical equilibrium of such a system will of course not be satisfied unless one imposes a
sink, typically at the radial edge boundary. We have chosen a prescribed temperature at this
boundary condition, namely the distribution function is constrained to be a Maxwellian at a
fixed temperature Tedge. The large radial diffusion coefficient in the edge buffer region then
allows the imposed heat flux to be transported through this boundary.

The choice of the source term must be as generic as possible, and with respect to our present
scope, steady-state. In the present versions of our gyrokinetic codes, adiabatic electrons prevent
particle transport so that the source term must not be a particle source. A simple approach has
been followed by introducing the basis of Laguerre polynomials Ln(E), where E is the energy
normalized to Tedge and n the order of the polynomial (the exponent of the largest power in
E). These Laguerre functions form an orthogonal basis where the scalar product is the integral
over the energy E weighted by the Maxwellian exp(−E), see [9]. In such a framework, the
projection of the distribution function on the Laguerre polynomials, Gk = 〈f |Lk〉 (here 〈f |g〉
is the scalar product of f and g), is directly related to the fluid moments where the density is the
projection on the zeroth order polynomial L0 = 1 and the temperature

√
3/2(T −Tedge)/Tedge

to the projection on L1 = √
2/3(E − 3/2). For this reason the source term that has been

used is S = S0(ψ) L1(E) exp(−E), where S0(ψ) stands for the radial localization labelled
by ψ . By definition of such a source term, it only contributes to building up the moment
G1 = 〈f |L1〉 and thus governs an increase in the temperature at the source location. However,
via the transport properties of the reduced Vlasov equation, such a moment is coupled to all the
other moments [9]. The transport problem at hand is therefore the generation by the source of
all Gk moments—but G0—towards the sink at the edge boundary, where all moments Gk are
vanishing—but for k = 0. In practice, one finds that the time averaged moments (averaging
over several confinement times) exhibit a flat profile between the very core and the source
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and a smooth gradient from the source towards the vanishing values at the edge, figure 6(a).
Furthermore, one finds that the moment which exhibits the largest magnitude is the temperature
moment, k = 1, figure 6(b). The higher order moments with k = 2 to k = 5 are one order
of magnitude smaller. The even higher moments k > 5 are negligible. Unlike the thermal
bath boundary condition [9], one finds that a limited number of moments are active in the
system with a possible truncation of the moment series at k = 5. However, such a property
is related to the specific kinetic properties that have been selected for the source and sink.
In particular, a less constrained sink allowing for a departure from a Maxwellian distribution
function would modify the kinetic distortion of the distribution function. A final remark is
related to the time averaged profiles that all appear to fit a diffusive transport process although
the evolution of the system is characterized by strong relaxation events and the interaction
between large E × B convection cells (extending over a significant fraction of the radial box
size) and zonal flows [24].

7. Conclusion

Global and full-f 5D gyrokinetic codes are able to address additional pieces of crucial physics.
Since they are facing new challenges in terms of numerical resources, they have only started
being developed rather recently. The GYSELA code is one of those. The semi-Lagrangian
numerical scheme, as well as an efficient parallelization, allows it to capture the dynamics
of the whole ion distribution function in a simplified toroidal geometry. This paper reports
the satisfactory benchmark against the ORB5 code, modeling the same standard gyrokinetic
equations for the ITG driven turbulence with a completely different numerical scheme. Three
main physical issues have been discussed. First, the absence of scale separation assumption
between equilibrium and fluctuations requires the former to be evaluated accurately. If not,
large scale sheared flows are shown to develop so as to counterbalance the curvature driven
vertical charge polarization. Such sheared flows are observed to reduce the effective linear
growth rate as well as delay the onset of turbulence. Second, the scaling with ρ∗ of the tur-
bulent transport is investigated in a global geometry. Consistently with previous publications,
the turbulence correlation properties are found to depend on ρ∗ itself and on the distance to
the threshold. The scaling looks like gyroBohm well above the threshold at small values of
ρ∗. Third, flux driven conditions can be addressed in such full-f codes, leading to statistical
steady-state turbulent regimes. In this case, special emphasis is laid on the departure of the
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distribution function from the Maxwellian in a reduced 3D model for interchange-like turbu-
lence. It will be especially interesting to investigate how such complex kinetic characteristics
extrapolate to the more realistic 5D ITG turbulent regime.
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