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Abstract. The present paper summarizes fungal spore emis-
sion fluxes in different biomes. A literature study has
been conducted and emission fluxes have been calculated
based on 35 fungal spore concentration datasets. Biome
area data has been derived from the World Resource In-
stitute. Several assumptions and simplifications needed to
be adopted while aggregating the data: results from differ-
ent measurement methods have been treated equally, while
diurnal and seasonal cycles have been neglected. More-
over flux data were aggregated to very coarse biome areas
due to scarcity of data. Results show number fluxes per
square meter and second of 194 for tropical and subtropi-
cal forests, 203 for all other forests, 1203 for shrub, 2509
for crop, 8 for tundra, and 165 for grassland. No data
were found for land ice. The annual mean global fluxes
amount to 1.69× 10−11 kg m−2 s−1 as the best estimates,
and 9.01× 10−12 kg m−2 s−1 and 3.28× 10−11 kg m−2 s−1

as the low and high estimate, respectively.

1 Introduction

Fungal spores are part of the bioaerosol population in our at-
mosphere which also comprises components such as pollen,
bacteria or viruses. Interest in bioaerosols is mainly related
to their health effects, agriculture, ice nucleation and cloud
droplet activation or atmospheric chemistry (Ariya et al.,
2009). In the present study, the focus lies on fungal aerosols.

Measurements of fungal aerosols report average ground
level concentrations of around 10 000–50 000 spores m−3,
sometimes even exceeding 200 000 spores m−3 (Levetin,
1995). This is two orders of magnitude higher than observed
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peak pollen concentrations (1000–2000 grains m−3) (Man-
drioli, 1998). Froehlich-Nowoisky et al.(2009) also state
that up to 45 % of the coarse particle mass in tropical rain-
forest air consists of fungal spores.Elbert et al.(2007) found
that fungal spores are the main contributor to the bioaerosol
mass in the Amazon basin. Simulations conducted byHeald
and Spracklen(2009) came to the conclusion that 23 % of all
primary emissions of organic aerosol are of fungal origin. In-
vestigations ofBauer et al.(2002b) have shown that “5.8 %
of the organic carbon in the coarse aerosol mode” was due
to fungal spores and bacteria. When sampling bioaerosols at
the Rothampsted Experimental Station in the south of Eng-
land, Gregory (1978) found that they mainly consisted of
fungal spores; nearly half of a fair weather sample consisted
of Cladosporiumspores (a mould) and only one percent of
all bioaerosols were plant pollen. These findings show that
fungal spores are an non-negligible part of the atmospheric
aerosol. Fungi are even found in marine habitats where they
are important decomposers of plant substrates (Hyde et al.,
1998). As marine fungal spore emission observations are
lacking so far, this biome has not been further taken account
of in this review.

The primary source of fungal aerosols are plants (Burgess,
2002), soil, litter and decaying organic matter (Heald and
Spracklen, 2009). Release mechanisms of fungal spores are
numerous and vary from species to species (Elbert et al.,
2007; Gregory, 1967, 1973; Levetin, 1995; Jones and Harri-
son, 2004; Madelin, 1994; Hirst, 1953). Generally, release of
spores is highly dependent on meteorological factors. Some
require rather humid conditions whereas others favour dry
and windy conditions for spore release. Several studies have
been conducted on the relationship between meteorological
factors and spore concentrations. Significant correlations be-
tween spore counts and wind speeds could be found (Glikson
et al., 1995) as well as a positive correlation ofAlternaria
spore counts with temperature (Burch and Levetin, 2002).
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Stepalska and Wolek(2009) on the other hand could not find
a significant correlation of spore concentrations with weather
conditions for most species investigated in their study. It is
hence difficult to predict which and how many spores are re-
leased according to weather conditions.

As for their transport behaviour, most of the spores do
not travel very long distances. As calculations byGregory
(1962) have shown only a fraction of about 10 % of all re-
leased fungal spores is transported farther away than 100m.
This fraction is called the “escape fraction”. The measured
concentrations are a blend of local emissions and advected
spores. It is difficult to distinguish between those two groups.
A possible distinction criterion might be the size or shape
since larger particles are deposited more easily than smaller
ones. However,Heald and Spracklen(2009) note that the
larger size fraction is less well investigated due to measure-
ment device constraints. The farther away the sampling de-
vice is from the spore source, the more is the measured con-
centration influenced by deposition and other processes. This
can lead to devices in immediate proximity to the ground
measuring the actually emitted spore numbers, whereas other
devices on higher levels might measure the escape fraction
only. As most observational data was taken further away
from the ground, we assume our estimate to represent the
escape fraction.

Wind speed, temperature, atmospheric pressure or precipi-
tation are important conditions determining transport and de-
position of the dispersed aerosols (Hirst et al., 1967). There
is evidence that fungal spores can also be transported over
long distances (Griffin et al., 2006, 2001; Prospero et al.,
2005) before they are deposited either due to gravity, wash-
out by rain or impaction (Gregory, 1967). Among others,
Prospero et al.(2005) found fungal spores originating from
the African desert to influence the prevailing fungal spore
concentrations on the Virgin Islands in the Caribbean.

Some fungal spores can act as very effective ice nucle-
ators. Lichen were found to nucleate ice at temperatures
higher than−8◦C and some even at temperatures higher
than −5◦C (Kieft, 1988). The lichen fungusRhizoplaca
chrysoleucawas even found to be an active ice nucleus
at temperatures as high as−2◦C (Kieft, 1988; Kieft and
Ruscetti, 1990). To date, only a few fungus species have been
found to be active ice nucleators: besides the above men-
tioned lichen these areFusarium avenaceumandFusarium
acuminatum(Pouleur et al., 1992). The ice nucleating activ-
ity of F. avenaceumis comparable to that of the bacterium
Pseudomonassp. (Pouleur et al., 1992). In contrast to those
findings is the recent research byIannone et al.(2011) that
showed poor ice nucleation ability ofCladosporiumspores,
with immersion freezing starting at−28.5◦C. This might be
due to the spores being coated with hydrophobic proteins that
are widespread in filamentous fungi such asCladosporium
sp. Additionally, fungal aerosols are likely to be effective
cloud condensation nuclei, but data on behalf of this is still
scarce.

Recent field measurements have highlighted the impor-
tance of bioaerosols as ice nucleators in the atmosphere,
e.g. Pratt et al.(2009) and Prenni(2009). Relying on the
above evidence, there is probably a link between meteoro-
logical conditions and fungal spores as well. On the one
hand, fungal spores acting as ice nuclei might influence cloud
and precipitation formation process, as has already been pro-
posed byMorris et al. (2004) in general for biological ice
nuclei. On the other hand, changes in climatic conditions
also alter the meteorological situation on a smaller time scale
which in turn might influence fungal spore release as well
as transport according to the respective release mechanism.
These possible interactions with the weather and climate sys-
tem as well as the fact that fungi are one of the major con-
tributors to global bioaerosols makes it crucial to gain more
knowledge about the circumstances and amounts in which
they are emitted as well as their transport behaviour. Many
studies have already focused on sampling of fungal spores
in order to estimate their concentration in the atmosphere.
However, a standardised procedure in order to do so is still
missing which leads to very heterogeneous and hardly com-
parable results.

The goal of this paper is to review the available literature
data on fungal spores and estimate global fungal spore emis-
sions by biome area. Available literature is reviewed and data
provided used to derive the respective fungal spore fluxes for
major ecoregions. Moreover, measurement methods are re-
viewed and discussed.

2 Data and methods

A review of available fungal spore concentration data has
been undertaken. Fungal spore concentration data have been
assigned to an ecosystem and converted to surface number
and mass fluxes. More than 150 studies have been reviewed
of which 35 have been found to contain data relevant for this
study, and thus were taken into account for flux calculations.
Exclusion criteria were a lack of information about measure-
ment sites, biomes, measurement period, only absolute spore
counts considered instead of concentrations, and petri dish
samplings.

The biome areas byOlson et al.(2001) have been used for
ecosystem classification. But since data points were not suf-
ficiently dense, broader definitions of the respective biomes
had to be taken. These ecoregions covered tropical and non-
tropical forests, shrub, grass, crop, tundra and land ice (data
based on (World Resource Institute, 2003a,b)). Attribution of
the respective ecoregions byOlson et al.(2001) to the biome
areas used here has been done according to Table 1. The
biome “crop” was used when the studies mentioned close
proximity to agriculture land. Effects of urban environments
were not taken into account. Biome area data has been de-
rived from World Resource Institute(2003a,b). Figure 1
shows the global distribution of available measurement data.
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Table 1. Attribution of ecosystems by (Olson et al., 2001) to the respective biome areas

Ecoregion afterOlson et al.(2001) Biome Area [km−2]

Tropical and Subtropical Moist Broadleaf Forests Tropical forest
Tropical and Subtropical Dry Broadleaf Forests Tropical forest 14 076 491
Tropical and Subtropical Coniferous Forests Tropical forest
Temperate Broadleaf and Mixed Forests Forest 26 253 000
Boreal Forests/Taiga Forest
Tropical and Subtropical Grasslands, Savannahs, and Shrubland Shrub
Temperate Grasslands, Savannahs, and Shrubland Shrub
Flooded Grasslands and Savannahs Shrub 23 343 164
Montane Grasslands and Shrubland Shrub
Mediterranean Forests, Woodlands, and Shrubs Shrub
Desert and Xeric Shrublands Grassland 10 542 721
Crop Crop 15 206 323
Tundra Tundra 4 630 000

Fig. 1. Global distribution of locations where fungal spore emis-
sions have been measured. The transect over the ocean denotes ship
measurements.

Fluxes have been calculated based on fungal spore con-
centrations, the height (1z) at which the spore concentration
has been measured and the time (1t) necessary for an uni-
form mixing of the atmospheric layer between ground and
the height of the measurement:

Ffungal spore=
number concentration×spore mass×1z

1t
(1)

1z has been assumed to be 10 m. This is the average
sampling height at which fungal spore concentrations have
been measured, considering that sometimes samples have
been taken at ground level, sometimes above tree level or
on top of buildings. The height of 10 m for1z is justified
because it is at the top of the Prandtl layer in which fluxes
between the ground and the atmosphere are constant with
height (Colombe Siegenthaler-LeDrian and Tanja Stanelle,
personal communication, 2011). We assume the concentra-
tion measured at this level to be in a steady state between
spore emissions and dry deposition.

As the density of fungal spores is slightly lower than that
of air, they are lifted with thermals and their dry deposition

can be neglected for this offline calculation. This is supported
by a terminal velocity ofv = 6.12× 10−7ms−1 which can
be derived assuming a fungal spore diameter of 10 µm and a
density of 1kgm−3.

The timescale for turbulent diffusion in the 10 m layer can
be obtained from

1t =
(1z)2

2×Kturb
= 50s (2)

with 1z = 10 m and turbulence diffusion coefficient
Kturb= 105cm−2s−1 (Jacob, 1999).

Alternative approaches to calculate fungus fluxes have
been derived for instance byHeald and Spracklen(2009) and
used byHoose et al.(2010):

Ffungal spores= 500 m−2s−1 LAI

5

q

1.5×10−2kgkg−1
(3)

where LAI is the leaf area index, a measure for the leaf area
per surface area andq is the specific humidity. The second of
the two flux calculation methods has not been used since the
LAI is not necessarily a good measure of spore emissions, as
it would create a bias towards too low fungal spore fluxes in
regions where the LAI is very low, such as grasslands.

Spore masses have been derived byWiniwarter et al.
(2009): Assuming an average carbon content of 13 pg C per
spore (Bauer et al., 2002a,b), a water content of 20 % per
spore and 50 % C per dry mass (Sedlbauer and Krus, 2001)
they determined a fungal spore mass of 33 pg. Calculations
by Elbert et al.(2007) resulted in remarkably higher values:
assuming a mass density of about 1 gcm−3 and a volume
equivalent diameter of about 7 µm, the average mass of wet
spore discharged by Ascomycota would be around 200 pg.
Assuming the same density for Basidiomycota,Elbert et al.
(2007) derived a mass of 65 pg.

For calculation of mass fluxes in this paper, the average
mass of 33 pg per spore has been assumed. The number and
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Table 2. Number fluxes of fungal spores per square metre of biome
and second [m−2 s−1].

Biome low estimate best estimate high estimate

Tropical forest 93 194 458
Forest 31 214 387
Shrub 37 1203 3472
Grassland 14 165 1111
Crop 2469 2509 2549
Tundra 1 8 15

mass fluxes are listed once per second and once per second
and square meter of the specific biome. Global averages are
derived by taking the mean of the respective values for each
biome area.

The following assumptions have been made for the flux
calculations:

– Seasonal or daily cycles do not influence the measured
spore concentrations.

– There is no difference between colony forming units
(CFU) and total counts.

– Due to data scarcity the measurements taken at spe-
cific ecosystems were summarised in broader categories
(cf. Table 1).

– Similar assumptions have been made for the other
biome regions.

Best estimates have been calculated from all average spore
concentration data available.Lau et al.(2006) are the only
researchers that have expressed their data with the geometric
mean instead of the arithmetic mean. Since the difference be-
tween the geometric mean and the arithmetic mean are small,
they have been treated in the same manner. It should be noted
that for the low and high estimates of crop emissions, only
one measurement result was available. Where no average
concentrations were provided, the average between the max-
imum and minimum spore concentrations (if available) has
been taken instead. The high and low estimates are the av-
erages of all minimum and maximum spore counts (where
available). In the optimum case, total spore counts were pro-
vided covering all identifiable species. However, in some
studies, only certain genera were investigated. Where spore
counts had been split according to species, the sum over all
has been taken in order to get as close as possible to the num-
ber of total counts.

Table 2 shows the aggregated number fluxes of fungal
spores per square metre of biome and second, while Table 3
shows the respective mass fluxes in kg per square metre and
second. The biome area with the largest fungal spore flux
is crop followed by shrub, tropical and non-tropical forest,
grassland and tundra in descending order. This can also be

Table 3. Mass fluxes of fungal spores per square metre of biome
and second [kgm−2s−1].

Biome low estimate best estimate high estimate

Tropical forest 3.06× 10−12 6.40× 10−12 1.51× 10−11

Forest 1.02× 10−12 7.08× 10−12 1.28× 10−11

Shrub 1.22× 10−12 3.97× 10−11 1.15× 10−10

Grassland 4.65× 10−13 5.44× 10−12 3.67× 10−11

Crop 8.15× 10−11 8.28× 10−11 8.41× 10−11

Tundra 4.49× 10−14 2.62× 10−13 4.79× 10−13

Fig. 2. Best estimate weighted annual mean fungal spore number
flux in m−2 s−1.

seen in Fig. 2, showing the fungal number flux, which was
produced by combining the best estimates of reviewed fungal
spore data with the plant functional types from the JSBACH
dynamic vegetation model (Raddatz et al., 2007).

As for the prevalence of different spore genera, most of
the studies agree thatCladosporiummake up a very dom-
inant part of the fungal spore air spora, e.g.Sakiyan and
Inceoglu (2003); Mallo et al. (2010). Other species such
as Alternaria, Aspergillus, Ganoderma, Agaricus, Copri-
nus, Leptosphaeriaor smuts and rusts have been consid-
ered as important constituents, but usually showed much
lower concentrations thanCladosporium(e.g. Sakiyan and
Inceoglu, 2003; Mallo et al., 2010). Based on literature stud-
ies,Goncalvez et al.(2010) concluded thatAsperigllus, Al-
ternaria andPenicillium were predominant in hot climates,
whereasCladosporiumspores were found to be most abun-
dant in temperate climatic regimes.

2.1 Review of measurement methods

The simplest method to measure airborne fungal spores is
to expose sticky surfaces or petri dishes and then count ei-
ther all detectable fungal spores or, in the case of petri
dishes, the colony forming units (CFU). This method has
for instance been used byBhati and Gaur(1979) or
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Abu-Dieyeh et al.(2010). The obtained sample results are
useful in order to get a qualitative impression of the compo-
sition of the prevailing air spora. However,Gregory(1952)
pointed out that these data imply the “tacit assumption that
the relation between the number of particles suspended in the
air flowing over the surface and the number deposited on the
surface is known”.Gregory(1952) further argue that these
simple rules would only apply for still air. According to the
authors of the study, the efficiency of a sticky surface to col-
lect fungal spores rather varies with wind speed and subse-
quently number concentrations per unit volume are difficult
to obtain.Gregory(1952) note, that a good sampling device
draws in “a known volume of air without altering its spore
content, removes all particles over the 2–100 µm size range,
and leaves them in a form in which they can be examined,
counted and classified”.

Hirst (1952) described the features a measurement device
should have in order to give useful results: Besides the abil-
ity of assessing the spore concentration per unit volume of
air, it should also be possible to measure in distinct time in-
tervals to better correlate concentrations with meteorological
conditions. He designed a spore trap that was able to suck in
air and subsequently impact the contained spores on a sticky
surface. The principle of suction increases, asHirst (1952)
argues, the efficiency of filtration and impaction. However,
he also found that this does not guarantee for the air masses
entering the trap being representative of the actual spore load
(collection efficiency). To counteract this problem,Hirst
(1952) proposed that air should be sampled isokinetically
and that the orifice should always be directed into the air-
stream. In order to get a distinction in time, a sticky slide is
moved slowly past the orifice (Hirst, 1952). As suction rates
are constant, trapping efficiencies change with wind speeds
(Hirst, 1953).

Recent methods take advantage of biochemical properties
of fungal spores.Elbert et al.(2007) for instance use man-
nitol (a component of fungal cell membranes) as a fungal
biomarker to determine their prevalence in air masses.Bauer
et al. (2008) rely on other biochemical tracers such as man-
nitol or arabitol to measure the fungal spore content in the
precipitation.

A review of the available studies of spore concentrations
showed that the measurement methods applied were diverse.
As outlined above, data from measurements with petri dishes
have not been included in the flux calculations for this paper
due to the above named reasons. The trapping efficiency of
petri dishes is no higher than 5 % which is remarkably lower
than the 80 % trapping efficiency of a Hirst trap (Davies et al.,
1963, citing Gregory and Stedman, 1953).

Among the data sets used for calculations, many of the
researchers relied on the Hirst-type spore trap as described
above, e.g. (Davies et al., 1963; Hamilton, 1959; Rodŕıguez-
Rajo et al., 2005; Oliveira et al., 2009; Mallo et al., 2010;
Levetin and Dorsey, 2006; Herrero et al., 2006; Wu et al.,
2004; Stepalska and Wolek, 2009; Kasprzyk and Worek,

2006; Sakiyan and Inceoglu, 2003). Among these, mostly
models from Lanzoni (VPPS 2000) (Lanzoni, 2010) or
Burkard (Burkard Scientific, 2000) were used. Others re-
lied on Filterhousings containing 2 µm filter membranes,
e.g.Prospero et al.(2005); Griffin et al. (2001, 2003, 2007),
for their measurement. Another device sometimes used was
the May Cascade Impactor (May, 1945). However, this de-
vice was found to have a considerably lower trapping ef-
ficiency for small spores than the Volumetric Spore Trap
(Hirst, 1953). Only a few of the studies monitored the fungal
spore content in cloud droplets or precipitation (Amato et al.,
2007; Bauer et al., 2002a) and some other measurement de-
vices and methods apart from those named above have been
used as well (for detailed information on measurement meth-
ods see Table A1 in the appendix).

The measurement duration varied from a few minutes to
continuous measurements seven days a week (especially ap-
plied for the Hirst-type spore traps). Also the time span over
the year varied from study to study: some only measured on
one single day, e.g.Côté et al.(2008), others even over sev-
eral years continuously, e.g.Mallo et al.(2010).

Besides the heterogeneity of the used measurement de-
vices also the airflow varied from 1.9 lmin−1 (Griffin et al.,
2001) up to 1.13 m3min−1 (Lau et al., 2006). An airflow of
10 lmin−1 seems to be the most commonly used value for
such measurements. Moreover it was difficult to retrieve the
airflow rates from all studies. The correct choice of airflow is
an important factor for spore measurements since measure-
ments that are not conducted isokinetically can lead to re-
markable biases in spore counts.

Furthermore the height at which the devices had been in-
stalled was not the same in the respective studies. Some used
air samples in heights up to several kilometres, whereas other
conducted ground-based measurements in heights from 2 m
up to 50 m. When considering spore dispersal from a bound-
ary layer meteorological point of view, the choice of the mea-
surement height might be crucial since it decides on whether
measurements are taken within or outside the turbulent layer.

The situation is alike for the different impaction media
chosen: whereas those using the Lanzoni Hirst-type spore
trap rely on so-called Melinex tape which is mounted after
spore collection with glycerol jelly, others use different sur-
faces. The same situation can be found when it comes to the
use of nutrient media for growth of the trapped fungal spores
(viable counts). Some rely on R2A agar, others on YM
(yeast-morphology) agar, others on Sabouraud’s medium for
fungi or malt-agar extract, etc. The possibilities for fungus
incubation for viable counts are numerous. Incubation times
vary from two days up to two weeks and longer and so do
also the incubation temperatures applied. Moreover, count-
ing methods are not the same in all studies. Some use opti-
cal methods such as microscopy or macroscopy with differ-
ent magnifications (ranging from 40x−1000x) while others
use Polymerase Chain Reaction (PCR) to determine genera
and species from their genome. As for the nutrient medium

www.biogeosciences.net/8/1181/2011/ Biogeosciences, 8, 1181–1192, 2011



1186 A. Sesartic and T. N. Dallafior: Global fungal spore emissions

chosen, bothAbdel-Hafez et al.(1985) and Abdel-Hafez
et al.(1986) conclude that the choice of nutrient medium had
an influence on the prevalence of respective species counted.

To sum up, the measurement methods differ at many stages
of the measurement and counting process: The counting de-
vice, the airflow chosen, the placement of the sampling de-
vice, the sticky medium, the nutrient medium (for viable
counts), the incubation duration and the counting method.
It is crucial to introduce a convention on how to exactly mea-
sure fungal spores in the atmosphere in order to prevent bi-
ases due to different measurement methods and to increase
comparability of results.

2.2 CFU vs. total spore count

Not all studies have investigated both the total count of all
spores available and the counts of viable spores called colony
forming units (CFU) after incubation. However, this would
be an important source of information on what share of the
atmospheric fungal spora is viable and which is not (Gre-
gory, 1967). In very few of the studies, both the viable and
total counts of spores have been investigated, e.g.Lau et al.
(2006); Pady and Kapica(1955); Griffin et al. (2001); Bauer
et al.(2002a). All other studies either published total spores
or only CFUs. In order to assess their activity as CCN or IN
it is not relevant whether they are alive or not. The important
feature is the shape and presence of the active proteins which
actually act as nuclei (Kieft and Ruscetti, 1990). Therefore,
it is not the viability of the fungal spore that affects its IN
activity, but whether the ice nucleation active proteins on its
surface are denatured or not. If the protein conformation is
intact, it can trigger the ice nucleation, regardless of the cell’s
viability. However, it is important that the cell has been alive
at one point in order to produce the ice nucleation proteins
in the first place. Therefore it is all the more important to
evaluate total counts instead of only viable counts in order to
include all possible IN present on the spore surface.

Pady and Kapica(1955) found that silicone slides exposed
in a slit sampler revealed spore counts a manifold higher
than those of plates exposed at the same time where CFUs
had been counted. This could be explained by a remarkable
bias between viable and total spore counts.Gregory(1967)
found that viability ofAlternaria spores averaged at 80 %
and that ofCladosporiumspores at 42 % with viability de-
creasing at midday. Hence, viability varies from species to
species. Other sources reportCladosporiumviability to be
on average at 62 % (Pady and Gregory, 1963). Experiments
by Harvey(1967) investigated viability ofCladosporiumand
came to the conclusion that single spores germinate more
readily than clumps of spores. Moreover they also found a
diurnal cycle in germination that reached maximum values
between 10:00 UTC and 18:00 UTC and minimum values at
02:00 UTC. However, the authors also state that this cyclical-
ity of viability is in disagreement with the findings byPathak
and Pady(1965). Bauer et al.(2002a) estimated the total vi-

Table 4. Weighted average number [m−2s−1] and mass
[kgm−2s−1] fluxes of fungal spore emissions over land.

low estimate best estimate high estimate

number flux 273 513 995
mass flux 9.01× 10−12 1.69× 10−11 3.28× 10−11

ability of the sampled bacteria and fungi to be around 87 %
using the condition of the cell wall as a criterion to determine
viability. Analysis of snow samples then showed that the cul-
tivable part of fungi amounted only up to 0.7 % (Bauer et al.,
2002a). This seems a very low number, but it is sensible
considering the fact that these spores already had to survive
very harsh conditions within the ice crystals or even during
precipitation formation processes.Fisar et al.(1990) com-
pared two counting methods, CFUs and direct counts (Fluo-
rescence technique; see respective paper for detailed descrip-
tion of this method) and came to the conclusion that the dif-
ference between CFUs and direct counts for both, bacteria
and yeasts, is not only considerable but also highly variable.
The authors added that seasonal trends in these discrepancies
were not detected.

The information provided in the above section is strong
evidence for the fact that CFU counts and total spore counts
are not equal at all. Due to the scarcity of studies includ-
ing both viable and total counts, values for CFUs and total
spore counts have been treated equally in this paper knowing
that the two counting methods show remarkable differences
in resulting counts.

3 Discussion

The fungal spore fluxes for the respective biome areas are in
the expected orders of magnitude. The more a biome region
is vegetated, the higher are the fungal spore emissions (cf. Ta-
ble 2 and Fig. 2). This makes sense considering the fact that
plants are the largest source of fungal bioaerosol. This rea-
soning is also supported byHeald and Spracklen(2009), al-
though their fungal spore flux calculations are based on the
leaf area index (LAI) which might result in a bias towards too
low emissions for biomes with lower LAI as already pointed
out in Sect. 2.

Unfortunately, no useful data in land ice areas were found
so that emissions are not available for this ecoregion. It
would nonetheless be worth investigating these regions as
well. Lichen soredia (i.e. the reproductive structure of lichen)
have been reported to be most abundant in maritime Antarc-
tica (Henderson-Begg et al., 2009, citing Marshall 1996).
Considering the fact that lichen have been found to be effec-
tive ice nuclei, it is probable that lichen in these ecoregions
do have an influence on cloud microphysical processes as
well as precipitation formation. A number of studies mainly
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focused on species such asCladosporium, Aspergillusor Al-
ternaria. This is mainly because these fungi can cause al-
lergies (Goncalvez et al., 2010, citing Vijay 2005 and Shen
2007).

Heald and Spracklen(2009) conducted an estimate of fun-
gal spore emissions based on mannitol concentrations (a bio-
tracer for fungi) using the GEOS-chem chemical transport
model (see respective paper for detailed information). Two
major differences between the respective results can be seen
in the tropical regions. WhereasHeald and Spracklen(2009)
found highest values in the Amazon and tropical African re-
gion, the present study does not reveal maximum values in
these regions. Moreover, mass fluxes found byHeald and
Spracklen(2009) are with 5.96× 10−12 kgm−2s−1 an order
of magnitude lower than those presented here (cf. Table 4).
(Winiwarter et al., 2009), who calculated global average fun-
gal spore emissions of 5.71× 10−13 kgm−2s−1 came to val-
ues two orders of magnitude smaller. Nevertheless, the val-
ues presented here (1.69× 10−11 kgm−2s−1, for best esti-
mate cf. Table 4) are in agreement with the study byEl-
bert et al.(2007) that presents a fungal spore mass flux of
2.26× 10−11 kgm−2s−1.

The lower values found in tropical regions can partly be
explained by the fact that fungal spore data for tropical
forests have been aggregated up to one biome area irrespec-
tive of forest type. Both methods are prone to biases and er-
rors. The downsides of the present method will be outlined in
Sect.3.1. However, it is also likely that the results byHeald
and Spracklen(2009) are based on different asumptions. As
outlined in Sect.1 fungal spore composition and size can be
very heterogeneous and variable. Nevertheless, the approach
of Heald and Spracklen(2009) is promising as seasonality
and meteorological influences have been taken into account.

Probably the measurements of actual spore concentrations
as well as the measurements of biological tracer substances
to derive fungal spore fluxes have to be seen in a comple-
mentary way. Concentration measurements on the one hand
yield absolute counts of all fungal spores, but comprise mea-
surement issues outlined in previous sections as well as some
problems with the identification of fungal spores. As for the
biochemical tracer method, these problems are not encoun-
tered, but more knowledge needs to be gained in terms of
chemical composition of primary biological aerosols as to
better describe them and hence yield more accurate results.
Therefore it is useful to intercompare the two approaches in
order to determine possible sources of error and strengthen
hypotheses where agreement is achieved.

3.1 Sources of error

As mentioned above, the results of this study have to be taken
with caution. The density of measurement points was not
sufficient to take into account all ecosystems and therefore
only a very coarse distinction into the here presented biome
areas could be made. This also implies that for example a

deciduous broadleaf forest is considered to emit the same
amount and kind of spores as a coniferous forest in higher
latitudes. This of course does not make sense from a biolog-
ical point of view. Moreover, the seasonal and diurnal cycles
which clearly have been detected (see Sect.2) could not be
extended to all biomes and fungal species due to scarcity of
data. The fact that the difference between CFUs and total
counts is not considered clearly must bias the results espe-
cially since only very little information is available on what
share of fungal spores are viable.

The present data have been calculated on the basis of many
simplifications and assumptions that had to be made due to
the scarcity of data. As outlined in Sect.2, also measure-
ment methods showed high heterogeneity which can clearly
be regarded as a source of bias in the present dataset. Never-
theless it is a step towards enumerating fungal spore concen-
trations and fluxes on a global basis. We hope that our review
will motivate further observations of fungal spore emissions,
which might ultimately lead to an improved global database.

3.2 Outlook

In order to minimise the above named sources of error, mea-
surement methods need to be standardised in order to al-
low for better comparability. Furthermore, results should al-
ways comprise both CFU and viable count data. To allow
for a finer resolution of flux data, data points should be dis-
tributed more densely and represent a larger set of investi-
gated ecosystems. In order to account for seasonal and daily
cycles, measurements should be continuous over periods at
least lasting a full year.

Since investigation of bioaerosols in general is highly in-
teresting due to their possible influence on cloud microphysi-
cal processes, further research would be needed to learn more
about the potential of fungal spores to act as CCN or IN.
Moreover, lichen which have been reported to be effective
IN should be investigated better since they are more abun-
dant in the atmosphere than bacteria (Henderson-Begg et al.,
2009). Additionally, data should not only focus on allergy
causing fungi, but also on those spores which presumably in-
fluence atmospheric processes. It would therefore also make
sense to investigate concentrations of IN active spores such
asFusariumin order to get a broader picture of what share of
all fungal spores is actually involved in ice crystal formation
processes.

4 Conclusions

The present study has reviewed data and information avail-
able on fungal spore concentrations and derived fungal spore
emissions. As outlined above, data quality in general is
rather poor due to the heterogeneity of the applied mea-
surement methods as well as the quality of the measure-
ments themselves. A standardized measurement method
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Table A1. Sources used for fungal spore flux calculations and details about their measurement procedure. Most samplings considered the
total spore counts, those that considered only certain genera are indicated by the footnotes.

Source Sampling Device Airflow Sample Period/Number of Samplings

Amato et al.(2005) Single stage cloud collectors n/a 2 Samplings
Amato et al.(2007) Sterilised cloud droplet impactor n/a 7 cloud events
Bauer et al.(2002a) Active cloud water sampler n/a 3 cloud events, 8 samplings
Beaumont et al.(1985) Andersen Sampler model 0101 28.3 l min−1 1981–1983/weekly, 3 samplings per day
Burch and Levetin(2002) Burkart volumetric spore trap n/a four days in September
Côté et al.(2008) 12.5 l min−1 6.5 h/one sampling
Davies et al.(1963) Hirst-type spore trap 10 l min−1 n/a
Herrero et al.(2006) Hirst-type spore trap (Burkart) n/a year 2003/continuous samplings
DiGiorgio et al.(1996) Hirst-type spore trap (Burkart) 40 l min−1 one year/2 samplings a week
Elbert et al.(2007) Rotating impactor, isokinetic jet impactor n/a 2001/continuous measurements
Fisar et al.(1990) Single stage large-volume impactor 42 l min−1 50–200l per sample, i.e. a few minutes
Glikson et al.(1995) Teflon filters for PM10 n/a 4–8 1992/daily samplings
Gregory(1952) May cascade impactor 10 l min−1 24 h
Griffin et al. (2001) Filter samples 9.3 l min−1 18–28 July 2000 5 samplings
Griffin et al. (2003) Filter membrane 6.5–28.4 l min−1 18 July 2000–8 August 2001
Griffin et al. (2006) Filter membrane 1.9–17.4 l min−1 06:30–18:45 UTC/2–3 air samplings
Griffin et al. (2007) Membrane Filtration n/a 3–10 2002/continuous samplings
Griffin (2007) Data taken from multiple sources n/a n/a
Hamilton(1959) Hirst-type spore trap 10 l min−1 5–9 1954/15 min per day
Ho et al.(2005) Hirst-type spore trap 10 l min−1 continuous from 1993 to 1996
Kasprzyk and Worek(2006) Hirst-type spore trap (Lanzoni) 10 l min−1 one year/continuous samplings
Kellogg et al.(2004) in-house designed system 10 l min−1 n/a
Lau et al.(2006) Graseby GMWT 2200 1.13 m3 min−1 8–12 2002/weekly samples (72 h)
Levetin and Dorsey(2006) Hirst-type spore trap (Burkart) n/a 2002/daily samplings
Mallo et al.(2010) Hirst-type spore trap (Lanzoni) 10 l min−1 1998–2001 continuous samplings
Marks et al.(2001) Sartorius MD-8 air filtration unit 0.5–1 m3 2–5 July 97 and 2–14 98
Oliveira et al.(2009) Hirst-type volumetric spore trap 10 l min−1 2005–2007/continuous samplings
Pady and Kapica(1955) Bourdillong slit sampler and McGill GE 28.3 l min−1 2 sampling flights Montŕeal-London
Prospero et al.(2005) Filter Samples 10 l min−1 1996–1997/continuous samplings
Rodŕıguez-Rajo et al.(2005) ∗ Hirst-type spore trap (Lanzoni) 10 l min−1 whole year/continuous samplings
Sabariego et al.(2000) Hirst-type spore trap (Burkart) 10 l min−1 whole year/continuous samplings
Sakiyan and Inceoglu(2003) † Hirst-type spore trap (Burkart) 10 l min−1 whole year/continuous samplings
Simeray et al.(1993) S.A.S. Sampler 0.15 m3 1989–1990, 100 s per sample/once a week
Stepalska and Wolek(2009) ‡ Hirst-type spore trap 10 l min−1 Daily average concentrations 1997–1999
Winiwarter et al.(2009) Data taken from multiple sources n/a n/a
Wu et al.(2004) Hirst-type spore trap (Burkart) 10 l min−1 12 2000–04 2001/continuous sampling
Wu et al.(2007) Portable air samplers for agar plates 20 l min−1 03 2003–12 2004, 2 min/sample/2x monthly

∗ Considered species:Cladosporium sp.andAlternaria sp.
† Considered species:Cladosporium sp.andAlternaria sp.
‡ Considered species:Alternaria sp., Botrytis sp., Cladosporium sp., Didymella sp., andGanoderma sp.

would be of help in order to minimize measurement biases
and allow for better intercomparability of measurements.
The resulting global emission flux of fungal bioaerosol of
1.69× 10−11 kgm−2s−1 was proven to be in agreement with
previous studies. Despite manifold sources of error, the cal-
culated fluxes can be considered as a good first result. This
could provide a basis for further research on fungal spore
emissions depending on biome area. The resulting fluxes are
useful in order to evaluate the impact of global fungal aerosol
on weather and climate.

Appendix A

Overview of measurement methods and
observational data

The following tables comprise information on measurement
methods employed by the respective studies (see Table A1)
as well as all the values used for flux calculations (see Ta-
ble A2). Multiple values for the same source can occur in
case multiple measurements over different intervals of time
had been undertaken or different sites had been chosen for
measurement. These cases were treated as single measure-
ment points.
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Table A2. Data used as input for fungal spore flux calculations; average, minimum and maximum number concentrations and number fluxes
of fungal spores. The data were always rounded to a whole number. The column CFU (Culture Forming Units) counts denotes if a culture
based technique was used for the analysis (yes), if it was a culture-independent technique (no), or if both methods were used.

Source Ecosystem Average conc. Min conc. Max. conc. Average flux Min flux Max flux CFU counts
[m−3] [m−3] [m−3] [m−2s−1] [m−2s−1] [m−2s−1]

Amato et al.(2005) Forest 222 53 390 44 11 78 yes
Bauer et al.(2002a) Forest 2200 340 5000 440 68 1000 no
Bauer et al.(2002a) Forest 1200 170 3200 240 34 640 no
Bauer et al.(2002a) Forest 346 49 863 69 10 173 no
Beaumont et al.(1985) Forest 258 n/a n/a 52 n/a n/a yes
Côté et al.(2008) Forest 615 492 738 123 98 148 yes
Fisar et al.(1990) Forest 17 n/a n/a 3 n/a n/a Both methods
Gregory(1967) Forest n/a n/a 43 300 n/a n/a 8660 no
Gregory(1967) Forest 5250 n/a n/a n/a n/a 1050 no
Gregory(1967) Forest n/a 766 n/a 153 n/a n/a no
Kasprzyk and Worek(2006) Forest 2144 n/a n/a 429 n/a n/a no
Kasprzyk and Worek(2006) Forest 2183 n/a n/a 437 n/a n/a no
Kasprzyk and Worek(2006) Forest 2093 n/a n/a 419 n/a n/a no
Kasprzyk and Worek(2006) Forest 2146 n/a n/a 429 n/a n/a no
Marks et al.(2001) Forest 105 0 1000 21 0 200 yes
Marks et al.(2001) Forest 223 0 600 45 0 120 yes
Marks et al.(2001) Forest 26 0 200 5 0 40 yes
Marks et al.(2001) Forest 12 0 45 2 0 9 yes
Oliveira et al.(2009) Forest 531 n/a 8509 106 n/a 1702 no
Rodŕıguez-Rajo et al.(2005) Forest 564 n/a n/a 113 n/a n/a no
Winiwarter et al.(2009) Forest 49 n/a n/a 10 n/a n/a
Elbert et al.(2007) Tropical forest 12 476 4764 20 188 2495 953 4038 no
Griffin et al. (2001) Tropical forest 45 n/a n/a 9 n/a n/a no
Griffin et al. (2003) Tropical forest 0 n/a n/a 0 n/a n/a yes
Griffin et al. (2003) Tropical forest 57 n/a n/a 11 n/a n/a yes
Griffin et al. (2003) Tropical forest 9 5 20 2 1 4 yes
Griffin et al. (2003) Tropical forest 12 8 24 2 2 5 yes
Griffin et al. (2007) Tropical forest 1702 100 8510 340 20 1702 yes
Lau et al.(2006) Tropical forest 86 18 341 17 4 68 both methods
Lau et al.(2006) Tropical forest 72 30 294 14 6 59 both methods
Lau et al.(2006) Tropical forest 292 7 2386 58 1 477 both methods
Lau et al.(2006) Tropical forest 247 50 1540 49 10 308 both methods
Prospero et al.(2005) Tropical forest 92 n/a n/a 18 n/a n/a yes
Prospero et al.(2005) Tropical forest 213 n/a n/a 43 n/a n/a yes
Pady and Kapica(1955) Tropical forest 37 6 67 7 1 13 both methods
Pady and Kapica(1955) Tropical forest 230 170 291 46 24 58 both methods
Pady and Kapica(1955) Tropical forest 6 6 6 1 1 1 both methods
Pady and Kapica(1955) Tropical forest 44 39 49 9 8 10 both methods
Pady and Kapica(1955) Tropical forest 16 n/a n/a 3 n/a n/a both methods
Pady and Kapica(1955) Tropical forest 31 n/a n/a 6 n/a n/a both methods
Wu et al.(2007) Tropical forest 2233 n/a n/a 447 n/a n/a yes
Wu et al.(2007) Tropical forest 2278 n/a n/a 456 n/a n/a yes
Burch and Levetin(2002) Shrub 50 000 n/a n/a 10 000 n/a n/a no
Herrero et al.(2006) Shrub 609 n/a n/a 122 n/a n/a no
DiGiorgio et al.(1996) Shrub 92 n/a n/a 18 n/a n/a no
DiGiorgio et al.(1996) Shrub 46 n/a n/a 9 n/a n/a no
Griffin et al. (2007) Shrub 73 31 115 15 6 23 yes
Griffin et al. (2007) Shrub 25 0 291 5 0 58 yes
Katial et al.(1997) Shrub 409 n/a n/a 82 n/a n/a no
Pady(1957) Shrub 24 499 837 48 162 4 900 167 9632 no
Pady(1957) Shrub 715 170 1261 143 34 252 no
Levetin and Dorsey(2006) Shrub 24 121 53 48 188 4824 11 9638 yes
Levetin and Dorsey(2006) Shrub 5459 n/a 64 363 1092 n/a 12 873 yes
Mallo et al.(2010) Shrub 285 n/a 2000 57 n/a 400 no
Mallo et al.(2010) Shrub 814 n/a 3488 163 n/a 698 no
Oliveira et al.(2009) Shrub 934 n/a 8761 187 n/a 1752 no
Rodŕıguez-Rajo et al.(2005) Shrub 950 n/a n/a 190 n/a n/a no
Rodŕıguez-Rajo et al.(2005) Shrub 979 n/a n/a 196 n/a n/a no
Sabariego et al.(2000) Shrub 832 n/a n/a 166 n/a n/a no
Sakiyan and Inceoglu(2003) Shrub 2917 17 5817 583 3 1163 no
Gregory(1952) Crop 9175 n/a n/a 1835 n/a n/a no
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Table A2. Continued.

Source Ecosystem Average conc. Min conc. Max. conc. Average flux Min flux Max flux CFU counts
[m−3] [m−3] [m−3] [m−2s−1] [m−2s−1] [m−2s−1]

Gregory(1952) Crop 11900 n/a n/a 2380 n/a n/a no
Gregory(1952) Crop 6975 n/a n/a 1395 n/a n/a no
Gregory(1952) Crop 9372 n/a n/a 1874 n/a n/a no
Gregory(1952) Crop 13970 n/a n/a 2794 n/a n/a no
Gregory(1952) Crop 9830 n/a n/a 1966 n/a n/a no
Hamilton(1959) Crop 14 800 n/a n/a 2960 n/a n/a no
Hamilton(1959) Crop 8200 6400 10 000 1640 1280 2000 no
Wu et al.(2004) Crop 28684 n/a n/a 5737 n/a n/a no
Griffin et al. (2001) Grassland 42 n/a n/a 8 n/a n/a no
Griffin et al. (2003) Grassland 24 n/a n/a 5 n/a n/a yes
Griffin et al. (2003) Grassland 46 27 57 9 5 11 yes
Griffin et al. (2003) Grassland 65 48 90 13 10 18 yes
Griffin et al. (2003) Grassland 11 8 14 2 3 2 yes
Griffin et al. (2007) Grassland 869 n/a n/a 174 n/a n/a yes
Griffin et al. (2007) Grassland 215 205 226 43 41 45 yes
Griffin et al. (2007) Grassland 66 0 703 13 0 141 yes
Griffin et al. (2007) Grassland 3 0 27 1 0 5 yes
Griffin et al. (2007) Grassland 1398 336 6992 280 67 1398 yes
Griffin et al. (2007) Grassland 6078 n/a n/a 1216 n/a n/a yes
Kellogg et al.(2004) Grassland 225 80 370 45 16 74 yes
Kellogg et al.(2004) Grassland 65 0 130 13 0 26 yes
Kellogg and Griffin(2006) Grassland 0 n/a n/a 0 n/a n/a yes (apart from one source)
Kellogg and Griffin(2006) Grassland 60 n/a n/a 12 n/a n/a yes (apart from one source)
Kellogg and Griffin(2006) Grassland 6078 n/a n/a 1216 n/a n/a yes (apart from one source)
Kellogg and Griffin(2006) Grassland 4839 n/a n/a 968 n/a n/a yes (apart from one source)
Prospero et al.(2005) Grassland 0 n/a n/a 0 n/a n/a yes
Wu et al.(2004) Grassland n/a n/a 29 038 n/a n/a 5808 no
Pady and Kapica(1955) Tundra 30 4 57 6 1 11 both methods
Pady and Kapica(1955) Tundra 87 14 159 17 3 32 both methods
Pady and Kapica(1955) Tundra 3 2 4 1 0 1 both methods
Pady and Kapica(1955) Tundra 39 7 71 8 1 14 both methods
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