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Abstract

Global games are games of incomplete information whose type space is
determined by the players each observing a noisy signal of the underlying
state. With strategic complementarities, global games often have a unique,
dominance solvable equilibrium, allowing analysis of a number of economic
models of coordination failure. For symmetric binary action global games,
equilibrium strategies in the limit (as noise becomes negligible) are simple
to characterize in terms of ‘diffuse’ beliefs over the actions of others. We
describe a number of economic applications that fall in this category. We
also explore the distinctive roles of public and private information in this
setting, review results for general global games, discuss the relationship
between global games and a literature on higher order beliefs in game theory
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and describe the relationship to local interaction games and dynamic games
with payoff shocks.
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1. Introduction

Many economic problems are naturally modelled as a game of incomplete informa-

tion, where a player’s payoff depends on his own action, the actions of others, and

some unknown economic fundamentals. For example, many accounts of currency

attacks, bank runs and liquidity crises give a central role to players’ uncertainty

about other players’ actions. Because other players’ actions in such situations are

motivated by their beliefs, the decision maker must take account of the beliefs held

by other players. We know from the classic contribution of Harsanyi (1967-8)

that rational behavior in such environments depends not only on economic agents’

beliefs about economic fundamentals, but also depends on beliefs of higher order

- that is, players’ beliefs about other players’ beliefs, players’ beliefs about other

players’ beliefs about other players’ beliefs, and so on. Indeed, Mertens and Za-

mir (1985) have shown how one can give a complete description of the “type” of

a player in an incomplete information game in terms of a full hierarchy of beliefs

at all levels.

In principle, optimal strategic behavior should be analyzed in the space of all

possible infinite hierarchies of beliefs; however, such analysis is highly complex

for players and analysts alike and is likely to prove intractable in general. It is

therefore useful to identify strategic environments with incomplete information

that are rich enough to capture the important role of higher order beliefs in eco-

nomic settings, but simple enough to allow tractable analysis. Global games, first
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studied by Carlsson and van Damme (1993a), represent one such environment.

Uncertain economic fundamentals are summarized by a state θ and each player

observes a different signal of the state with a small amount of noise. Assuming

that the noise technology is common knowledge among the players, each player’s

signal generates beliefs about fundamentals, beliefs about other players’ beliefs

about fundamentals, and so on. Our purpose in this paper is to describe how such

models work, how global game reasoning can be applied to economic problems

and how this analysis relates to more general analysis of higher order beliefs in

strategic settings.

One theme that emerges is that taking higher order beliefs seriously does not

require extremely sophisticated reasoning on the part of players. In section 2,

we present a benchmark result for binary action continuum player games with

strategic complementarities where each player has the same payoff function. In

a global games setting, there is a unique equilibrium where each player chooses

the action that is a best response to a uniform belief over the proportion of his

opponents choosing each action. Thus, when faced with some information con-

cerning the underlying state of the world, the prescription for each player is to

hypothesize that the proportion of other players who will opt for a particular ac-

tion is a random variable that is uniformly distributed over the unit interval and

choose the best action under these circumstances. We dub such beliefs (and the

actions that they elicit) as being Laplacian, following Laplace’s (1824) suggestion

that one should apply a uniform prior to unknown events from the “principle of
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insufficient reason”.

A striking feature of this conclusion is that it reconciles Harsanyi’s fully ra-

tional view of optimal behavior in incomplete information settings with the dis-

senting view of Kadane and Larkey (1982) and others that rational behavior in

games should imply only that each player chooses an optimal action in the light

of his subjective beliefs about others’ behavior, without deducing his subjective

beliefs as part of the theory. If we let those subjective beliefs be the agnostic

Laplacian prior, then there is no contradiction with Harsanyi’s view that players

should deduce rational beliefs about others’ behavior in incomplete information

settings.

The importance of such analysis is not that we have an adequate account of

the subtle reasoning undertaken by the players in the game - it clearly does not do

justice to the reasoning inherent in the Harsanyi program. Rather, its importance

lies in the fact that we have access to a form of short-cut, or heuristic device that

allows the economist to identify the actual outcomes in such games, and thereby

open up the possibility of systematic analysis of economic questions which may

otherwise appear to be intractable.

One instance of this can be found in the debate concerning self-fulfilling beliefs

and multiple equilibria. If one set of beliefs motivates actions which bring about

the state of affairs envisaged in those beliefs, while another set of self-fulfilling

beliefs bring about quite different outcomes, then there is an apparent indetermi-

nacy in the theory. In both cases, the beliefs are logically coherent, consistent
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with the known features of the economy, and are borne out by subsequent events.

However, we do not have any guidance on which outcome will transpire without

an account of how the initial beliefs are determined. We have argued elsewhere

(Morris and Shin (2000)) that the apparent indeterminacy of beliefs in many

models with multiple equilibria can be seen as the consequence of two modelling

assumptions introduced to simplify the theory. First, the economic fundamentals

are assumed to be common knowledge; and second, economic agents are assumed

to be certain about others’ behavior in equilibrium. Both assumptions are made

for the sake of tractability, but they do much more besides. They allow agents’

actions and beliefs to be perfectly co-ordinated in a way that invites multiplicity

of equilibria. In contrast, global games allow theorists to model information in

a more realistic way, and thereby escape this straitjacket. More importantly,

through the heuristic device of Laplacian actions, global games allow modelers to

pin down which set of self-fulfilling beliefs will prevail in equilibrium.

As well as any theoretical satisfaction at identifying a unique outcome in a

game, there are more substantial issues at stake. Global games allow us to

capture the idea that economic agents may be pushed into taking a particular

action because of their belief that others are taking such actions. Thus, inefficient

outcomes may be forced on the agents by the external circumstances even though

they would all be better off if everyone refrained from such actions. Bank runs and

financial crises are prime examples of such cases. We can draw the important

distinction between whether there can be inefficient equilibrium outcomes and
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whether there is a unique outcome in equilibrium. Global games, therefore, are

of more than purely theoretical interest. They allow more enlightened debate on

substantial economic questions. In section 2.3, we discuss applications that model

economic problems using global games.

Global games open up other interesting avenues of investigation. One of them

is the importance of public information in contexts where there is an element of

coordination between the players. There is plentiful anecdotal evidence from a

variety of contexts that public information has an apparently disproportionate

impact relative to private information. Financial markets apparently “overreact”

to announcements from central bankers that merely state the obvious, or reaffirm

widely known policy stances. But a closer look at this phenomenon with the

benefit of the insights given by global games makes such instances less mysterious.

If market participants are concerned about the reaction of other participants to

the news, the public nature of the news conveys more information than simply the

“face value” of the announcement. It conveys important strategic information on

the likely beliefs of other market participants. In this case, the “overreaction”

would be entirely rational and determined by the type of equilibrium logic inherent

in a game of incomplete information. In section 3, these issues are developed more

systematically.

Global games can be seen as a particular instance of equilibrium selection

though perturbations. The set of perturbations is especially rich because it

turns out that they allow for a rich structure of higher order beliefs. In section
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4, we delve somewhat deeper into the properties of general global games - not

merely those whose action sets are binary. We discuss how global games are

related to other notions of equilibrium refinements and what is the nature of

the perturbation implicit in global games. The general framework allows us to

disentangle two properties of global games. The first property is that a unique

outcome is selected in the game. A second, more subtle, question is how such a

unique outcome depends on the underlying information structure and the noise

in the players’ signals. Although in some cases the outcome is sensitive to the

details of the information structure, there are cases where a particular outcome is

selected and where this outcome turns out to be robust to the form of the noise

in the players’ signals. The theory of “robustness to incomplete information” as

developed by Kajii and Morris (1997) holds the key to this property. We also

discuss a larger theoretical literature on higher order beliefs and the relation to

global games.

In section 5, we show how recent work on local interaction games and dynamic

games with payoff shocks employ a similar logic to global games in reaching unique

predictions.

2. Symmetric Binary Action Global Games

2.1. Linear Example

Let us begin with the following example taken from Carlsson and van Damme

(1993a). Two players are deciding whether to invest. There is a safe action (not
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invest); there is a risky action (invest) which gives a higher payoff if the other

player invests. Payoffs are given by the following matrix.

Invest NotInvest
Invest θ, θ θ − 1, 0
NotInvest 0, θ − 1 0, 0

(2.1)

If there were complete information about θ, there would be three cases to

consider.

• If θ > 1, each player has a dominant strategy to invest.

• If θ ∈ [0, 1], there are two pure strategy Nash equilibria: both invest and
both not invest.

• If θ < 0, each player has a dominant strategy not to invest.

But there is incomplete information about θ. Player i observes a private signal

xi = θ + εi. Each εi is independently normally distributed with mean 0 and

standard deviation σ. We assume that θ is randomly drawn from the real line,

with each realization equally likely. This implies that a player observing signal

x considers θ to be distributed normally with mean x and standard deviation σ.

This in turn implies that he thinks his opponent’s signal x0 is normally distributed

with mean x and standard deviation
√
2σ. The assumption that θ is uniformly

distributed on the real line is non-standard but presents no technical difficulties.

Such “improper priors” (with an infinite mass) are well behaved as long as we

are concerned only with conditional beliefs. See Hartigan (1983) for a discussion
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of improper priors. We will also see later that an improper prior can be seen

as a limiting case either as the prior distribution of θ becomes diffuse or as the

standard deviation of the noise σ becomes small.

A strategy is a function specifying an action for each possible private signal;

a natural kind of strategy we might consider is one where a player takes the risky

action only if he observes a private signal above some cutoff point, k:

s (x) =

½
Invest, if x > k
NotInvest, if x ≤ k

We will refer to this strategy as the switching strategy around k. Now suppose

that a player observed signal x and thought that his opponent was following such

a “switching” strategy with cutoff point k. His expectation of θ will be x. He will

assign probability Φ
³

1√
2σ
(k − x)

´
to his opponent observing a signal less than k

(where Φ (·) is the c.d.f. of the standard normal distribution). In particular, if he
has observed a signal equal to the cutoff point of his opponent (x = k), he will

assign probability 1
2
to his opponent investing. Thus there will be an equilibrium

where both players follow switching strategies with cutoff 1
2
.

In fact, a switching strategy with cutoff 1
2
is the unique strategy surviving

iterated deletion of strictly interim dominated strategies. To see why1, first define

b (k) to be the unique value of x solving the equation

x− Φ
µ
k − x√
2σ

¶
= 0. (2.2)

1An alternative argument follows Milgrom and Roberts (1990): if a symmetric game with
strategic complementarities has a unique symmetric Nash equilibrium, then the strategy played
in that unique Nash equilibrium is also the unique strategy surviving iterated deletion of strictly
dominated strategies.
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The function b (·) is plotted in figure 2.1. There is a unique such value because
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Figure 2.1: Function b (k)

the left hand side is strictly increasing in x and strictly decreasing in k. These

properties also imply that b (·) is strictly increasing. So if your opponent is follow-
ing a switching strategy with cutoff k, your best response is to follow a switching

strategy with cutoff b (k). We will argue that if a strategy s survives n rounds of

iterated deletion of strictly dominated strategies, then

s (x) =

½
Invest, if x > bn−1 (1)
NotInvest, if x < bn−1 (0)

(2.3)

We argue the second clause by induction (the argument for the first clause is

symmetric). The claim is true for n = 1, since as we noted above, NotInvest is a
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dominant strategy if the expected value of θ is less than 0. Now suppose the claim

is true for arbitrary n. If a player knew that his opponent would choose action

NotInvest if he had observed a signal less than bn−1 (1), his best response would

always be to choose action NotInvest if his signal was less than b (bn−1 (1)). Since

b (·) is strictly increasing and has a unique fixed point at 1
2
, bn (0) and bn (1) both

tend to 1
2
as n→∞.

The unique equilibrium has both players investing only if they observe a signal

greater than 1
2
. In the underlying symmetric payoff complete information game,

investing is a risk dominant action (Harsanyi and Selten (1988)) exactly if θ ≥ 1
2
;

not investing is a risk dominant action exactly if θ ≤ 1
2
. The striking feature of

this result is that no matter how small σ is, players’ behavior is influenced by the

existence of the ex ante possibility that their opponent has a dominant strategy

to choose each action.2 The probability that either individual invests is

Φ

µ 1
2
− θ
σ

¶
;

Conditional on θ, their investment decisions are independent.

The above example and analysis are due to Carlsson and van Damme (1993a).

There is a many-players analogue of this game, whose solution is no more difficult

to arrive at. A continuum of players are deciding whether to invest. The payoff to

not investing is 0. The payoff to investing is θ− 1+ l, where l is the proportion of
2Thus a “grain of doubt” concerning the opponent’s behavior has large consequences. This

element has been linked by van Damme (1997) to the classic analysis of surprise attacks of
Schelling (1960), chapter 9.
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other players choosing to invest. The information structure is as before, with each

player i observing a private signal xi = θ+εi, where the εi are normally distributed

in the population with mean 0 and standard deviation σ. In this case also, the

unique strategy surviving iterated deletion of strictly dominated strategies has

each player investing if they observe a signal above 1
2
, and not investing if they

observe a signal below 1
2
. We will briefly sketch why this is the case.

Consider a player who has observed signal x and thinks that all his opponents

are following the “switching” strategy with cutoff point k. As before, his expec-

tation of θ will be x. As before, he will assign probability Φ
³
k−x√
2σ

´
to any given

opponent observing a signal less than k. But since the realization of the signals

are independent conditional on θ, his expectation of the proportion of players

who observe a signal less than k will be exactly equal to the probability he assigns

to any one opponent observing a signal less than k. Thus his expected payoff

to investing will be x − Φ
³
k−x√
2σ

´
, as before, and all the previous arguments go

through.

The argument above shows the importance of keeping track of the layers of

beliefs across players, and as such may seem rather daunting from the point of

view of an individual player. However, the equilibrium outcome is also consistent

with a procedure which places far less demands on the capacity of the players,

and which seem to be far removed from equilibrium of any kind. This procedure

has the following three steps.

• Estimate θ from the signal x.

14



• Postulate that l is distributed uniformly on the unit interval [0, 1]

• Take the optimal action.

Since the expectation of θ conditional on x is simply x itself, the expected

payoff to investing if l is uniformly distributed is x− 1
2
while the expected payoff to

not investing is zero. Thus, a player following this procedure will choose to invest

or not depending on whether x is greater or smaller than 1
2
, which is identical to the

unique equilibrium strategy outlined above. The belief summarized in the second

bullet point is Laplacian in the sense introduced in the introductory section. It

represents a “diffuse” or “agnostic” view on the actions of other players in the

game. We see that an apparently naive and simplistic strategy coincides with

the equilibrium strategy. This is not an accident. There are good reasons why

the Laplacian action is the correct one in this game, and why it turns out to be

an approximately optimal action in many binary action global games. The key to

understanding this feature is to consider the following question asked by a player

in this game.

“My signal has realization x. What is the probability that proportion

less than z of my opponents have a signal higher than mine?”

The answer to this question would be especially important if everyone is using the

switching strategy around x, since the proportion of players who invest is equal

to the proportion whose signal is above x. If the true state is θ, the proportion
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of players who receive a signal higher than x is given by 1 − Φ ¡x−θ
σ

¢
. So, this

proportion is less than z if the state θ is such that 1 − Φ ¡x−θ
σ

¢ ≤ z. That is,

when

θ ≤ x− σΦ−1 (1− z) (2.4)

The probability of this event conditional on x is

Φ

µ
x− σΦ−1 (1− z)− x

σ

¶
= z

In other words, the cumulative distribution function of z is the identity function,

implying that the density of z is uniform over the unit interval. If x is to serve

as the switching point of an equilibrium switching strategy, a player must be

indifferent between choosing to invest and not to invest given that the proportion

who invest is uniformly distributed on [0, 1].

More importantly, even away from the switching point, the optimal action

motivated by this belief coincides with the equilibrium action, even though the

(Laplacian) belief may not be correct. Away from the switching point, the density

of the random variable representing the proportion of players who invest will not

be uniform. However, as long as the payoff advantage to investing is increasing

in θ, the Laplacian action coincides with the equilibrium action. Thus, the

apparently naive procedure outlined by the three bullet points gives the correct

prediction as to what the equilibrium action will be. In the next section, we will

show that the lessons drawn from this simple example extend to cover a wide class

of binary action global games.
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We will focus on the continuum player case in most of this paper. However, as

suggested by this example, the qualitative analysis is very similar irrespective of

the number of players. In particular, the analysis of the continuum player game

with linear payoffs applies equally well to any finite number of players (where each

player observes a signal with an independent normal noise term). Independent of

the number of players, the cutoff signal in the unique equilibrium is 1
2
. However,

a distinctive implication of the infinite player case is that the outcome is a deter-

ministic function of the realized state. In particular, once we know the realization

of θ, we can calculate exactly the proportion of players who will invest. It is

bξ (θ) = 1− Φµ 1
2
− θ
σ

¶
.

With a finite number of players (I), we write ξλ,I (θ) for the probability that at

least proportion λ out of the I players invest when the realized state is θ:

ξλ,I (θ) =
X
n≥λI

µ
I
n

¶·
Φ

µ 1
2
− θ
σ

¶¸I−n ·
1− Φ

µ 1
2
− θ
σ

¶¸n
.

Observe, however, that the many finite player case converges naturally to the

continuum model: by the law of large numbers, as I →∞,

ξλ,I (θ) → 1 if λ < bξ (θ)
and ξλ,I (θ) → 0 if λ > bξ (θ) .

2.2. Symmetric Binary Action Global Games: A General Approach

Let us now take one step in making the argument more general. We deal first with

the case where there is a uniform prior on the initial state and each player’s signal
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is a sufficient statistic for how much they care about the state (we call this the

private values case). In this case, the analysis is especially clean and it is possible

to prove a uniqueness result and characterize the unique equilibrium independent

of both the structure and size of the noise in players’ signals. We then show that

the analysis can be extended to deal with general priors and payoffs that depend

on the realized state.

2.2.1. Continuum Players, Uniform Prior and Private Values

There is a continuum of players. Each player has to choose an action a ∈ {0, 1}.
All players have the same payoff function, u : {0, 1} × [0, 1] × R −→ R, where

u (a, l, x) is a player’s payoff if he chooses action a, proportion l of his opponents

choose action 1, and his “private signal” is x. Thus we assume that his payoff is

independent of which of his opponents choose action 1. To analyze best responses,

it is enough to know the payoff gain from choosing one action rather than the other.

Thus the utility function is parameterized by a function π : [0, 1]× R→ R with

π (l, x) ≡ u (1, l, x)− u (0, l, x) .

Formally, we say that an action is the Laplacian action if it is a best response to a

uniform prior over the opponents’ choice of action. Thus action 1 is the Laplacian

action at x if
1Z

l=0

u (1, l, x) dl >

1Z
l=0

u (0, l, x) dl,
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or, equivalently,
1Z

l=0

π (l, x) dl > 0;

action 0 is the Laplacian action at x if

1Z
l=0

π (l, x) dl < 0.

Generically, a continuum player, symmetric payoff, two action game will have

exactly one Laplacian action.

A state θ ∈ R is drawn according to the (improper) uniform density on the real
line. Player i observes a private signal xi = θ+σεi, where σ > 0. The noise terms

εi are distributed in the population with continuous density f (·), with support on
the real line.3 We note that this density need not be symmetric around the mean,

nor even have zero mean. The uniform prior on the real line is “improper,” i.e.,

has infinite probability mass, but the conditional probabilities are well defined: a

player observing signal xi puts density 1
σ
f
¡
xi−θ
σ

¢
on state θ (see Hartigan (1983)).

The example of the previous section fits this setting where f (·) is the standard
normal distribution and π (l, x) = x+ l− 1.
We will initially impose five properties on the payoffs:

A1: Action Monotonicity: π (l, θ) is non-decreasing in l.

A2: State Monotonicity: π (l, θ) is non-decreasing in θ.
3With small changes in terminology, the argument will extend to the case where f (·) has

support on some bounded interval of the real line.
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A3: Strict Laplacian State Monotonicity: There exists a unique θ∗ solving
1R

l=0

π (l, θ∗) dl = 0.

A4: Limit Dominance: There exist θ ∈ R and θ ∈ R such that [1] π (l, x) < 0
for all l ∈ [0, 1] and x ≤ θ; and [2] π (l, x) > 0 for all l ∈ [0, 1] and x ≥ θ.

A5: Continuity:
1R

l=0

g (l) π (l, x) dl is continuous with respect to signal x and

density g.

Condition A1 states that the incentive to choose action 1 is increasing in the

proportion of other players’ actions who use action 1; thus there are strategic

complementarities between players’ actions (Bulow, Geanakoplos and Klemperer

(1985)). Condition A2 states that the incentive to choose action 1 is increasing

in the state; thus a player’s optimal action will be increasing in the state, given

the opponents’ actions. Condition A3 introduces a further strengthening of A2

to ensure that there is at most one crossing for a player with Laplacian beliefs.

Condition A4 requires that action 0 is a dominant strategy for sufficiently low

signals and action 1 is a dominant strategy for sufficiently high signals. Condition

A5 is a weak continuity property, where continuity in g is with respect to the weak

topology. Note that this condition allows for some discontinuities in payoffs. For

example,

π (l, x) =

½
0, if l ≤ x
1, if l > x

satisfies A5 as for any given x, it is discontinuous at only one value of l.
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We denote by G∗ (σ) this incomplete information game - with the uniform

prior and satisfying A1 through A5. A strategy for a player in the incomplete

information game is a function s : R → {0, 1}, where s (x) is the action chosen
if a player observes signal x. We will be interested in strategy profiles, s =

(si)i∈[0,1], that form a Bayesian Nash equilibrium of G∗ (σ). We will show not

merely that there is a unique Bayesian Nash equilibrium of the game, but that a

unique strategy profile survives iterated deletion of strictly (interim) dominated

strategies.

Proposition 2.1. Let θ∗ be defined as in (A3). The essentially unique strat-

egy surviving iterated deletion of strictly dominated strategies in G∗ (σ) satisfies

s (x) = 0 for all x < θ∗ and s (x) = 1 for all x > θ∗.

The “essential” qualification arises because either action may be played if the

private signal is exactly equal to θ∗. The key idea of the proof is that with a

uniform prior on θ, observing xi gives no information to a player on his ranking

within the population of signals. Thus he will have a uniform prior belief over the

proportion of players who will observe higher signals.

PROOF. Write π∗σ (x, k) for the expected payoff gain to choosing action 1 for

a player who has observed a signal x and knows that all other players will choose

action 0 if they observe signals less than k:

π∗σ (x, k) ≡
∞Z

θ=−∞

1

σ
f

µ
x− θ
σ

¶
π

µ
1− F

µ
k − θ
σ

¶
, x

¶
dθ.
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First observe that π∗σ (x, k) is continuous in x and k, increasing in x and decreasing

in k, π∗σ (x, k) < 0 if x ≤ θ and π∗σ (x, k) > 0 if x ≥ θ. We will argue by induction
that a strategy survives n rounds of iterated deletion of strictly interim dominated

strategies if and only if

s (x) =

½
0, if x < ξ

n

1, if x > ξn

where ξ
0
= −∞ and ξ0 = +∞, and ξn and ξn are defined inductively by

ξ
n+1

= min
n
x : π∗σ

³
x, ξ

n

´
= 0

o
and ξn+1 = max

©
x : π∗σ

¡
x, ξn

¢
= 0

ª
.

Suppose the claim were true for n. By strategic complementarities, if action 1

were ever to be a best response to a strategy surviving n rounds, it must be a best

response to the switching strategy with cutoff ξ
n
; ξ

n+1
is defined to be the lowest

signal where this occurs. Similarly, if action 0 were ever to be a best response to a

strategy surviving n rounds, it must be a best response to the switching strategy

with cutoff ξn; ξn+1 is defined to be the highest signal where this occurs.

Now note that ξ
n
and ξn are increasing and decreasing sequences, respectively,

since ξ
0
= −∞ < θ < ξ

1
, ξ0 = ∞ > θ > ξ1, and π

∗
σ (x, k) is increasing in x

and decreasing in k. Thus ξ
n
→ ξ and ξn → ξ as n → ∞. The continuity of

π∗σ and the construction of ξ and ξ imply that we must have π
∗
σ

¡
ξ, ξ
¢
= 0 and

π∗σ
¡
ξ, ξ
¢
= 0. Thus the second step of our proof is to show that θ∗ is the unique

solution to the equation π∗σ (x, x) = 0.

To see this second step, write Ψ∗σ (l; x, k) for the probability that a player
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assigns to proportion less than l of the other players observing a signal greater than

k, if he has observed signal x. Observe that if the true state is θ, the proportion

of players observing a signal greater than k is 1−F ¡k−θ
σ

¢
. This proportion is less

than l if θ ≤ k − σF−1 (1− l). So

Ψ∗σ (l; x, k) =

k−σF−1(1−l)Z
θ=−∞

1

σ
f

µ
x− θ
σ

¶
dθ

=

∞Z
z= x−k

σ
+F−1(1−l)

f (z) dz, changing variables to z =
x− θ
σ

= 1− F
µ
x− k
σ

+ F−1 (1− l)
¶

(2.6)

Also observe that if x = k, thenΨ∗σ (·; x, k) is the identity function (i.e.,Ψ∗σ (l;x, k) =
l), so it is the cumulative distribution function of the uniform density. Thus

π∗σ (x, x) =

1Z
l=0

π (l, x) dl.

Now by A3, π∗σ (x, x) = 0 implies x = θ
∗. ¥

2.2.2. Continuum Players, General Prior and Common Values

Now suppose instead that θ is drawn from a continuously differentiable strictly

positive density p (·) on the real line and that a player’s utility depends on the
realized state θ, not his signal of θ. Thus u (a, l, θ) is his payoff if he chooses

action a, proportion l of his opponents choose action 1, and the state is θ, and as

before π (l, θ) ≡ u (1, l, θ) − u (0, l, θ). We must also impose two extra technical
assumptions.
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A4*: Uniform Limit Dominance: There exist θ ∈ R, θ ∈ R and ε ∈ R++
such that [1] π (l, θ) ≤ −ε for all l ∈ [0, 1] and θ ≤ θ; and [2] there exists θ such
that π (l, θ) > ε for all l ∈ [0, 1] and θ ≥ θ.

Property A4* strengthens property A4 by requiring that the payoff gain to

choosing action 0 is uniformly positive for sufficiently low values of θ, and the

payoff gain to choosing action 1 is uniformly positive for sufficiently high values

of θ.

A6: Finite Expectations of Signals:
∞R

z=−∞
zf (z) dz is well defined.

Property A6 requires that the distribution of noise is integrable.

We will denote by G (σ) this incomplete information game - with prior p (·)
and satisfying A1, A2, A3, A4*, A5 and A6.

Proposition 2.2. Let θ∗ be defined as in (A3). For any δ > 0, there exists

σ > 0 such that for all σ ≤ σ, if strategy s survives iterated deletion of strictly

dominated strategies in the game G (σ), then s (x) = 0 for all x ≤ θ∗ − δ and
s (x) = 1 for all x ≥ θ∗ + δ.

We will sketch here why this general prior, common values, game G (σ) be-

comes like the uniform prior, private values, game G∗ (σ) as σ becomes small. A

more formal proof is relegated to the appendix. Consider Ψσ (l; x, k), the proba-

bility that a player assigns to proportion less than or equal to l of the other players
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observing a signal greater than or equal to k, if he has observed signal x:

Ψσ (l; x, k) =

k−σF−1(1−l)R
θ=−∞

p (θ) f
¡
x−θ
σ

¢
dθ

∞R
θ=−∞

p (θ) f
¡
x−θ
σ

¢
dθ

=

∞R
z= x−k

σ
+F−1(1−l)

p (x− σz) f (z) dz
∞R

z=−∞
p (x− σz) f (z) dz

, changing variables to z =
x− θ
σ

.

For small σ, the shape of the prior will not matter and the posterior beliefs over l

will depend only on x−k
σ
, the normalized difference between the x and k. Formally,

setting κ = −x−k
σ
, we have

Ψ∗σ (l;x, x+ σκ) =

∞R
z=κ+F−1(1−l)

p (x− σz) f (z) dz
∞R

z=−∞
p (x− σz) f (z) dz

,

so that as σ → 0,

Ψ∗σ (l; x, x+ σκ) →
∞Z

z=κ+F−1(1−l)

f (z) dz

= 1− F ¡κ+ F−1 (1− l)¢ . (2.7)

In other words, for small σ, posterior beliefs concerning the proportion of oppo-

nents choosing each action are almost the same as under a uniform prior. The

formal proof of proposition 2.2 presented in the appendix consists of showing, first,

that convergence of posterior beliefs described above is uniform; and, second, that

the small amount of uncertainty about payoffs in the common value case does not

affect the analysis sufficiently to matter.
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2.2.3. Discussion

The proofs of propositions 2.1 and 2.2 follow the logic of Carlsson and van Damme

(1993) and generalize arguments presented in Morris and Shin (1998). The tech-

nique of analyzing the uniform prior private values game, and then showing con-

tinuity with respect to the general prior, common values game, follows Frankel,

Morris and Pauzner (2000) (this paper is discussed further in section 4.1 below).

Carlsson and van Damme (1993b) showed a version of the uniform prior result

(proposition 2.1) in the finite player case (see also Kim (1996)). We briefly discuss

the relation to the finite player case in appendix B.

How do these propositions make use of the underlying assumptions? First, note

that assumptions (A1) and (A2) represent very strong monotonicity assumptions:

(A1) requires that each player’s utility function is supermodular in the action

profile while (A2) requires that each player’s utility function is supermodular in his

own action and the state. Milgrom and Roberts (1990) showed how supermodular

payoffs imply the existence of a largest and smallest strategy profile surviving

iterated deletion of dominated strategies, each of which is an equilibrium. Vives

(1990) showed that this remained true when there is incomplete information. The

first step in the proof of proposition 2.1 is a special case of this reasoning, with the

state monotonicity assumption (A2) implying, in addition, that the largest and

smallest equilibria consist of strategies that are monotonic with respect to type

(i.e., switching strategies). Once we know that we are interested in monotonic
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strategies, the very weak assumption (A3) is sufficient to ensure the equivalence

of the largest and smallest equilibria and thus the uniqueness of equilibrium.

Can one dispense with the full force of the supermodular payoffs assumption

(A1)? Unfortunately, as long as (A1) is not satisfied at the cutoff point θ∗ (i.e.,

π (l, θ∗) is decreasing in l over some range), then one can find a problematic noise

distribution f (·) such that the symmetric switching strategy profile with cutoff
point θ∗ is not an equilibrium, and thus there is no switching strategy equilibrium.

To obtain positive results, one must either impose additional restrictions on the

noise distribution or relax (A1) only away from the cutoff point. We discuss both

approaches in turn.

Athey (2000b) provides a general description of how monotone comparative

static results can be preserved in stochastic optimization problems, when super-

modular payoff conditions are weakened to single crossing properties, but signals

are assumed to be sufficiently well-behaved, i.e., satisfy a monotone likelihood

ratio property. Athey (2000a) has used such techniques to prove existence of

monotonic pure strategy equilibria in a general class of incomplete information

games, using weaker properties on payoffs but substituting stronger restrictions

on signal distribution. We can apply her results to our setting as follows. Consider

the following two new assumptions.

A1*: Action Single Crossing: for each θ ∈ R, there exists l∗ ∈ R∪{−∞,∞}
such that π (l, θ) < 0 if l < l∗ and π (l, θ) > 0 if l > l∗.

A7: Monotone Likelihood Ratio Property: if x > x, then f (x−θ)
f (x−θ) is in-
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creasing in θ.

Assumption A1* is a significant weakening of assumption A1 to a single cross-

ing property. Assumption A7 is a new restriction on the distribution of the noise.

Recall that we earlier made no assumptions on the distribution of the noise. De-

note by eG (σ) the incomplete information game with a uniform prior satisfying

A1*, A2, A3, A4, A5 and A7.

Lemma 2.3. Let θ∗ be defined as in (A3). The game eG (σ) has a unique (sym-
metric) switching strategy equilibrium, with s (x) = 0 for all x < θ∗ and s (x) = 1

for all x > θ∗.

The proof is in Appendix C. An analogue of Proposition 2.2 could be sim-

ilarly constructed. Notice that this result does not show the non-existence of

other, non-monotonic, equilibria. Additional arguments are required to rule out

non-monotonic equilibria. For example, in Goldstein and Pauzner (2000a) - an

application to bank runs discussed in the next section - noise is uniformly distrib-

uted (and thus satisfies A7) and payoffs satisfy assumption A1*. They show that

(1) there is a unique symmetric switching strategy equilibrium; and (2) that these

is no other equilibrium. Lemma 2.3 could be used to extend the former result to

all noise distributions satisfying the MLRP (assumption A7) but we do not know

if the latter result extends beyond the uniform noise distribution.

Proposition 2.1 can also be weakened by allowing assumption A1 to fail away

from θ∗. We will report one weakening that is sufficient. Let g (·) and h (·) be
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densities on the interval [0, 1]; g stochastically dominates h (g º h) if
lR

z=0

g (z) dz ≤
lR

z=0

h (z) dz for all l ∈ [0, 1]. We write g (·) for the uniform density on [0, 1], i.e.,

g (l) = 1 for all l ∈ [0, 1]. Now consider

A8: There exists θ∗ which solves
1R

l=0

π (l, θ∗) dl = 0 such that [1]
1R

l=0

g (l)

π (l, x) dl ≥ 0 for all x ≥ θ∗ and g º g, with strict inequality if x > θ∗; and

[2]
1R

l=0

g (l) π (l, x) dl ≤ 0 for all x ≤ θ∗ and g ¹ g, with strict inequality if x < θ∗.

We can replace A1-A3 with A8 in propositions 2.1 and 2.2, and all the argu-

ments and results go through. Observe that A1-A3 straightforwardly imply A8.

Also, observe that A8 implies that π (l, θ∗) be non-decreasing in l (suppose that

l > l0 and π (l, θ∗) < π (l0, θ∗); now start with the uniform distribution g and shift

mass from l0 to l). But A8 allows some failure of A1 away from θ∗.

Propositions 2.1 and 2.2 deliver strong negative conclusions about the efficiency

of non-cooperative outcomes in global games. In the limit, all players will be

choosing action 1 when the state is θ if
1R

l=0

π (l, θ) dl > 0. However, it is efficient

to choose action 1 at state θ if u (1, 1, θ) > u (0, 0, θ). These conditions will not

coincide in general. For example, in the investment example we had u (1, l, θ) =

θ+ l−1, u (0, l, θ) = 0 and thus π (l, θ) = θ+ l−1. So in the limiting equilibrium,
both players will be investing if the state θ is at least 1

2
, while it is efficient for

them to be investing if the state is at least 0.

The analysis of the unique non-cooperative equilibrium serves as a benchmark

describing what will happen in the absence of other considerations. In practise,
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repeated play or other institutions will often allow players to do better. We

will briefly consider what happens in the game if players were allowed to make

cheap talk statements about the signals that they have observed in the investment

example (for this exercise, it is most natural to consider a finite player case; we

consider the two player case). The arguments here follow Baliga and Morris

(2000). The investment example as formulated has a non-generic feature, which

is that if a player plans not to invest, he is exactly indifferent about which action

his opponent will take. To make the problem more interesting, let us perturb the

payoffs to remove this tie:

Invest NotInvest
Invest θ + δ, θ + δ θ − 1, δ
NotInvest δ, θ − 1 0, 0

Thus each player receives a small payoff δ (which may be positive or negative)

if the other player invests, independent of his own action. This change does

not influence each player’s best responses, and the analysis of this game in the

absence of cheap talk is unchanged by the payoff change. But observe that if δ ≤ 0,
there is an equilibrium of the game with cheap talk, where each player truthfully

announces his signal, and invests if the (common) expectation of θ conditional

on both announcements is greater than −δ (this gives the efficient outcome). On
the other hand, if δ > 0, then each player would like to convince the other to

invest even he does not plan to do so. In this case, there cannot be a truth-telling

equilibrium where the efficient equilibrium is achieved, although there may be
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equilibria with some partially revealing cheap talk that improve on the no cheap

talk outcome.

2.3. Applications

We now turn to applications of these results and describe models of pricing debt

(Morris and Shin (1999b)), currency crises (Morris and Shin (1998)) and bank runs

(Goldstein and Pauzner (2000a)).4 Each of these papers makes specific assump-

tions about the distribution of payoffs and signals. But if one is only interested in

analyzing the limiting behavior as noise about θ becomes small, the results of the

previous section imply that we can identify the limiting behavior independently

of the prior beliefs and the shape of the noise.5 In each example, we describe

one comparative static exercise changing the payoffs of the game, illustrating how

changing payoffs has a direct effect on outcomes and an indirect, strategic, effect

via the impact on the cutoff point of the unique equilibrium. We emphasize that

it is also interesting in the applications to study behavior away from the limit;

indeed, the focus of the analysis in Morris and Shin (1999b) is on comparative
4See Fukao (1994) for an early argument in favor of using global game reasoning in applied

settings. Other applications include Karp’s (2000) noisy version of Krugman’s (1991) mul-
tiple equilibrium model of sectoral shifts; Scaramozzino and Vulkan’s (1999) noisy model of
Schliefer’s (1986) multiple equilibrium model of implementation cycles; and Dönges and Heine-
mann’s (2000) model of competition between dealer markets and crossing networks in financial
markets.

5The model in Goldstein and Pauzner (2000) fails the action monotonicity property (A1)
of the previous section, but they are nonetheless able to prove the uniqueness of a symmetric
switching equilibrium, exploiting their assumption that noise terms are distributed uniformly.
However, their game satisfies assumptions A1* and A2 and therefore whenever there is a unique
equilibrium, it must satisfy the Laplacian characterization with the cutoff point θ∗ defined as in
A3.
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statics away from the limit. More assumptions on the shape of the prior and noise

are required in this case. We study behavior away from the limit in section 3.

2.3.1. Pricing Debt

In Morris and Shin (1999b), we consider a simple model of debt pricing. In period

1, a continuum of investors hold collateralized debt that will pay 1 in period 2

if it is rolled over and if an underlying investment project is successful; the debt

will pay 0 in period 2 if the project is not successful. If an investor does not roll

over his debt, he receives the value of the collateral, κ ∈ (0, 1). The success of
the project depends on the proportion of investors who do not rollover and the

state of the economy, θ. Specifically, the project is successful if the proportion of

investors not rolling over is less than θ
z
. Writing 1 for the action “rollover” and 0

for the action “do not rollover,” payoffs can be described as follows:

u (1, l, θ) =

½
1, if z (1− l) ≤ θ
0, if z (1− l) > θ

u (0, l, θ) = κ

So

π (l, θ) ≡ u (1, l, θ)− u (0, l, θ)

=

½
1− κ, if z (1− l) ≤ θ
−κ, if z (1− l) > θ

Now
1Z

l=0

π (l, θ) dl =


−κ, if θ ≤ 0
θ
z
− κ, if 0 ≤ θ ≤ z

1− κ, if z ≤ θ
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Thus θ∗ = zκ. In other words, if private information about θ among the investors

is sufficiently accurate, the project will collapse exactly if θ ≤ zκ. We can now ask
how debt would be priced ex ante in this model (before anyone observed private

signals about θ). Recalling that p (·) is the density of the prior on θ, and writing
P (·) for the corresponding c.d.f., the value of the collateralized debt will be

V (κ) ≡ κP (zκ) + 1− P (zκ)

= 1− (1− κ)P (zκ)

and
dV

dκ
= P (zκ)− z (1− κ) p (zκ)

Thus increasing the value of collateral has two effects: first, it increases the value

of debt in the event of default (the direct effect). But second, it increases the

range of θ at which default occurs (the strategic effect). For small κ, the strategic

effect outweighs the direct effect, while for large κ, the direct effect outweighs the

strategic effect. Figure 2.2 plots V (·) for the case where z = 10 and p (·) is the
standard normal density.

Morris and Shin (1999b) study the model away from the limit and argue that

taking the strategic, or liquidity, effect into account in debt pricing can help ex-

plain anomalies in empirical implementation of the standard debt pricing theory

of Merton (1974). Brunner and Krahnen (2000) present evidence of the impor-

tance of debtor coordination in distressed lending relationships in Germany. See

also Chui, Gai and Haldane (2000) and Hubert and Schäfer (2000).
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Figure 2.2: Function V (κ)

2.3.2. Currency Crises

In Morris and Shin (1998), a continuum of speculators must decide whether to

attack a fixed exchange rate regime by selling the currency short. Each speculator

may only short a unit amount. The current value of the currency is e∗; if the

monetary authority does not defend the currency, the currency will float to the

shadow rate ζ (θ), where θ is the state of fundamentals. There is a fixed transaction

cost t of attacking. This can be interpreted as an actual transaction cost or as

the interest rate differential between currencies. The monetary authority defends

the currency if the cost of doing so is not too large. Assuming that the costs of

defending the currency are increasing in the proportion of speculators who attack
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and decreasing in the state of fundamentals, there will be some critical proportion

of speculators, a (θ), increasing in θ, who must attack in order for a devaluation

to occur. Thus writing 1 for the action “not attack” and 0 for the action “attack,”

payoffs can be described as follows:

u (1, l, θ) = 0

u (0, l, θ) =

½
e∗ − ζ (θ)− t, if l ≤ 1− a (θ)
−t, if l > 1− a (θ)

where ζ (·) and a (·) are increasing functions, with ζ (θ) ≤ e∗ − t for all θ. Now

π (l, θ) =

½
ζ (θ) + t− e∗, if l ≤ 1− a (θ)
t, if l > 1− a (θ)

If θ were common knowledge, there would be three ranges of parameters. If θ <

a−1 (0), each player has a dominant strategy to attack. If a−1 (0) ≤ θ ≤ a−1 (1),
then there is an equilibrium where all speculators attack and another equilibrium

where all speculators do not attack. If θ > a−1 (1), each player has a dominant

strategy to attack. This tripartite division of fundamentals arises in a range of

models in the literature on currency crises (see Obstfeld (1996)).

However, if θ is observed with noise, we can apply the results of the previous

section, since π (l, θ) is weakly increasing in l, and weakly increasing in θ.
1Z

l=0

π (l, θ) dl = (1− a (θ)) (ζ (θ) + t− e∗) + a (θ) t

= t− (1− a (θ)) (e∗ − ζ (θ))

Thus θ∗ is implicitly defined by

(1− a (θ)) (e∗ − ζ (θ)) = t.
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Theorem 2 in Morris and Shin (1998) gave an incorrect statement of this condition.

We are grateful to Heinemann (2000) for pointing out the error and giving a correct

characterization.

Again, we will describe one simple comparative statics exercise. Consider

a costly ex ante action R for the monetary authority that lowered their costs

of defending the currency. For example, R might represent the value of foreign

currency reserves or (as in the recent case of Argentina) a line of credit with foreign

banks to provide credit in the event of a crisis. Thus the critical proportion of

speculators for which an attack occurs becomes a (θ, R), where a (·) is increasing
in R. Now write θ∗ (R) for the unique value of θ solving

(1− a (θ, R)) (e∗ − ζ (θ)) = t.

The ex ante probability that the currency will collapse is

P (θ∗ (R))

So the reduction in the probability of collapse resulting from a marginal increase

in R is

−p (θ∗ (R)) dθ
∗

dR
= p (θ∗ (R))

∂a
∂R

∂a
∂θ
+ 1−a(θ,R)

e∗−ζ(θ)
dζ
dθ

This comparative static refers to the limit (as noise becomes very small) and the

effect is entirely strategic, i.e., the increased value of R reduces the probability

of attack only because it influences speculators’ equilibrium strategies (“builds

confidence”) and not because the increase in R actually prevents an attack in any

relevant contingency.
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In section 4.1, we very briefly discuss Corsetti, Dasgupta, Morris and Shin

(2000), an extension of this model of currency attacks where a large speculator

is added to the continuum of small traders. See also Chan and Chiu (2000),

Goldstein and Pauzner (2000b), Heinemann and Illing (2000), Hellwig (2000),

Marx (2000), Metz (2000) and Morris and Shin (1999a).

2.3.3. Bank Runs

We describe a model of Goldstein and Pauzner (2000a), who add noise to the

classic bank runs model of Diamond and Dybvig (1983). A continuum of deposi-

tors (with total deposits normalized to 1) must decide whether to withdraw their

money from a bank or not. If the depositors withdraw their money in period 1,

they will receive r > 1 (if there are not enough resources to fund all those who

try to withdraw, then the remaining cash is divided equally among early with-

drawers). Any remaining money earns a total return R (θ) > 0 in period 2, and is

divided equally among those who chose to wait until period 2 to withdraw their

money. Proportion λ of depositors will have consumption needs only in period 1,

and will thus have a dominant strategy to withdraw. We will be concerned with

the game among the proportion 1− λ of depositors who have consumption needs
in period 2. Consumers have utility U (y) from consumption y, where the relative

risk aversion coefficient of U is strictly greater than 1. They note that if R (θ)

were greater than one and θ were common knowledge, the ex ante optimal choice
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of r maximizing

λU (r) + (1− λ)U
µ
1− λr
1− λ R (θ)

¶
would be strictly greater than 1. But if θ is not common knowledge, we have

a global game. Writing 1 for the action “withdraw in period 2” and 0 for the

action “withdraw in period 1,” and l for the proportion of late consumers who

do not withdraw early, the money payoffs in this game can be summarized in the

following table:

l ≤ r−1
r(1−λ) l ≥ r−1

r(1−λ)
Early

Withdrawal
0 1−λr

(1−λ)(1−l)r r

Late
Withdrawal

1 0
³
r − r−1

l(1−λ)

´
R (θ)

Observe that if θ is sufficiently small (and so R (θ) is sufficiently small) all players

have a dominant strategy to withdraw early. Goldstein and Pauzner assume that

if θ is sufficiently large, all players have a dominant strategy to withdraw late (a

number of natural economic stories could justify this variation in the payoffs).

Thus the payoffs in the game among late consumers are:

u (1, l, θ) =

(
U (0) , if l ≤ r−1

r(1−λ)
U
³³
r − r−1

l(1−λ)

´
R (θ)

´
, if l ≥ r−1

r(1−λ)

u (0, l, θ) =

(
U
³

1
1−l(1−λ)

´
, if l ≤ r−1

r(1−λ)
U (r) , if l ≥ r−1

r(1−λ)

so that

π (l, θ) =

 U (0)− U
³

1
1−l(1−λ)

´
, if l ≤ r−1

r(1−λ)

U
³³
r − r−1

l(1−λ)

´
R (θ)

´
− U (r) , if l ≥ r−1

r(1−λ)
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The threshold state θ∗ is implicitly defined by

r−1
r(1−λ)Z
l=0

U (0)−U
µ

1

1− l (1− λ)
¶
dl+

1Z
l= r−1

r(1−λ)

U

µµ
r − r − 1

l (1− λ)
¶
R (θ)

¶
−U (r) dl = 0

The ex ante welfare of consumers as a function of r (as noise goes to zero) is

W (r) = P (θ∗ (r))U (1) +

∞Z
θ=θ∗(r)

p (θ)

µ
λU (r) + (1− λ)U

µ
1− λr
1− λ R (θ)

¶¶

There are two effects of increasing r: the direct effect on welfare is the increased

value of insurance in the case where there is not a bank run. But there is also the

strategic effect that an increase in r will lower θ∗ (r).

Morris and Shin (2000) examine a stripped down version of this model where

alternative assumptions on the investment technology and utility functions imply

that payoffs reduce to those of the linear example in section 2.1. See also Boon-

prakaikawe and Ghosal (2000), Dasgupta (2000b), Goldstein (2000) and Rochet

and Vives (2000).

3. Public versus Private Information

The analysis so far has all been concerned with behavior when either there is a

uniform prior or the noise is very small. In this section, we look at the behavior

of the model with large noise and non-uniform priors. There are three reasons for

doing this. First, we want to understand how extreme the assumptions required

for uniqueness are. We will provide sufficient conditions for uniqueness depending
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on the relative accuracy of private and public (or prior) signals. Second, away

from the limit, prior beliefs play an important role in determining outcomes. In

particular, we will see how even with a continuum of players and a unique equilib-

rium, public information contained in the prior beliefs plays a significant role in

determining outcomes, even controlling for beliefs concerning the fundamentals.

Finally, by seeing how and when the model jumps from having one equilibrium to

multiple equilibria, it is possible to develop a better intuition for what is driving

results.

We return the linear example of section 2.1: there is a continuum of players,

the payoff to not investing is 0, the payoff to investing is θ+ l− 1, where θ is the
state and l is the proportion of the population investing. It may help in following

in the analysis to recall that with linear payoffs, the exact number of players is

irrelevant in identifying symmetric equilibrium strategies (and we will see that

symmetric equilibrium strategies will naturally arise). Thus the analysis below

applies equally to a two player game.

Now assume that θ is normally distributed with mean y and standard deviation

τ . The mean y is publicly observed. As before, each player observes a private

signal xi = θ + εi, where the εi are distributed normally in the population with

mean 0 and standard deviation σ. Thus each player i observes a public signal

y ∈ R and a private signal xi ∈ R. To analyze the equilibria of this game,

first fix the public signal y. Suppose that a player observed private signal x. His
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expectation of θ is

θ =
σ2y + τ 2x

σ2 + τ 2
.

It is useful to conduct analysis in terms of these posterior expectations of θ. In

particular, we may consider a switching strategy of the following form:

s
¡
θ
¢
=

½
Invest, if θ > κ
NotInvest, if θ ≤ κ

If the standard deviation of players’ private signals is sufficiently small relative to

the standard deviation of the public signal in the prior, then there is a strategy

surviving iterated deletion of strictly dominated strategies. Specifically, let

γ ≡ eγ (σ, τ ) ≡ σ2

τ 4

µ
σ2 + τ 2

σ2 + 2τ 2

¶
Now we have

Proposition 3.1. The game has a symmetric switching strategy equilibrium with

cutoff κ if κ solves the equation

κ = Φ (
√
γ (κ− y)) ; (3.1)

if eγ (σ, τ ) ≤ 2π, then there is a unique value of κ solving (3.1) and the strategy
with that trigger is the essentially unique strategy surviving iterated deletion of

strictly dominated strategies; if eγ (σ, τ ) > 2π, then (for some values of y) there

are multiple values of κ solving (3.1) and multiple symmetric switching strategy

equilibria.
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Figure 3.1: Parameter Range for Unique Equilibrium

Figure 3.1 plots the regions in σ2 − τ 2 space where uniqueness holds.
In Morris and Shin (2000), we gave a detailed version of the uniqueness part

of this result in appendix A. Here we sketch the idea. Consider a player who has

observed private signal x. By standard properties of the normal distribution (see

DeGroot (1970)), his posterior beliefs about θ would be normal with mean

θ =
σ2y + τ 2x

σ2 + τ 2
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and standard deviation r
σ2τ2

σ2 + τ2
.

He knows that any other player’s signal, x0, is equal to θ plus a noise term with

mean 0 and standard deviation σ. Thus he believes that x0 is distributed normally

with mean θ and standard deviationr
2σ2τ 2 + σ4

σ2 + τ2
.

Now suppose he believed that all other players will invest exactly if their expec-

tation of θ is at least κ, i.e., if their private signals x0 satisfy σ2y+τ2x0
σ2+τ2

≥ κ, or

x0 ≥ κ+ σ2

τ2
(κ− y). Thus he assigns probability

1− Φ
κ− θ + σ2

τ2
(κ− y)q

2σ2τ2+σ4

σ2+τ2

 (3.2)

to any particular opponent investing. But his expectation of the proportion of his

opponents investing must equal to the probability he assigns to any one opponent

investing. Thus (3.2) is also equal to his expectation of the proportion of his

opponents investing. Since his payoff to investing is θ+ l− 1, his expected payoff
to investing is θ plus expression (3.2) minus one, i.e.,

v
¡
θ,κ
¢ ≡ θ − Φ

κ− θ + σ2

τ2
(κ− y)q

2σ2τ2+σ4

σ2+τ2


His payoff to not investing is 0. Since v

¡
θ,κ
¢
is increasing in θ, we have that there

is a symmetric equilibrium with switching point κ exactly if v∗ (κ) ≡ v (κ,κ) = 0.
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But

v∗ (κ) ≡ v (κ,κ)

= κ− Φ
 σ2 (κ− y)
τ 2
q

2σ2τ2+σ4

σ2+τ2


= κ− Φ (√γ (κ− y))

Figure 3.2 plots the function v∗ (κ) for y = 1
2
and γ = 1000, 10, 5 and 0.1,

respectively.
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Figure 3.2: Function ν∗ (κ)
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The intuition for these graphs is the following. If public information is rela-

tively large (i.e., σ À τ and thus γ is large), then players with posterior expecta-

tion κ less than y = 1
2
confidently expect that their opponent will have observed a

higher signal, and therefore will be investing. Thus his expected utility is (about)

κ. But as κ moves above y = 1
2
, he rapidly becomes confident that his opponent

has observed a lower signal and will not be investing. Thus his expected utility

drops rapidly, around y, to (about) κ − 1. But if public information is relatively
small (i.e., σ ¿ τ and γ is small), then players with κ not too far above or below

y = 1
2
attach probability (about) 1

2
to their opponent observing a higher signal.

Thus his expected utility is (about) κ− 1
2
.

We can identify analytically when there is a unique solution: observe that

dv∗

dκ
= 1−√γφ (√γ (κ− y)) .

Recall that φ (x), the density of the standard normal, attains its maximum of 1√
2π

at x = 0. Thus if γ ≤ 2π, dv∗
dκ
is greater than or equal to zero always, and strictly

greater than zero except when κ = y. So (3.1) has a unique solution. But if

γ > 2π and y = 1
2
, then setting κ = 1

2
solves (3.1) but dv∗

dκ

¯̄
κ= 1

2

< 0, so (3.1) has

two other solutions.

Throughout the remainder of this section, we assume that there is a unique

equilibrium, i.e., that eγ (α, β) ≤ 2π. Under this assumption, we can invert the

equilibrium condition (3.1) to show in (κ, y) space what the unique equilibrium
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looks like

y = hγ (κ) = κ− 1√
γ
Φ−1 (κ) (3.3)

Figure 3.3 plots this for γ = 5 and γ = 1
1000

.
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−2

−1
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γ = 0.001


.......................................................................................................................................................................................................................................................................................................................................................................................................

Figure 3.3: Investment takes place above and to the right of line

The picture has an elementary intuition. If κ < 0, it is optimal to not invest

(independent of the public signal). If κ > 1, it is optimal to invest (independent

of the public signal). But if 0 < κ < 1, there is a trade-off. The higher y is (for a

given κ), the more likely it is that the other player will invest. Thus if 0 < κ < 1,

the player will always invest for sufficiently high y, and not invest for sufficiently

low y. This implies in particular that changing y has a larger impact on a player’s

action than changing his private signal (controlling for the informativeness of the

signals). We next turn to examining this “publicity” effect.
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3.1. The Publicity Multiplier

To explore the strategic impact of public information, we examine how much a

player’s private signal must adjust to compensate for a given change in the public

signal. Equation (3.1) can be written as

σ2y + τ 2x

σ2 + τ 2
−Φ

µ√
γ

µ
σ2y + τ 2x

σ2 + τ 2
− y

¶¶
= 0.

Totally differentiating with respect to y gives

dx

dy
= −

σ2

τ2
+
√
γφ (·)

1−√γφ (·) .

This measures how much the private signal would have to change to compensate

for a change in the public signal (and still leave the player indifferent between

investing or not investing). We can similarly see how much the private signal

would have to change to compensate for a change in the public signal, if there was

no strategic effect. Totally differentiating

θ =
σ2y + τ 2x

σ2 + τ 2
= k,

we obtain
dx

dy
= −σ

2

τ2
.

Define the publicity multiplier as the ratio of these two:

ζ =
1 + τ2

σ2
√
γφ (·)

1−√γφ (·) .

Thus suppose a player’s expectation of θ is θ and he is has observed the public

signal that makes him indifferent between investing and not investing (y = θ −
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1√
γ
Φ−1

¡
θ
¢
); the publicity multiplier evaluated at this point will be:

ζ =
1 + τ2

σ2
√
γφ
¡
Φ−1

¡
θ
¢¢

1−√γφ ¡¡Φ−1 ¡θ¢¢¢ .
Notice that (for any given σ and τ) the publicity multiplier is maximized when

θ = 1
2
, and thus the critical public signal y = 1

2
. Thus it is precisely when there is

no conflict between private and public signals that the multiplier has its biggest

effect. Here the publicity multiplier equals

ζ∗ =
1 + τ2

σ2

p
γ
2π

1−p γ
2π

.

Notice that when private information is very accurate relative to private informa-

tion (i.e., σ → 0 and γ → 0), the publicity multiplier is very small. The multiplier

is biggest just before we hit the multiplicity zone of the parameter space (i.e.,

when γ ≈ 2π).
There is plentiful anecdotal evidence that in settings where co-ordination is

important, public signals play a role in co-ordinating outcomes that exceeds the

information content of those announcements. For example, financial markets ap-

parently “overreact” to announcements from the Federal Reserve Board and public

announcements in general. If market participants are concerned about the reac-

tion of other participants to the news, the “overreaction” may be rational and

determined by the type of equilibrium logic of our example. Further evidence

for this is briefings on market conditions by key players in financial markets us-

ing conference calls with hundreds of participants. Such public briefings have a
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larger impact on the market than bilateral briefings with the same information,

because they automatically convey to participants not only information about

market conditions but also valuable information about the beliefs of the other

participants.

Urban renewal also has a co-ordination aspect. Private firms’ incentives to

invest in a run down neighborhood depend partly on exogenous characteristics of

the neighborhood, but also depend to a great extent on whether other firms are

investing. A well publicized investment in the neighborhood might be expected to

have an apparently disproportionate effect on the probability of ending in the good

equilibrium. The willingness of public authorities to subsidize football stadiums

and conference centers is consistent with this view.

An indirect econometric test of the publicity effect is performed by Chwe

(1998). Chwe observes that the per viewer price of advertising during the Super

Bowl is exceptionally high (i.e., the price of advertising increases more than lin-

early in the number of viewers). The premium price is explained by the fact that

any information conveyed by those advertisements becomes not merely known

to the wide audience, but also common knowledge among them. The value of

this common knowledge to advertisers should depend on whether there is a sig-

nificant co-ordination problem in consumers’ decisions whether to purchase the

product. Chwe makes some plausible ex ante guesses about when co-ordination is

an important issue because of network externalities (e.g., the Apple Macintosh)

or social consumption (e.g., beer); and when it is not (e.g., batteries). He then
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confirms econometrically that it is the advertisers of co-ordination goods who pay

a premium for large audiences.

In Morris and Shin (1999b), we use the publicity effect to explain an anomaly

in the pricing of debt. Empirically, the option pricing model of debt due to Merton

(1974) underestimates the yield on debt (i.e., underestimates the empirical default

rate). This deviation from theory is largest for low grade (high risk) bonds. A

deterioration in public signals for low grade bonds generates a large publicity

effect: the deterioration makes investors more pessimistic about default for any

given strategies of the other players, but more importantly the deterioration makes

investors more pessimistic about other players’ strategies.

3.2. Limiting Behavior

If we increase the precision of public signals, while holding the precision of private

signals fixed (i.e., let τ → 0 for fixed σ), then we clearly exit the unique equilibrium

zone.6 If we increase the precision of private signals, while holding the precision

of public signals fixed (i.e., let σ → 0 for fixed τ), then we return to the uniform

prior setting of section 2.1. But we can also examine what happens to the unique

equilibrium as the precision of both signals increases in such a way that uniqueness

is maintained. Specifically, let τ → 0 and let σ2 → cτ 4, where c < 4π. In this
6For sufficiently small τ , either action is rationalizable as long as y ∈ (0, 1) and θ ∈ (0, 1). If

either θ ≥ 1 or θ > 0 and y ≥ 1, then only investing is rationalizable. If either θ ≤ 0 or θ < 1
and y ≤ 0, then only not investing is rationalizable.
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case,

eγ (σ, τ ) =
σ2

τ 4

µ
σ2 + τ 2

σ2 + 2τ2

¶
→ cτ4

τ 4

µ
cτ 4 + τ 2

cτ 4 + 2τ 2

¶
→ c

2

< 2π.

Thus

heγ(σ,τ) ¡θ¢→ θ −
Ãr

2

c

!
Φ−1

¡
θ
¢
.

This result says that even though the public signal becomes irrelevant to a player’s

expected value of θ in the limit, it continues to have a large impact on the outcome.

For example, suppose c = 1 and y = 1
3
(i.e., public information looks bad). Each

player will invest only if θ ≥ 0.7, i.e., they will be very conservative. This is true
even as they ignore y (i.e., θ → x).

The intuition for this result is the following. Suppose public information looks

bad (y < 1
2
). If each player’s private information is much more accurate than the

public signal, each player will mostly ignore the public signal in forming his own

expectation of θ. But each will nonetheless expect the other to have observed a

somewhat worse signal than themselves. This pessimism about the other’s signal

makes it very hard to support an investment equilibrium.
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3.3. Sufficient Conditions for Uniqueness

We derived a very simple necessary and sufficient condition for uniqueness in the

linear example, depending only of the precision of public and private signals. In

this section, we briefly demonstrate that a similar sufficient condition works for

general payoff functions. In particular, we will show that there is always a unique

equilibrium if σ
2

τ4
is sufficiently small.7

We will show this in a simple setting although the argument can be extended.

We maintain the normal distribution assumptions on the prior and signals, but

let the payoffs be as in section 2.2, so that π (l, θ) is the payoff gain from choos-

ing action 1 instead of action 0. Furthermore, we will focus on the continuum

players case, where π (l, θ) is differentiable and strictly increasing in l and θ, with

dπ
dl
(l, θ) ≤ K and dπ

dθ
(l, θ) ≥ ε for all l and θ.

Under these assumptions, we may look at the expected gain to choosing action

1 rather than action 0 if your expectation of θ is θ and you think that others follow

a switching strategy at κ:

V
¡
θ,κ
¢
=

∞Z
θ=−∞

r
σ2τ2

σ2 + τ2
φ

 θ − θq
σ2τ2

σ2+τ2

πÃ1− ΦÃκ− θ + σ2

τ2
(κ− y)

σ

!
, θ

!
dθ

=

∞Z
θ0=−∞

r
σ2τ 2

σ2 + τ 2
φ

 θ0q
σ2τ2

σ2+τ2

πÃ1− ΦÃ−θ0 + κ− θ + σ2

τ2
(κ− y)

σ

!
, θ0 + θ

!
dθ0.

Now to apply our earlier argument for uniqueness, it is enough to show that
7Hellwig (2000) performs a related exercise in a version of our currency attacks model (Morris

and Shin (1998)).
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expression is increasing in θ and V (κ,κ) = 0 has a unique solution. The former

is clearly true; to show the latter, observe that

V (κ,κ) =

∞Z
θ0=−∞

r
σ2τ 2

σ2 + τ 2
φ

 θ0q
σ2τ2

σ2+τ2

πÃ1− ΦÃ−θ0 + σ2

τ2
(κ − y)
σ

!
, θ0 + κ

!
dθ0,

so

dV (κ,κ)

dκ
=

∞Z
θ0=−∞

r
σ2τ 2

σ2 + τ 2
φ

 θ0q
σ2τ2

σ2+τ2

 ·dπ (·)
dθ

− dπ (·)
dl

φ (·) σ
τ 2

¸
dθ0

=

∞Z
θ0=−∞

r
σ2τ 2

σ2 + τ 2
φ

 θ0q
σ2τ2

σ2+τ2

 dπ (·)
dθ

"
1−

dπ(·)
dl
dπ(·)
dθ

φ (·) σ
τ 2

#
dθ0.(3.4)

If this expression is always positive, then there is a unique value of κ solving

V (κ,κ) = 0 and the unique strategy surviving iterated deletion of strictly domi-

nated strategies is the switching strategy with that cutoff. Since φ (·) is at most
1√
2π
, the expression in square brackets within equation (3.4) is positive as long as

dπ(·)
dl
dπ(·)
dθ

<
τ2
√
2π

σ
;

since
dπ(·)
dl
dπ(·)
dθ

≤ K

ε
,

this will be true as long as
K

ε
<
τ2
√
2π

σ
,

i.e.,
σ2

τ 4
< 2π

³ ε
K

´2
.
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4. Theoretical Underpinnings

4.1. General Global Games

All the analysis thus far has dealt with symmetric payoff games. The analysis of

Carlsson and van Damme (1993a) in fact provided a remarkably general result for

two player, two action games, even with asymmetric payoffs. Let the payoffs of a

two player, two action game be given by the following matrix:

1 0
1 θ1, θ2 θ3, θ4
0 θ5, θ6 θ7, θ8

Thus a vector θ ∈ R8 describes the payoffs of the game. Each player i observes
a signal xi = θ + σεi, where the εi are 8-dimensional noise terms. This set up

describes an incomplete information game parameterized by σ. Under mild tech-

nical assumptions,8 as σ → 0, any sequence of strategy profiles surviving iterated

deletion of strictly dominated strategies converges to a unique limit. Moreover

that limit is independent of the distribution of the noise, and has the unique Nash

equilibrium of the underlying complete information game being played (if there is

one) and has the risk dominant Nash equilibrium played (if there are two strict

Nash equilibria).

To understand if and when this remarkable result might extend to many player,

many action games, it is useful to first observe that there are two independent
8The following technical conditions are sufficient (Carlsson and van Damme’s actual set-up

is a little more general): payoff vector θ is drawn according to a strictly positive, continuously
differentiable, bounded density on R8; and the noise terms (ε1, ε2) are drawn according to a
continuous density with bounded support, independently of θ.
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things being proved here. First, there is a limit uniqueness result. As the noise

goes to zero, there is a unique strategy profile surviving iterated deletion of strictly

dominated strategies. Given that with no noise, we know that there are multiple

equilibria, this is a striking result by itself. Second, there is a noise independent

selection result. We can characterize behavior in that unique limit as a function

of the complete information payoffs in the limit, and thus independently of the

shape of the prior beliefs on θ and the distribution of noise. Thus Carlsson and

van Damme’s two player, two action analysis combines separate limit uniqueness

and noise independent selection results. Similarly, the results in section 2 for con-

tinuum player, symmetric binary action games simultaneously showed that there

was a unique strategy surviving iterated deletion of strictly dominated strategies

in the limit (a limit uniqueness result) and characterized behavior in the limit (the

Laplacian action) independent of the structure of the noise (a noise independent

selection result).

Frankel, Morris and Pauzner (2000) (hereafter, FMP) examine global games

with many players, asymmetric payoffs and many actions. They show that a

limit uniqueness result holds quite generally, as long as some monotonicity prop-

erties are satisfied. They consider the following environment. Each player has

an ordered set of actions (finite or continuum); his payoff depends on the action

profile played and a payoff parameter θ ∈ R; he observes a signal xi = θ + σεi,
where σ > 0 and εi is an independently distributed noise term. For sufficiently

low values of θ, each player has a dominant strategy to choose his lowest action,
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and that for sufficiently high values of θ, each player has a dominant strategy to

choose his highest action. Each player’s payoffs are supermodular in the action

profile, implying that each player’s best response is increasing in others actions

(for any θ). Each player’s payoffs are supermodular in his own action and the

state, implying that his best response is increasing in the payoff parameter θ

(for any given actions of his opponents). Under these substantive assumptions,

and additional technical assumptions,9 FMP show a limit uniqueness result. The

proof uses the technique, also followed in section 2.2, of first analyzing the uni-

form prior, private values game and showing a uniqueness result independent of

the size of the noise; and then showing that if the noise is small, all equilibria of

the game with a general prior and common values are close to the unique equi-

librium of the uniform prior, private values game. The limit uniqueness result of

FMP provides a natural many player, many action generalization of Carlsson and

van Damme (1993a). It is true that Carlsson and van Damme required no strate-

gic complementarity and other monotonicity properties. But when a two player,

two action game has multiple Nash equilibria (the interesting case for Carlsson

and van Damme’s analysis), there are automatically strategic complementarities.

FMP’s limit uniqueness results could presumably be extended straightforwardly

to many dimensional payoff parameters and signals, if the relevant monotonicity
9Payoffs are continuous with respect to actions and θ and there is a Lipschitz bound on the

sensitivity of payoffs to changes in own and others actions. The state is drawn according to a
continuous and positive density, and signals are drawn according to a continuous and positive
density with bounded support.
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conditions were suitably adjusted.10

Within this class of monotonic global games where limit uniqueness holds,

FMP also provide sufficient conditions for noise independent selection. They gen-

eralize the notion of a potential maximizing action, due to Monderer and Shapley

(1996). We will discuss these generalized potential conditions in more detail be-

low in section 4.4, as they are also sufficient for the (more demanding) property

of being robust to incomplete information. The sufficient conditions for noise

independent selection encompass two classes of games already discussed in this

survey: many player, two action, symmetric payoff games (where the Laplacian

action is played); and two player, two action games, with possibly asymmetric

payoffs (where the risk dominant equilibrium is played). They also encompass

two player, three action games with symmetric payoffs. And they encompass the

minimum effort game of Bryant (1983).11

FMP also provide an example of a two player, four action, symmetric payoff

game where noise independent selection fails. Thus there is a unique limit as the

noise goes to zero, but the nature of the limit depends on the exact distribution

of the noise. Carlsson (1989) gave a three player, two action example in which

noise independent selection failed. Corsetti, Dasgupta, Morris and Shin (2000)
10The conditions for limit uniqueness in FMP conditions could also presumably be weakened

in a number of directions. For example, with additional restrictions on the noise structure,
one could perhaps use the monotone comparative statics under uncertainty techniques of Athey
(2000a, 2000b), as in lemma 2.3.
11Carlsson and Ganslandt (1998) show the potential maximizing action is selected in the

minimum effort game when players’ continuous actions are perturbed.
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describe a global games model of currency crises, where there is a continuum of

small traders and a single large trader. This is thus a many player, two action

game with asymmetric payoffs. We show that the equilibrium selected as noise

goes to zero depends on the relative informativeness of the large and small traders’

signals. This is thus an application where noise independent selection fails.

We conclude this brief summary by noting one consequence of FMP for the

earlier analysis in this paper. In section 2.2, it was shown that the Laplacian action

was selected in symmetric binary action global games. The argument exploited

the fact that players observed signals with i.i.d. noise in that class of games. But

FMP show noise independent selection of the Laplacian action independent of the

distribution of noise. If the distribution of noise is very different for different

players, we surely cannot guarantee that each player has a uniform belief over

the proportion of his opponents taking each action. Nonetheless, the Laplacian

action must be played in the limit. We can illustrate this implication with a

simple example. Consider a three player game, with binary action set {0, 1}. The
payoff to action 1 is θ if both other players choose action 1, θ − z if one other
player chooses action 1 and θ − 1 if neither other player chooses action 1 (where
0 < z < 1). The payoff to action 0 is zero. State θ is uniformly distributed on the

real line. Observe that the Laplacian action is 1 if 1
3
θ + 1

3
(θ − z) + 1

3
(θ − 1) > 0,

i.e., θ > 1
3
(z + 1). Let ε1, ε2 and ε3 be i.i.d. with c.d.f. F (·), let δ be a very small

positive number and let σ be a parameter describing the size of the noise. The
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players’ signals x1, x2 and x3 are given by

x1 = θ + σδε1

x2 = θ + σδε2

x3 = θ + σε3

Thus 1 and 2 observe much more informative signals. We will look for a switching

strategy equilibrium where players 1 and 2 use cutoff bxσ and player 3 uses cutoff
exσ. Let

λσ = F

µexσ − xσ
σ

¶
We are interested in what happens in the limit as first we take δ → 0, and then

take the limit as σ → 0. As δ becomes very small, if player 1 or 2 observes signal

xσ, he will assign probability (about) 1
2

¡
1
2
− λσ

¢
to both players choosing action

1, probability (about) 1
2
to one player choosing action 1, and probability (about)

1
2

¡
1
2
+ λσ

¢
to neither player choosing action 1; while if player 3 observes signal exσ,

he will assign probability 1
2
+ λσ to both players choosing action 1, probability 0

to one player choosing action 1, and probability 1
2
− λσ to neither player choosing

action 1.

Thus we must have:

1

2

µ
1

2
− λσ

¶
xσ +

1

2
(xσ − z) + 1

2

µ
1

2
+ λσ

¶
(xσ − 1) = 0µ

1

2
+ λσ

¶exσ + 0 (exσ − z) +µ1
2
− λσ

¶
(exσ − 1) = 0
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Rearranging gives:

xσ =
1

2
z +

1

2

µ
1

2
+ λσ

¶
exσ =

1

2
− λσ

As σ → 0, we must have xσ → exσ and thus λσ → 1
3

¡
1
2
− z¢(so exσ−xσ

σ
−→

F−1 (λσ)). So xσ and exσ must both converge to 1
3
(z + 1). But this gives the

result that the Laplacian action is played by all players in the limit, independent

of the shape of F .

4.2. Higher Order Beliefs

In global games, the importance of the noisy observation of the underlying state

lies in the fact that it generates strategic uncertainty: that is, uncertainty about

others’ behavior in equilibrium. That strategic uncertainty is generated by play-

ers’ uncertainty about other players’ payoffs. Thus understanding global games

involves understanding how equilibria depend on players’ uncertainty about other

players’ payoffs. But clearly, it is not going to be enough to know each player’s

beliefs about other players’ payoffs. We must also take into account each player’s

beliefs about other players’ beliefs about his payoffs; and further such higher or-

der beliefs. Players’ payoffs and higher order beliefs about payoffs are the true

primitives of a game of incomplete information, not the asymmetric information

structure. In earlier sections we told an asymmetric information story about how

there is a true state of fundamentals θ drawn from some prior and each player
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observes a signal of θ generated by some technology. But our analysis of the

resulting game implicitly assumes that there is common knowledge of the prior

distribution of θ and the signalling technologies. It is hard to defend this as-

sumption literally when the original purpose was to get away from the unrealistic

assumption that there is common knowledge of the realization of θ. The classic

arguments of Harsanyi (1967-1968) and Mertens and Zamir (1985) tell us that

we can assume common knowledge of some state space without loss of general-

ity. But such a common knowledge state space makes sense with an incomplete

information interpretation (a player’s “type” is a description of his higher order

beliefs about payoffs), but not with an asymmetric information interpretation (a

player’s “type” is a signal drawn according to some ex ante fixed distribution);

see Battigalli (1999) and Dekel and Gul (1996) for forceful defenses of this po-

sition. Thus we believe that the noise structures analyzed in global games are

interesting because they represent a tractable way of generating a rich structure

of higher order beliefs. The analysis of global games represents a natural vehicle

to illustrate the power of higher order beliefs at work in applications.12 But then

the natural way to understand the “trick” to global games analysis is to go back

and understand what is going on in terms of higher order beliefs.

Even if one is uninterested in the philosophical distinction between incomplete

information and asymmetric information, there is a second reason why the higher
12For work on higher order beliefs not using the global games technology, see Townsend (1983),

Allen, Morris and Postlewaite (1992), Shin (1996) and the discussion of section 4.1 of Allen and
Morris (2000).
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order beliefs literature may contribute to our understanding of global games. Even

keeping a pure asymmetric information interpretation, we can calculate (from the

prior distribution over θ and the signal technologies) the players’ higher order

beliefs about payoffs. Statements about higher order beliefs about payoffs turn

out to represent a natural mathematical way of characterizing which properties

of the prior distribution and signal technologies matter for the results.

The pedagogical risk of emphasizing higher order beliefs is that readers may

conclude that playing in the uniquely rational way in a global game requires fancy

powers of reasoning, some kind of hyper-rationality that allows them to reason

to arbitrarily high number of levels. We emphasize that the fact that either the

analyst or a player expresses information about the game in terms of higher order

beliefs does not make standard equilibrium concepts any less compelling and does

not suggest any particular view about how equilibrium behavior might be arrived

at. In particular, recall that there is a very simple heuristic that will generate

equilibrium behavior in symmetric binary action games. If there is not common

knowledge of the environment you are in, you should hold diffuse beliefs about

others’ behavior. In particular, if you are on the margin between your two actions,

it seems reasonable to take the agnostic view that you are equally likely to hold

any rank in the population concerning your evaluation of the desirability of the

two actions. Thus if other people behave like you, you should make your decision

on the assumption that the proportion of other players choosing each action is

uniformly distributed. This reasoning sounds very suspicious game theoretically,
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but actually generates a very simple heuristic for behavior that is consistent with

the unique rational behavior.

In the remainder of this section, we first informally discuss the role of higher

order beliefs in a global game example. Then we review briefly the theoretical

literature on higher order beliefs in games.13 Finally, we show how results from

that literature can be taken back to the analysis of global games.

Monderer and Samet (1989) introduced a natural language for characterizing

players’ higher order beliefs. Fix a probability p ∈ (0, 1]. Let Ω be a set of possible
states and let E be any subset of Ω. The event E is p-believed at state ω among

some fixed group of individuals if everyone believes that it is true with probability

at least p (and we write BpE for the set of states where event E is p-believed).

The event E is common p-belief at state ω if it is p-believed, it is p-believed that

it is p-believed, and so on, up to an arbitrary number of levels (and we write

Cp (E) for the set of states where event E is common p-belief). The event E is

p-evident if whenever it is true, it is p-believed (i.e., E ⊆ BpE). Monderer and

Samet proved the following result:

Proposition 4.1. Event E is common p-belief at ω (i.e., ω ∈ Cp (E)) if and only
if there exists a p-evident event F such that ω ∈ F ⊆ BpE.
13Our review of this literature is much abbreviated and highly selective. See Fudenberg and

Tirole (1991) chapter 14, Osborne and Rubinstein (1994) chapter 5, Geanakoplos (1994) and
Dekel and Gul (1996) for more background on this material. Morris and Shin (1997) survey
the higher order beliefs in game theory literature with a focus on the relationship to related
literatures in philosophy and computer science. Kajii and Morris (1997c) survey this literature
with a focus on the relation to the standard refinements literature in game theory.
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This result provides a fixed point characterization (i.e., using the p-evident

property) of an iterative definition of common p-belief. It thus generalizes Au-

mann’s classic characterization of common knowledge (Aumann (1976)).

We will illustrate these properties of higher order beliefs in the global games

setting.14 So consider again the two player example of section 2.1: θ is drawn

uniformly from the real line and players i = 1, 2 each observe a signal xi = θ+ εi,

where εi is distributed normally with mean 0 and standard deviation σ. Thus the

relevant state space is R3, with typical element (θ, x1, x2). Fix the payoff relevant

event Ek = {(θ, x1, x2) : θ ≥ k}; this is the set of states where the true θ is at least
k. If player i observes signal xi, he will assign probability Φ

¡
xi−k
σ

¢
to the event

Ek being true. Thus he will assign probability at least p to the event Ek exactly

if xi ≥ k + σΦ−1 (p) ≥ k. Thus

BpEk =
©
(θ, x1, x2) : xi ≥ k + σΦ−1 (p) , for i = 1, 2

ª
.

Now if player i observes xi, he assigns probability Φ
³
xi−κ√
2σ

´
to player j observing

a signal above κ, and he assigns probability at least p to that event exactly if

xi ≥ κ +
√
2σΦ−1 (p). In addition, player i knows for sure whether xi is greater

than κ. Thus

BpBpEk =
n
(θ, x1, x2) : xi ≥ k + σΦ−1 (p) + max

n
0,
√
2σΦ−1 (p)

o
, for i = 1, 2

o
14Monderer and Samet (1989) characterized common p-belief for discrete state spaces, but

Kajii and Morris (1997b) show the straightforward extension to continuum state spaces.
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and, by induction,

[Bp]nEk =
n
(θ, x1, x2) : xi ≥ k + σΦ−1 (p) + (n− 1)max

n
0,
√
2σΦ−1 (p)

o
, for i = 1, 2

o
.

(4.1)

So

CpEk = ∩
n≥1

[Bp]nE =

½ ∅, if p > 1
2{(θ, x1, x2) : xi ≥ k + σΦ−1 (p) , for i = 1, 2} , if p ≤ 1

2

.

Thus a remarkable feature of this simple example is that for any p > 1
2
, there is

never common p-belief that θ is greater than k, for any k. We could also have

shown this using the characterization of common p-belief described in Proposition

4.1. For any k, event Ek is p-evident only if p ≤ 1
2
. This is because a player

observing signal k will always assign probability 1
2
to his opponent observing a

signal less than k. A key property of global games is that they fail to deliver

non-trivial common p-belief and p-evident events (for high p). As we will see,

the existence of such events is key to supporting multiple equilibria in incomplete

information games.

Combining this information structure with the payoffs from the two player ex-

ample of section 2.1, we can illustrate the extreme sensitivity of strategic outcomes

to players’ higher order beliefs. Recall that each player had to choose between

not investing (with payoff 0) and investing (with payoff θ if the other player in-

vests, and payoff θ− 1 otherwise). The unique equilibrium involved each player i

investing if his signal xi were greater than 1
2
, and not otherwise. This result was
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independent of σ (the scale variable of the noise). Now observe that if

σ ≤ 1

5
¡
1 + (n− 1)√2¢Φ−1 (p)

then (by equation (4.1)) for all θ,µ
θ,
2

5
,
2

5

¶
∈ [Bp]nE 1

5

In words, suppose that each player observed signal 2
5
. If we fix any integer n and

any p < 1, we may choose σ sufficiently small such that it is p-believed that it is

p-believed that (n times)... that θ is greater than 1
5
. If it were common knowledge

that θ were greater than 1
5
, it would clearly be rational for both players to invest.

But the unique rational behavior has each player not investing.

Rubinstein (1989) used his electronic mail game to illustrate this sensitivity of

strategic outcomes to common knowledge. Monderer and Samet (1989) showed

why n levels of p-belief or even knowledge was not enough to approximate common

knowledge in strategic settings, and common p-belief, i.e., an infinite number of

levels, is required. The idea behind this observation is illustrated in the next

section. Morris, Rob and Shin (1995) showed why only some Nash equilibria (e.g.

risk dominated equilibria) were sensitive to higher order beliefs and not others,

and provided a characterization - related to the lack of common p-belief events -

of which (discrete state) information systems displayed an extreme sensitivity to

higher order beliefs (see also Sorin (1998)). Kajii and Morris (1997a) introduced

a notion of robustness to incomplete information to characterize equilibria that
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are not sensitive to higher order beliefs. This work is reviewed and related back

to global games in sections 4.4 and 4.5.

4.3. Common p-Belief and Game Theory

Fix a finite set of players 1,....,I and a finite action set Ai for each player i. A

complete information game is then a vector of payoff functions, g ≡ (g1, ...., gI),

where each gi : A→ R. A (discrete state) incomplete information game is then a

collection
n
Ω, π, (Pi)Ii=1 , (ui)Ii=1

o
, where Ω is a countable state space, π ∈ ∆ (Ω)

is a prior probability on that state space, Pi is the partition of the state space of
player i; and ui : A× Ω→ R is the payoff function of player i.

For any given incomplete information game
n
Ω, π, (Pi)Ii=1 , (ui)Ii=1

o
, we may

write |g| for the set of states in the incomplete information game where payoffs
are given by g. Thus

|g| = {ω ∈ Ω|ui (a,ω) = gi (a) for all a ∈ A and i = 1, ..., I}

Using this language, we can summarize some key observations from the the-

oretical literature on higher order beliefs in game theory. A pure strategy Nash

equilibrium a∗ of a complete information game, g, is said to be a p-dominant equi-

librium (Morris, Rob and Shin (1995)) if each player’s action is a best response

whenever he assigns probability at least p to his opponents choosing according to

a∗, i.e., X
a−i∈Ai

λ (a−i) gi (a
∗
i , a−i) ≥

X
a−i∈Ai

λ (a−i) gi (ai, a−i)
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for all i = 1, ..I , ai ∈ Ai and λ ∈ ∆ (A−i) such that λ
¡
a∗−i
¢ ≥ p.

Lemma 4.2. If a∗ is a p-dominant equilibrium of complete information game g,

then every incomplete information game
n
Ω, π, (Pi)Ii=1 , (ui)Ii=1

o
has an equilib-

rium where a∗ is played with probability 1 on the event Cp (|g|).

The proof of this result is straightforward. The event Cp (|g|) is itself a p-
evident event. Consider the modified incomplete information game where each

player is constrained to choose according to a∗ when he p-believes the event

Cp (|g|). Find an equilibrium of that modified game. By construction, a∗ is

played with probability 1 on the event Cp (|g|). But the equilibrium of the modi-
fied game is also an equilibrium of the original game. If a player i p-believes the

event Cp (|g|), then he p-believes that other players are choosing a∗−i. But since
his payoffs are given by g and a∗ is a p-dominant equilibrium, a∗i must be a best

response for player i.

Since every strict Nash equilibrium is a p-dominant equilibrium for some p < 1,

we immediately have:

Corollary 4.3. If a∗ is a strict Nash equilibrium of complete information game g,

then there exists p < 1 such that every incomplete information game
n
Ω, π, (Pi)Ii=1 , (ui)Ii=1

o
has an equilibrium where a∗ is played on the event Cp (|g|).

Thus if we took a sequence of incomplete information games where in the limit

payoffs are common knowledge, and close to the limit they are common p-belief
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(with p close to 1) with ex ante probability close to 1, then payoffs from equilib-

ria of that sequence of incomplete information games must converge to payoffs in

the limit game. Monderer and Samet (1989) proved such a lower hemicontinuity

result. One can also ask a converse question: what is the relevant topology on

information systems such that information systems close to common knowledge

information systems deliver outcomes that are close to common knowledge out-

comes. Monderer and Samet (1996) and Kajii and Morris (1998) characterize such

topologies (for different kinds of information system).

4.4. Robustness to Incomplete Information

Let a∗ be a pure strategy Nash equilibrium of complete information game g; a∗

is robust to incomplete information if every incomplete information game where

payoffs are almost always given by g has an equilibrium where players almost

always choose a∗ (Kajii and Morris [KM] (1997a)).15 More precisely, a∗ is robust

to incomplete information if, for all δ > 0, there exists ε > 0, such that every

incomplete information game where π (|g|) ≥ 1 − ε has an equilibrium where a∗

is played by all players on an event with probability at least 1− δ.
Robustness (to incomplete information) can be seen as a very strong refinement

of Nash equilibrium. Kajii and Morris (1997b) provides a detailed account of

the relation between robustness and the existing refinements literature, which we
15KM define the property of robustness to incomplete information for mixed strategy equilibria

also, but most of the sufficient conditions described below apply only to pure strategy profiles.
For this reason, we focus on pure strategy profiles in the discussion that follows.
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briefly summarize here. The refinements literature examines what happens to a

given Nash equilibrium in perturbed versions of the complete information game.

A weak class of refinements requires only that the Nash equilibrium continues to

be equilibrium in some nearby perturbed game (Selten’s (1975) notion of perfect

equilibrium is the leading example of this class); a stronger class requires that the

Nash equilibrium continues to be played in all perturbed nearby games (Kohlberg

and Mertens’ (1986) notion of stable equilibria is the leading example of this

class). Robustness belongs to the latter, stronger, class of refinements. Moreover,

robustness to incomplete information allows an extremely rich set of “perturbed

games”. In particular, while Kohlberg and Mertens allow only independent action

trembles across players, the definition of robustness leads to highly correlated

trembles and thus an even stronger refinement. Indeed KM construct an example

in the spirit of Rubinstein (1989) to show that even a game with a unique Nash

equilibrium, which is strict, may fail to have any robust equilibrium.

Yet it turns out that a large set of games do have robust equilibria. KM

provided two sufficient conditions. The first is that if a∗ is the unique correlated

equilibrium of g, then a∗ is robust. The second sufficient condition comes from

a generalization of the notion of p-dominance. Fix a vector of probabilities, p =

(p1, ..., pI), one for each player. Action profile a∗ is a p-dominant equilibrium if

each player i’s action is a best response whenever he assigns probability at least
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pi to his opponents choosing according to a∗, i.e.,

X
a−i∈Ai

λ (a−i) gi (a∗i , a−i) ≥
X
a−i∈Ai

λ (a−i) gi (ai, a−i)

for all i = 1, ..I , ai ∈ Ai and λ ∈ ∆ (A−i) such that λ
¡
a∗−i
¢ ≥ pi. If a∗ is a p-

dominant equilibrium for some p with
IP
i=1

pi ≤ 1, then a∗ is robust to incomplete
information. This property is a many player, many action generalization of risk

dominance. KM proved this result by showing a surprising property of higher

order beliefs. Say that an event is p-believed (for some vector of probabilities p)

if each player i believes it with probability at least pi; and the event is common

p-belief if it is p-believed, it is p-believed that it is p-believed, etc... KM show

that if vector p satisfies
IP
i=1

pi ≤ 1, and an event has high probability, then with
high probability that event is common p-belief. A generalization of Lemma 4.2

then proves the robustness result.

Further sufficient conditions for robustness exploit the idea of potential games

due to Monderer and Shapley (1996). A function v : A→ R is a potential function

for complete information game g, if

v (ai, a−i)− v (a0i, a−i) = gi (ai, a−i)− gi (a0i, a−i)

for all i = 1, ..., I , ai, a0i ∈ Ai and a−i ∈ A−i. This property implies that the game g
has identical mixed strategy best response correspondences to the common interest

game with common payoff function v. Observe that a∗ is thus a Nash equilibrium

of g if it is a local maximizer of v, i.e., it is not possible to increase v by changing
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one player’s action. Monderer and Shapley suggested if a game has multiple Nash

equilibria, the global maximizer of v (which must of course be a local maximizer

and thus a Nash equilibrium) is a natural candidate for selection. If action profile

a∗ is the strict maximum of a potential function v for complete information game

g, we say that a∗ is potential maximizer of g. Ui (2000a) shows that a potential

maximizing action profile is necessarily robust to incomplete information.16 Many

player, two action, symmetric payoff games are potential games, so this result

provides a proof that the strategy profile where all players choose the Laplacian

action is robust to incomplete information.17

The p-dominance sufficient conditions and potential game sufficient conditions

for robustness can be unified and generalized. We very briefly sketch the main

ideas and refer the reader to Morris (1999) for more details. Action profile a∗ is

a characteristic potential maximizer of the complete information game g if there

exists a function v : 2{1,..,I} → R with v ({1, ..., I}) > v (S) for all S 6= {1, .., I},
and µi : Ai → R+ such that for all i, ai ∈ Ai and a−i ∈ A−i,

v
¡©
j : aj = a

∗
j

ª¢− v ¡©j : aj = a∗jª ∪ {i}¢ ≥ µi (ai) (gi (ai, a−i)− gi (a∗i , a−i))
Here, v (·) is a potential function that depends only on the set of players choosing
according to a∗. In this sense, the characteristic potential maximizer condition
16Ui uses a slightly weaker version of robustness to incomplete information, where all types

in the perturbed game either have payoffs given exactly by the complete information game g or
have a dominant strategy to choose some action.
17Morris (1997) earlier provided an independent argument showing the robustness of the

Laplacian strategy profile.
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strengthens the potential maximizer condition. But the earlier equalities are re-

placed with inequalities and the constants µi also add extra degrees of freedom.

So the characteristic potential maximizer condition neither implies nor is implied

by the potential maximizer condition. Any characteristic potential maximizing

action profile is robust to incomplete information. One can use duality arguments

to show that if a∗ is a p-dominant equilibrium for some p with
IP
i=1

pi ≤ 1, then a∗

is a characteristic potential maximizer.18

Let the actions of each player be ordered, and for any action ai ∈ Ai, write
a−i for the action below ai and a

+
i for the action above ai. Action profile a

∗ is

a local potential maximizer of the complete information game g if there exists a

local potential function v : A→ R with v (a∗) > v (a) for all a 6= a∗ and, for each
i, µi : Ai → R+, such that for all i = 1, .., I and a−i ∈ A−i,

v (ai, a−i)− v
¡
a−i , a−i

¢ ≥ µi (ai)

·
gi (ai, a−i)
−gi

¡
a−i , a−i

¢ ¸ if ai > a∗i (4.2)

and v (ai, a−i)− v
¡
a+i , a−i

¢ ≥ µi (ai)

·
gi (ai, a−i)
−gi

¡
a+i , a−i

¢ ¸ if ai < a∗i .
One can show that if a∗ is a local potential maximizer, then a∗ is both a poten-

tial maximizer and a characteristic potential maximizer. Thus it generalizes both

conditions. If a∗ is a local potential maximizer of g, and g satisfies strategic com-

plementarities and each gi (ai, a−i) is concave with respect to ai, then a∗ is robust

to incomplete information. The following two player, three action, symmetric

payoff game satisfies the strategic complementarity and concavity conditions and
18Ui (2000b) extends these ideas with a set based notion of robustness to incomplete infor-

mation.
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one can show that (0, 0) is the local potential maximizer and thus robust (the

earlier conditions do not help to characterize robustness in this example).

0 1 2
0 4, 4 0, 0 −6,−3
1 0, 0 1, 1 0, 0
2 −3,−6 0, 0 2, 2

In fact, the local potential maximizer condition can be used to characterize the

unique robust equilibrium in generic two player, three action, symmetric payoff

games.

4.5. Noise Independent Selection

If an action profile is robust to incomplete information, we know that - roughly

speaking - any way that a “small” amount of incomplete information is added

cannot prevent that action profile being played in equilibrium. This observation

has important implications for global games. Consider a global game where payoffs

depend continuously on a random parameter θ (which could be multidimensional)

and each player observes a noisy signal xi = θ+σεi. If a∗ is a robust equilibrium of

the game being played at θ∗, then there will always be an equilibrium of the global

game (for small σ) where action profile a∗ is almost always played whenever all

players observe signals close to θ∗. In other words, there will be no way of adding

noise that will prevent action profile a∗ being played in the neighbourhood of θ∗

in some equilibrium. Thus if there is limit uniqueness (say, because there are

strategic complementarities and the other assumptions of Frankel, Morris and

Pauzner (2000) are satisfied) then a∗ must be played in the unique limit for every
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noise distribution. In the language of section 4.1, a∗ must be the noise independent

selection.

Here is a heuristic argument for the above claim. Fix θ∗ and let a∗ be a Nash

equilibrium of the complete information game at θ∗ that is robust to incomplete

information. By definition, if a∗ is robust to incomplete information in game

u (·, θ∗) if every incomplete information game where payoffs are almost always
given by u (·, θ∗) has an equilibrium where a∗ is almost always played. Generically,
it will also be true that every incomplete information game where payoffs are

almost always close to u (·, θ∗) will have an equilibrium where a∗ is almost always
played. But now consider an incomplete information where some types of each

player have payoffs close to u (·, θ∗) (“sane” types), while some types may have
very different payoffs (“crazy” types). Suppose that conditional on any player

being sane, with probability close to 1 he assigns probability close to 1 to all

other players being sane. Now the robustness arguments described above could

be adapted to show that this incomplete information game has an equilibrium

where, conditional on all players being sane, a∗ is almost always played.

Now return to the global game and write B (θ∗, δ) for a δ ball around θ∗, i.e.,

the set of θ within Euclidean distance δ of θ∗. For a generic choice of θ∗, a∗ will

remain robust to incomplete information close to θ∗, i.e., at all θ ∈ B (θ∗, δ) for
some sufficiently small δ > 0. Now consider a sequence of global games where

we let the noise go to zero, i.e., σ → 0. For fixed δ and fixed q < 1, we can

choose σ sufficiently small such that conditional on a player observing a signal
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in B (θ∗, δ), with probability at least q he will assign probability at least q to all

other players observing signals within B (θ∗, δ). Labelling the types who observe

signals in B (θ∗, δ) “sane” and types who observe signals not in B (θ∗, δ) “crazy”,

the above argument shows that there is an equilibrium where a∗ is almost always

played in a neighbourhood of θ∗.19

5. Related Models: Local Heterogeneity and Uniqueness

There are a number of ways that adding local heterogeneity to a population of

players can remove multiplicity. In this section, we will attempt to give some

intuition for a general logic at work. We start with a familiar example.

There are two players, 1 and 2, and each player i has a payoff parameter xi.

Expected payoffs are given by the following matrix:

Invest NotInvest
Invest x1, x2 x1 − 1, 0
NotInvest 0, x2 − 1 0, 0

(5.1)

If there was common knowledge that x1 = x2 = x ∈ (0, 1), then there would be
multiple strict Nash equilibria of the complete information game. Since both pure

strategy equilibria are strict, they seem quite stable. It seems surprising that an

apparently “small” perturbation could remove either equilibrium.

But now let x be a publicly observed random variable and let x1 = x2 = x.
19There is a technical problem formalizing this argument. The robustness analysis described

in the section 4.4 was carried out in discrete state spaces, where existence of equilibrium in
incomplete information games is never a problem. In the uncountable state space setting of
global games, it would be necessary to impose extra assumptions to ensure existence.
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Let players be restricted to switching strategies, so that player i will invest if his

payoff parameter exceeds some cutoff ki, and not invest otherwise. Thus player

i’s strategy is parameterized by a number ki. Since the game is symmetric, we

can write b∗ (k) to the optimal cutoff of any player if he expects his opponent to

choose cutoff k. Clearly, we have

b∗ (k) =

 0, if k ≤ 0
k, if 0 ≤ k ≤ 1
1, if 1 ≤ k

This function is plotted in figure 5.1 below.
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Figure 5.1: Function b∗ (k)

Symmetric equilibria will exist when this best response function crosses the

450 line. So there are a continuum of equilibria: for any x ∈ [0, 1], there is an
equilibrium where each player follows a switching strategy with cutoff x.
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If we perturb this best response function, we would expect there to be a finite

number of equilibria, i.e., a finite number of points where the function b∗ crosses

the 450 line. Given the shape of the best response function, it does not seem sur-

prising that there might be natural ways of perturbing the best response function

so that there is a unique equilibrium.

The two player example of section 2.1 represented one way of carrying out

such a perturbation. There it was assumed that there was a payoff parameter

θ and each player i observed a noisy signal xi = θ + σεi. The payoffs in the

above matrix (5.1) then represent the expected payoffs of the players, given their

signals. Recall that a player observing signal xi will believe that his opponent’s

signal xj is distributed normally with mean xi and standard deviation
√
2σ. If

σ = 0 in that example, so there is no noise in the signal, we have exactly the

scenario described above with best response function b∗. But if σ > 0, then the

best response function rotates clockwise a little bit and crosses the 450 line only

at 1
2
(see figure 2.1) and there is a unique equilibrium.

However, this argument does not really rely on the incomplete information

interpretation. The important feature of the argument is the local heterogeneity

in payoffs: a player with payoff parameter xi knows that he is interacting with

other player(s) who have some perhaps different but nearby payoff parameters; and

he knows that those other player(s) in turn know that they are interacting with

other player(s) who have some perhaps different but nearby payoff parameters. In

the remainder of this section, we will see how a similar logic to the global game
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argument can arise when players are interacting not with unknown types of an

opponent, but with (known) opponents at different locations or at different points

in time.2021

5.1. Local Interaction Games

A continuum of players are evenly distributed on the real line. If a player does

not invest, his payoff is 0. If he invests, his payoff is x + l − 1, where x is his
location and l is a weighted average of the proportion of his neighbours investing.

In particular, let f (·) be the density of a standard normal distribution with mean
0 and standard deviation

√
2σ; a player puts weight f (z) on the actions of players

at location x+ z.

This setup describes a game among a continuum of players. The analysis of

this game is identical to the analysis of the continuum player example of section

2.1. In particular, players at locations less than 1
2
will not invest and players at

locations above 1
2
will invest. This is despite the fact that if players were only

interacting with people at the exact same location (i.e., σ = 0), there would be
20This logic also emerges in the the models of Carlsson (1991) and Carlsson and Ganslandt

(1998) where players’ continuous action choice is subject to a small heterogeneous tremble. The
exact connection to global games is not known.
21A distinctive feature of these arguments relying on local heterogeneity is that a very small

amount of heterogeneity is sufficient to imply unique equilibrium in environments where there
are multiple strict equilibria without heterogeneity. One can also sometimes obtain uniqueness
results assuming global not local heterogeneity, i.e. assuming that each player or type has
the same but sufficiently diffuse beliefs about other players or types’ payoff parameters. Such
global heterogeneity uniqueness arguments rely on the existence of a sufficiently large amount
of heterogeneity. See Baliga and Sjöström (2001) in an incomplete information context (where
global heterogeneity corresponds to independent types); Herrendorf, Valentinyi and Waldmann
(2000) and Glaeser and Scheinkman (2000) in models of large population interactions; and
Frankel (2000) in the context of a dynamic model with payoff shocks.
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multiple equilibria at all locations between 0 and 1.

This rather stylized game illustrates the possibility that in local interaction

games, play at some locations may be influenced by play at distant locations

via the structure of local interaction. A literature on local interaction games

has examined this type of effect.22 To understand the connection a little better,

imagine a local interaction game where payoffs depend in a non-linear way on

location. Thus let the payoff to investing be ψ (x) + l − 1 (instead of x + l − 1).
Furthermore, suppose that ψ (x) < 1

2
for all x and that ψ (x) < 0 for some open

interval of values of x. For small σ, this game will have a unique equilibrium where

no player ever invests. To see why, note that for sufficiently small σ, players

inside the open interval where ψ (x) < 0 will have a dominant strategy to not

invest. But now players close to the edge of that interval will have about 1
2
their

neighbours within that interval, and thus (since ψ (x) < 1
2
always) will not invest

in equilibrium. This argument will iterate to ensure that no investment takes

place anywhere.

This argument has very much the flavor of the contagion argument developed

by Ellison (1993) and others. There, a population with constant payoffs interacts

with near neighbours on a line. Players choose best responses to some average

behavior of their neighbours. But a low rate of mutations ensures small neigh-

bourhoods where each action is played with periodically arise randomly. Once a
22E.g. Blume (1995), Ellison (1993), Young (1998). See Glaeser and Scheinkman (2000) for a

recent survey.
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risk dominant action is played in a small neighbourhood, it will tend to spread

to the whole population under the best response dynamics. The initial mutant

region where the risk dominant action is played plays much the same role as the

dominant strategy region in the story described above. In this setting with strate-

gic complementarities, best response dynamics mimic iterated deletion of strictly

dominated strategies. Morris (1997) describes more formally an exact relationship

between a version of Rubinstein’s (1989) e-mail game and a version of Ellison’s

contagion effect and describes more generally an exact equivalence between games

of incomplete information and local interaction games.23

The connection between games of incomplete information and local interaction

games can be exploited. In evolutionary models, local interaction leads to much

faster convergence to stochastically stable states than global interaction, because

of the contagious dynamics. But there is a very close connection between which

action will spread contagiously in a local interaction game and which action will

be played in the limit in a global game. In particular, recall from section 4.1 that

some games have a noise independent selection, i.e., an action profile played in the

limit of a global game, independent of the noise structure; while in other games,

the action played in the limit depends on the noise structure. Translated to a

local interaction setting, this result implies that some games will have the same

action tend to spread contagiously, independent of the structure of interaction,
23Hofbauer (1998, 1999) introduces an approach to equilibrium selection in a local interaction

environment. His “spatially dominant equilibria” seem to coincide with those that are robust
to incomplete information.
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while in other games fine details of the local interaction structure will determine

which action is contagious (see Morris (1999) for details). Thus local interaction

may not just speed up convergence to stochastically stable states but may change

the stochastically stable states in subtle ways.24

5.2. Dynamic Games

5.2.1. Dynamic Payoff Shocks

A continuum of players each live for an instant of time. If a player does not

invest, his payoff is 0. If he invests, his payoff is x+ l − 1, where x is the date at
which he lives and l is a weighted average of the proportion of players investing at

other points in time. In particular, let f (·) be the density of a standard normal
distribution with mean 0 and standard deviation

√
2σ; a player puts weight f (z)

on the actions of players living at date x+ z.

This setup describes a game among a continuum of players. The analysis of

this game is identical to the analysis of the continuum player example of section 2.1

and thus also the local interaction example of the previous section. In particular,

players will not invest before date 1
2
and will invest after date 1

2
. This is despite

the fact that if players were only interacting with people making contemporaneous

choices (i.e., σ = 0), there would be multiple equilibria at all dates between 0 and

1.

This was a very stylized example. But the logic is quite general. In many
24Morris (2000) also exploits techniques from the higher order beliefs literature to prove new

results about local interaction.
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dynamic strategic environments where choices are made at different points in

time, a player’s payoff may depend not only on contemporaneous choices but

also on choices made by other players at other times. Payoff conditions may be

varying through time. Thus players’ optimal choices may depend indirectly on

environments where payoffs are very different from what they are now. These

features may allow us to identify a unique equilibrium. Below, we discuss two

approaches that exploit this logic.25

One approach has been developed recently in Burdzy, Frankel and Pauzner

(2001), Frankel and Pauzner (1999) and Frankel (2000a).26 A continuum of players

are periodically randomly matched in a two player two action game. For simplicity,

we can think of them playing the investment game described in matrix (2.1). But

assume that the publicly observed common payoff parameter θ evolves through

time according to some random process (a random walk in Burdzy, Frankel and

Pauzner (1999), a continuous Brownian motion in Frankel and Pauzner (1999)).

Furthermore, suppose that each player can only occasionally alter his behavior:

revision opportunities arrive according to a Poisson process and arrive slowly

relative to changes in the game’s payoffs. Under certain conditions on the noise

process (roughly equivalent to the sufficiently uniform prior conditions in global
25Morris (1995) describes a third approach. Suppose that players are deciding whether to

invest or not invest at different points in time, but they make their decisions in private and their
watches are not synchronized. Thus each player will believe that the time on any other player’s
watch is close to his own, but not identical. Risk dominant play may result even when perfect
synchronization would have allowed multiple equilibria.
26See also Frankel and Pauzner (2000) and Levin (2000a) for applications following this ap-

proach.
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games), there is a unique equilibrium where each player invests when θ exceeds 1
2

and not when θ is less than 1
2
.

This description considerably over-simplifies the analysis. For example, it is

natural to assume that players observe the public evolution of θ, so they will be

able to infer at any point in time (even if they cannot observe) the proportion of

players taking each action. This creates an extra state variable (relative to the

global games analysis) and the resulting asymmetry between the past and future

complicates the analysis. Nonetheless, the logic is similar to the stylized example

described above. In particular, note how the friction in revision opportunities

exactly ensures that a player making a choice given some publicly observed θ will

take into account the choices that others will make at different times with different

publicly observed θ.27

Levin (2000a) describes another approach that is closer to the stylized example

described above. At discrete time t, player t chooses an action. His payoff may

depend on the actions of players choosing before him or the player choosing after

him, but also depends on a payoff parameter θ. The payoff parameter is publicly

observed and evolves according to a random walk. If players act as if they cannot
27Matsui and Matsuyama (1995) earlier analyzed a model with Poisson revision opportunities.

However, they assumed that the same game was being played through time (i.e., θ was constant)
but examined the stability of different population states. The state where the whole population
plays the risk dominant action can be reached in equilibrium from the state where the whole
population plays the risk dominated action, but not vica-versa. Hofbauer and Sorger (1999)
show that the potential maximizing action of (many action) symmetric potential games tends
to be played in the Matsui-Matsuyama environment. Oyama (2000) shows that the 1

2
-dominant

equilibrium is selected in this context. In a private communication, Hofbauer has reported that
it also selects the “local potential maximizing action” (see section 4.4) in two player, three action
games with strategic complementarities and symmetric payoffs.
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influence or do not care about the action of the decision maker in the next period,

then under weak monotonicity conditions (a player’s best response is increasing

in others’ actions and the payoff parameter) and limit dominance conditions (the

highest (lowest) action is a dominant strategy for sufficiently high (low) values

of θ) there is a unique equilibrium. The no influence assumption makes sense if

there are in fact a continuum of players at each date or if actions are observed

only with a sufficiently long lag. In Matsui’s (1999) currency crisis model, there

are overlapping generations of players but there is a natural reason why players

do not care about the actions of players preceding them.28

5.2.2. Recurring Incomplete Information

Let θt follow a random walk, with θt = θt−1 + ηt, where each ηt is independently

normally distributed with mean 0 and standard deviation τ . In period t, θt−1 is

publicly observed but θt is only observed with noise. In particular, each player i

observes xit = θt + εit, where each εit is independently normally distributed with

mean 0 and standard deviation σ. In each period, a continuum of players decide

whether to invest with linear payoffs depending of θt (the payoff to not investing

is 0, the payoff to investing is θt+ l−1 where l is the proportion of the population
investing).

This dynamic game represents a crude way of embedding the static global

games analysis in a dynamic setting. In particular, each period’s play of this
28See also Frankel (2000b) on the relationship between some of these models.
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dynamic game can be analyzed independently and is exactly equivalent to the

public signals model of section 3. In particular, θt−1 is the public signal about

θt while xit is player i’s private signal. A unique equilibrium will exist in this

dynamic game exactly if eγ (σ, τ) ≤ 2π (i.e., σ is small relative to τ). In Morris

and Shin (2000), we sketch a continuous time version of this recurring incom-

plete information model and derive the continuous time sufficient conditions for

uniqueness.

In Morris and Shin (1999a), we discuss such a recurring incomplete information

model of currency crises. One distinctive implication of that analysis is that by

the publicity effect, the previous period’s fundamentals may be expected to have a

disproportionate influence on current outcomes. Thus for any given actual level of

fundamentals, an attack on the exchange rate is more likely when the fundamentals

have just risen.

Chamley (1999) considers a richer global game model with recurring incom-

plete information. A large population of players play a coordination game in each

period, but each player has a private cost of taking a risky action that evolves

through time. There is correlation in private costs, and dominance regions, so

that each period’s coordination game has the structure of a global game. But

past actions convey information about other players’ private costs and thus (be-

cause of persistence) their current costs. Chamley identifies sufficient conditions

for uniqueness in all periods and discusses a variety of applications.
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5.2.3. Herding

In the herding models of Banerjee (1992) and Bikhchandani, Hirshleifer andWelch

(1992), players sequentially make some discrete choice. Players do not care about

each other’s actions directly, but players have private information, and so each

player may partially learn the information of players who choose before him. But

if a number of early moving players happen to observe signals favoring one action,

late moving players may start ignoring their own private information, leading to

inefficient herding because of the negative informational externality.

Herding models share with global game models the feature that outcomes

are highly sensitive to fine details of the information structure. However, it is

important to note that the mechanisms are quite different. The global games

analysis is driven by strategic complementarities and the highly correlated signals

generated by the noisy observations technology. However, the sensitivity to the

information structure arises in a purely static setting. The herding stories have no

payoff complementarities and simple information structures, but rely on sequential

choice.

Dasgupta (2000a) analyzes a simple model where it is possible to see both kinds

of effects at work. A finite set of players decide sequentially (in an exogenous order)

whether to invest or not. Investment conditions are either bad (when each player

has a dominant strategy to not invest) or good (in which case it pays to invest if

all other players invest). Each player observes a signal from a continuum, with
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high signals implying a higher probability that investment conditions are good.

All equilibria in this model are switching equilibria: each player invests only if

all previous players invested and his private signal exceeds some cutoff. Such

equilibria encompass herding effects: previous players’ decisions to invest convey

positive information to later players and make it more likely that they will invest.

They also encompass higher order belief effects: an increase in a player’s signal

makes it more likely that he will invest both because he thinks it more likely that

investment conditions are good and because he thinks it more likely that later

players will observe high signals and choose to invest.29

6. Conclusion

Global games rest on the premise that the information received by economic agents

are informative, but not so informative so as to achieve common knowledge of the

underlying fundamentals. Indeed, as the information concerning the fundamen-

tals become more and more accurate, the actions elicited in equilibrium resemble

behavior when the uncertainty concerning the actions of other agents become more

and more diffuse. This points to the potential pitfalls if we rely too much on our

intuitions that are based on complete information games which allow perfectly

coordinated switching of beliefs and actions. Decentralized decision making in

market environments cannot be relied on to rule out inefficient outcomes, so that
29For other models combining elements of payoff complementarities and herding, see Chari

and Kehoe (2000), Corsetti, Dasgupta, Morris and Shin (2000), Jeitshcko and Taylor (2001) and
Marx (2000).
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there may be room for policies that mitigate the inefficiencies. The analysis of

economic problems using the methods from global games is in its infancy, but the

method seems promising.

Global games also present a ‘user-friendly’ face of games with incomplete in-

formation in the tradition of Harsanyi. The potentially daunting task of forming

an infinite hierachy of beliefs over the actions of all players in the game can be

given a representation in terms of beliefs (and the behavior that they elicit) which

are simple to the point of being naive. Global games go some way to bridging the

gap between those who believe that rigorous game theory has a role in economics

(as we do) and those who insist on tractable and usable tools for applied economic

analysis.

References

[1] Allen, F. and S. Morris [2000]. “Finance Applications of Game Theory,” in

Advances in Business Applications of Game Theory, K. Chatterjee and W.

Samuelson, Eds. Kluwer Academic Press (forthcoming).

[2] Allen, F., S. Morris and A. Postlewaite [1993]. “Finite Bubbles with Short

Sales Constraints and Asymmetric Information,” Journal of Economic The-

ory 61, 209-229.

[3] Athey, S. [2000a]. “Single Crossing Properties and the Existence of Pure

Strategy Equilibria in Games of Incomplete Information,” forthcoming in

89



Econometrica.

[4] Athey, S. [2000b]. “Monotone Comparative Statics Under Uncertainty.”

[5] Aumann, R. [1976]. “Agreeing to Disagree,” Annals of Statistics 4, 1236-

1239.

[6] Baliga, S. and S. Morris [2000]. “Co-ordination, Spillovers and Cheap Talk,”

available at http://www.econ.yale.edu/~smorris.

[7] Baliga, S. and T. Sjöström [2001]. “Arms Races and Negotiations,” North-

western University.

[8] Banerjee, A. [1992]. “A Simple Model of Herd Behavior,” Quarterly Journal

of Economics 107, 797-818.

[9] Battigalli, P. [1999]. “Rationalizability in Incomplete Information Games,”

available at http://www.iue.it/Personal/Battigalli.

[10] Bikhchandani, S., D. Hirshleifer, and I. Welch [1992]. “A Theory of Fads,

Fashion, Custom and Cultural Change as Informational Cascades,” Journal

of Political Economy 100, 992-1026.

[11] Blume, L. [1995]. “The Statistical Mechanics of Best-Response Strategy

Revision,” Games and Economic Behavior 11, 111-145.

[12] Boonprakaikawe, J. and S. Ghosal [2000]. “Bank Runs and Noisy Signals,”

University of Warwick.

90



[13] Brunner, A. and J. Krahnen [2000]. “Corporate Debt Restructuring: Ev-

idence on Coordination Risk in Financial Distress,” Center for Financial

Studies, Frankfurt.

[14] Bryant, J. [1983]. “A Simple Rational Expectations Keynes Type Model,”

Quarterly Journal of Economics 98, 525-529.

[15] Bulow, J., J. Geanakoplos and P. Klemperer [1985]. “Multimarket Oligopoly:

Strategic Substitutes and Complements,” Journal of Political Economy 93,

488-511.

[16] Burdzy, K., D. Frankel, and A. Pauzner [2001]. “Fast Equilibrium Selection

by Rational Players Living in a Changing World,” Econometrica 69, 163-

189.

[17] Carlsson, H. [1989]. “Global Games and the Risk Dominance Criterion,”

University of Lund.

[18] Carlsson, H. [1991]. “A Bargaining Model where Parties Make Errors,”

Econometrica 59, 1487-1496.

[19] Carlsson, H. and E. van Damme [1993a]. “Global Games and Equilibrium

Selection”, Econometrica 61, 989-1018.

91



[20] Carlsson, H. and E. van Damme [1993b]. “Equilibrium Selection in Stag

Hunt Games,” in Frontiers of Game Theory, K. Binmore, A. Kirman and

A. Tani, Eds. M.I.T. Press.

[21] Carlsson, H. and M. Ganslandt [1998]. “Noisy Equilibrium Selection in Co-

ordination Games,” Economic Letters 60, 23-34.

[22] Chamley, C. [1999]. “Coordinating Regime Switches,” Quarterly Journal of

Economics 114, 817-868.

[23] Chan, K. and Y. Chiu [2000]. “The Role of (Non)Transparency in a Currency

Crisis Model,” McMaster University.

[24] Chari, V. and P. Kehoe [2000]. “Financial Crises as Herd Behavior,” Work-

ing Paper #600, Federal Reserve Bank of Minneapolis.

[25] Chui, M., P. Gai and A. Haldane [2000]. “Sovereign Liquidity Crises: An-

alytics and Implications for Public Policy,” International Finance Division,

Bank of England.

[26] Chwe, M. [1998]. “Believe the Hype: Solving Coordination Problems with

Television Advertising,” available at http://chwe.net/michael.

[27] Cooper, R. [1999]. Coordination Games. Cambridge University Press.

92



[28] Corsetti, G., A. Dasgupta, S. Morris and H. S. Shin [2000]. “Does One

Soros Make a Difference? The Role of a Large Trader in Currency Crises,”

available at http://www.econ.yale.edu/~corsetti.

[29] Dasgupta, A. [2000a]. “Social Learning and Payoff Complementarities,”

available at http://aida.econ.yale.edu/~amil.

[30] Dasgupta, A. [2000b]. “Financial Contagion through Capital Connec-

tions: A Model of the Origin and Spread of Bank Panics,” available at

http://aida.econ.yale.edu/~amil.

[31] DeGroot, M. [1970]. Optimal Statistical Decisions. McGraw-Hill.

[32] Dekel, E. and F. Gul [1996]. “Rationality and Knowledge in Game Theory,”

in Advances in Economic Theory: Seventh World Congress of the Econo-

metric Society, D. Kreps and K. Wallace, Eds. Cambridge University Press.

[33] Diamond, D. and P. Dybvig [1983]. “Bank Runs, Deposit Insurance, and

Liquidity,” Journal of Political Economy 91, 401-419.

[34] Dönges, J. and F. Heinemann [2000]. “Competition for Order Flow as a

Coordination Game,” Center for Financial Studies, Frankfurt.

[35] Ellison, G. [1993]. “Learning, Local Interaction, and Coordination,” Econo-

metrica 61, 1047-1071.

93



[36] Frankel, D. [2000a]. “Determinacy in Models of Divergent Development and

Business Cycles.” Available at www.tau.ac.il/~dfrankel.

[37] Frankel, D. [2000b]. “Noise versus Shocks,” seminar notes, University of

Tel Aviv.

[38] Frankel, D., S. Morris and A. Pauzner [2000]. “Equilibrium Selec-

tion in Global Games with Strategic Complementarities,” available at

www.tau.ac.il/~dfrankel.

[39] Frankel, D., and A. Pauzner [1999]. “Expectations and the Timing of Neigh-

borhood Change,” available at www.tau.ac.il/~dfrankel.

[40] Frankel, D. and A. Pauzner [2000]. “Resolving Indeterminacy in Dynamic

Settings: the Role of Shocks,” Quarterly Journal of Economics 115, 285-

304.

[41] Fudenberg, D. and J. Tirole [1991]. Game Theory. M.I.T. Press.

[42] Fukao, K. [1994]. “Coordination Failures under Incomplete Information and

Global Games,” Discussion Paper Series A #299, The Institute of Economic

Research, Hitotsubashi University, Kunitachi, Tokyo.

[43] Geanakoplos, J. [1994]. “Common Knowledge,” in Handbook of Game The-

ory, chapter 40 of volume 2, R. Aumann and S. Hart, Eds. Elsevier Science.

94



[44] Glaeser, E. and J. Scheinkman [2000]. “Non-Market Interactions,” prepared

for the Eighth World Congress of the Econometric Society.

[45] Goldstein, I. [2000]. “Interdependent Banking and Currency Crises in a

Model of Self-Fulfilling Beliefs,” University of Tel Aviv.

[46] Goldstein, I. and A. Pauzner [2000a]. “Demand Deposit Contracts and the

Probability of Bank Runs,” available at http://www.tau.ac.il/~pauzner.

[47] Goldstein, I. and A. Pauzner [2000b]. “Contagion of Self-Fulfilling Currency

Crises,” University of Tel Aviv.

[48] Harsanyi, J. [1967-1968]. “Games with Incomplete Information Played by

‘Bayesian’ Players, Parts I-III,” Management Science 14, 159-182, 320-334

and 486-502.

[49] Harsanyi, J. and R. Selten [1988].A General Theory of Equilibrium Selection

in Games. M.I.T. Press.

[50] Hartigan, J. [1983]. Bayes Theory. Springer-Verlag.

[51] Heinemann, F. [2000]. “Unique Equilibrium in a Model of Self-Fulfilling

Currency Attacks: Comment,” American Economic Review 90, 316-318.

[52] Heinemann, F. and G. Illing [2000]. “Speculative Attacks: Unique Sunspot

Equilibrium and Transparency,” Center for Financial Studies, Frankfurt.

95



[53] Hellwig, C. [2000]. “Public Information, Private Information and the Multi-

plicity of Equilibria in Coordination Games,” London School of Economics.

[54] Herrendorf, B., Á. Valentinyi and R. Waldmann [2000]. “Ruling out Multi-

plicity and Indeterminacy: the Role of Heterogeneity,” Review of Economic

Studies 67, 295-308

[55] Hofbauer, J. [1998]. “Equilibrium Selection in Travelling Waves,” in Game

Theory, Experience, Rationality: Foundations of Social Sciences, Economics

and Ethics, edited by W. Leinfellner and E. Köhler. Kluwer.

[56] Hofbauer, J. [1999]. “The Spatially Dominant Equilibrium of a Game,” An-

nals of Operations Research 89, 233-251.

[57] Hofbauer, J. and G. Sorger [1999]. “Perfect Foresight and Equilibrium Se-

lection in Symmetric Potential Games,” Journal of Economic Theory 85,

1-23.

[58] Hubert, F. and D. Schäfer [2000]. “Coordination Failure with Multiple

Source Lending,” available at http://www.wiwiss.fu-berlin.de/~hubert.

[59] Jeitschko, T. and C. Taylor [2001]. “Local Discouragement and Global Col-

lapse: A Theory of Coordination Avalanches,” American Economic Review

91, 208-224.

96



[60] Kadane, J. and P. Larkey [1982]. “Subjective Probability and the Theory of

Games,” Management Science 28, 113-120.

[61] Kajii, A. and S. Morris [1997a]. “The Robustness of Equilibria to Incomplete

Information,” Econometrica 65, 1283-1309.

[62] Kajii, A. and S. Morris [1997b]. “Common p-Belief: The General Case,”

Games and Economic Behavior 18, 73-82.

[63] Kajii, A. and S. Morris [1997c]. “Refinements and Higher Order Beliefs in

Game Theory,” available at http://www.econ.yale.edu/~smorris.

[64] Kajii, A. and S. Morris [1998]. “Payoff Continuity in Incomplete Information

Games,” Journal of Economic Theory 82, 267-276.

[65] Karp, L. [2000]. “Fundamentals versus Beliefs under Almost Common

Knowledge,” University of California at Berkeley.

[66] Kim, Y. [1996]. “Equilibrium Selection in n-Person Coordination Games,”

Games and Economic Behavior 15, 203-227.

[67] Kohlberg, E. and J.-F. Mertens [1986]. “On the Strategic Stability of Equi-

libria,” Econometrica 54, 1003-1038.

[68] Krugman, P. [1991]. “History versus Expectations,” Quarterly Journal of

Economics 106, 651-667.

97



[69] Laplace, P. [1824]. Essai Philosophique sur les Probabilités. Dover (English

translation).

[70] Levin, J. [2000a]. “Collective Reputation,” Stanford University.

[71] Levin, J. [2000b]. “A Note on Global Equilibrium Selection in Overlapping

Generations Games,” Stanford University.

[72] Marx, R. [2000]. “Triggers and Equilibria in Self-Fulfilling Currency Col-

lapses,” University of California at Berkeley.

[73] Matsui, A. [1999]. “Multiple Investors and Currency Crises,” University of

Tokyo.

[74] Matsui, A. and K. Matsuyama [1995]. “An Approach to Equilibrium Selec-

tion,” Journal of Economic Theory 65, 415-434.

[75] Mertens, J.-F. and Zamir, S. [1985]. “Formulation of Bayesian Analysis for

Games with Incomplete Information,” International Journal of Game The-

ory 10, 619-632.

[76] Merton, R. [1974]. “On the Pricing of Corporate Debt: the Risk Structure

of Interest Rates,” Journal of Finance 29, 449-470.

[77] Metz, C. [2000]. “Private and Public Information in Self-Fulfilling Currency

Crises,” University of Kassel.

98



[78] Milgrom, P. and J. Roberts [1990]. “Rationalizability, Learning, and Equilib-

rium in Games with Strategic Complementarities,” Econometrica 58, 1255-

1277.

[79] Monderer, D. and D. Samet [1989]. “Approximating Common Knowledge

with Common Beliefs,” Games and Economic Behavior 1, 170-190.

[80] Monderer, D. and D. Samet [1996]. “Proximity of Incomplete Information

in Games with Common Beliefs,” Mathematics of Operations Research 21,

707-725.

[81] Monderer, D. and L. Shapley [1996]. “Potential Games,” Games and Eco-

nomic Behavior 14, 124-143.

[82] Morris, S. [1995]. “Cooperation and Timing,” available at

http://www.econ.yale.edu/~smorris.

[83] Morris, S. [1997]. “Interaction Games,” available at

http://www.econ.yale.edu/~smorris.

[84] Morris, S. [1999]. “Potential Methods in Interaction Games,” available at

http://www.econ.yale.edu/~smorris.

[85] Morris, S. [2000]. “Contagion,” Review of Economic Studies 67, 57-78.

[86] Morris, S., R. Rob and H. S. Shin [1995]. “p-Dominance and Belief Poten-

tial,” Econometrica 63, 145-157.

99



[87] Morris, S. and H. S. Shin [1997]. “Approximate CommonKnowledge and Co-

ordination: Recent Lessons from Game Theory,” Journal of Logic, Language

and Information 6, 171-190.

[88] Morris, S. and H. S. Shin [1998]. “Unique Equilibrium in a Model of Self-

Fulfilling Currency Attacks,” American Economic Review 88, 587-597.

[89] Morris, S. and H. S. Shin [1999a]. “A Theory of the Onset of Currency

Attacks,” in Asian Financial Crisis: Causes, Contagion and Consequences,

Agenor, Vines and Weber, Eds. Cambridge University Press.

[90] Morris, S. and H. S. Shin [1999b]. “Co-ordination Risk and the Price of

Debt,” available at http://www.econ.yale.edu/~smorris.

[91] Morris, S. and H. S. Shin [2000]. “Rethinking Multiple Equilibria in Macro-

economic Modelling,” forthcoming in the NBER Macroeconomics Annual

2000. M.I.T. Press.

[92] Obstfeld, M. [1996]. “Models of Currency Crises with Self-Fulfilling Fea-

tures,” European Economic Review 40, 1037-1047.

[93] Osborne, M. and A. Rubinstein [1994]. A Course in Game Theory. M.I.T.

Press.

[94] Oyama, D. [2000]. “p-Dominance and Equilibrium Selection under Perfect

Foresight Dynamics,” University of Tokyo.

100



[95] Rochet, J.-C. and X. Vives [2000]. “Coordination Failures and the Lender

of Last Resort: was Bagehot right after all?” Universitat Autonoma de

Barcelona.

[96] Rubinstein, A. [1989]. “The Electronic Mail Game: Strategic Behavior under

Almost Common Knowledge,” American Economic Review 79, 385-391.

[97] Scaramozzino, S. and N. Vulkan [1999]. “Noisy Implementation Cycles and

the Informational Role of Policy,” University of Bristol.

[98] Schelling, T. [1960]. Strategy of Conflict. Harvard University Press.

[99] Shleifer, A. [1986]. “Implementation Cycles,” Journal of Political Economy

94, 1163-1190.

[100] Selten, R. [1975]. “Reexamination of the Perfectness Concept for Equilib-

rium Points in Extensive Games,” International Journal of Game Theory

4, 25-55.

[101] Shin, H. S. [1996]. “Comparing the Robustness of Trading Systems to Higher

Order Uncertainty,” Review of Economic Studies 63, 39-60.

[102] Sorin, S. [1998]. “On the Impact of an Event,” International Journal of

Game Theory 27, 315-330.

[103] Townsend, R. [1983]. “Forecasting the Forecasts of Others,” Journal of Po-

litical Economy 91, 546-588.

101



[104] Ui, T. [2000a]. “Robust Equilibria of Potential Games,” forthcoming in

Econometrica.

[105] Ui, T. [2000b]. “Generalized Potentials and Robust Sets of Equilibria,” Uni-

versity of Tsukuba.

[106] van Damme, E. [1997]. “Equilibrium Selection in Team Games,” in Under-

standing Strategic Interaction: Essays in Honor of Reinhard Selten, Albers,

Güth, Hammerstein, Moldovanu and van Damme, Eds. Springer-Verlag.

[107] Vives, X. [1990]. “Nash Equilibrium with Strategic Complementarities,”

Journal of Mathematical Economics 19, 305-321.

[108] Young, P. [1998]. Individual Strategy and Social Structure. Princeton Uni-

versity Press.

102



Appendix A: PROOF OF PROPOSITION 2.2.

We will prove the first half of the result (s (x) = 0 for all x ≤ θ∗ − δ). The
second half (s (x) = 0 for all x ≤ θ∗−δ) follows by a symmetric argument. For any
given strategy profile s = {si}i∈[0,1], we write ζ (x) for the proportion of players
observing signal x who choose action 1; ζ (·) will always be a continuous function
of x.

Write πσ (x, k) for the highest possible expected payoff gain to choosing action

1 for a player who has observed a signal x and knows that all other players will

choose action 0 if they observe signals less than k.

πσ (x, k) ≡ max
{ζ:ζ(x)=0 for all x<k}

∞R
θ=−∞

p (θ) f
¡
x−θ
σ

¢
π
¡
1− F ¡k−θ

σ

¢
, θ
¢
dθ

∞R
θ=−∞

p (θ) f
¡
x−θ
σ

¢
dθ

(6.1)

Lemma 6.1. There exists x ∈ R and σ1 ∈ R++ such that πσ (x, k) < 0 for all

σ ≤ σ1, x ≤ x and k ∈ R.

PROOF. By property A4*, we can choose x < θ and a continuously differ-

entiable function π : R → R with π0 (θ) = 0 and π (θ) = −ε for all θ ≤ x such

that

π (l, θ) ≤ π (θ) ≤ −ε
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for all l ∈ [0, 1] and θ ∈ R. Now let

πσ (x) ≡

∞R
θ=−∞

p (θ) f
¡
x−θ
σ

¢
π (θ) dθ

∞R
θ=−∞

p (θ) f
¡
x−θ
σ

¢
dθ

=

∞R
z=−∞

p (x+ σz) f (−z)π (x+ σz) dz
∞R

z=−∞
p (x+ σz) f (−z) dz

, changing variables to z =
θ − x
σ

Clearly, πσ (x) is an upper bound on πσ (x, k) for all k. Observe that πσ (x) is

continuous in σ; also π0 (x) = π (x) so π0 (x) = −ε for all x ≤ x. Also observe

that

dπσ
dσ

(x)

¯̄̄̄
σ=0

=

"
∞R

z=−∞
p(x+σz)f (−z)dz

#"
∞R

z=−∞
zf(−z)(p0(x+σz)π(x+σz)+p(x+σz)π0(x+σz))dz

#
"

∞R
z=−∞

p(x+σz)f (−z)dz
#2

−

"
∞R

z=−∞
zf (−z)p0(x+σz)dz

#"
∞R

z=−∞
p(x+σz)f(−z)π(x+σz)dz

#
"

∞R
z=−∞

p(x+σz)f (−z)dz
#2

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄
σ=0

=

 ∞Z
z=−∞

zf (−z) dz
 π0 (x)
p (x)

Thus by (A6), dπσ
dσ
(x) = 0 for all x ≤ x. Thus there exists σ ∈ R++ such that

πσ (x) < 0 for all σ ≤ σ and x ≤ x. ¥

Lemma 6.2. There exists σ2 ∈ R++ such that πσ (x, k) < 0 for all σ ≤ σ2,

x ≤ x < θ∗ and x ≤ k ≤ θ∗.
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πσ (x, k) =

∞R
θ=−∞

p (θ) f
¡
x−θ
σ

¢
π
¡
1− F ¡k−θ

σ

¢
, θ
¢
dθ

∞R
θ=−∞

p (θ) f
¡
x−θ
σ

¢
dθ

=

1Z
l=0

ψσ (l; x, k)π
¡
l, k − σF−1 (l)¢ dl

where ψσ (l; x, k) is the density with c.d.f.

Ψσ (l; x, k) =

k−σF−1(1−l)R
θ=−∞

p (θ) f
¡
x−θ
σ

¢
dθ

∞R
θ=−∞

p (θ) f
¡
x−θ
σ

¢
dθ

=

∞R
z= x−k

σ
+F−1(1−l)

p (x− σz) f (z) dz
∞R

z=−∞
p (x− σz) f (z) dz

, changing variables to z =
x− θ
σ

Thus as σ → 0, Ψσ (l; x, x− σξ) → 1 − F (ξ + F−1 (1− l)). Thus as σ → 0,

πσ (x, x− σξ)→ π∗σ (x, x− σξ)continuously (where π∗σ is the variable correspond-
ing to a uniform prior derived in the text). We know that π∗σ (x, x− σξ) > 0 for
the required values of x and ξ. Since we are interested in values of x in the closed

interval [x, θ∗] and since varying ξ generates a compact set of distributions over l,

covergence is uniform. ¥

Appendix B: THE FINITE PLAYER CASE
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As we noted in the linear example of section 2.1, analysis of the continuum

and finite players can follow similar methods. Here we briefly note how to extend

the uniform prior private values analysis of proposition 2.1 to the finite player

case. The extension of the general prior common values analysis of proposition

2.2 is then straightforward.

The setting is as in the section 2.2.1, except that there are now I ≥ 2 play-

ers, and the noise terms in the private signals are identically and independently

distributed according to the density f (·). As before, π (l, x) is the payoff gain to
choosing action 1 rather than action 0, if you have observed signal x and propor-

tion l of your opponents choose action 1. Of course, now (since you have I − 1
opponents) l will always be an element of the set

©
0, 1

I−1 ,
2
I−1 , .., 1

ª
. Property A3

becomes:

A3(I): I-Player Single Crossing: There exists a unique θ∗I solving
I−1P
k=0

1
I
π
¡

k
I−1 , θ

∗
I

¢
=

0.

Observe that as I →∞, θ∗I → θ∗ (i.e., the θ∗ of assumption A3). In the special

case where I = 2, this reduces to 1
2
π (0, θ∗2) +

1
2
π (1, θ∗2) = 0; in other words, θ

∗
2 is

the point where the risk dominant action (Harsanyi and Selten (1988)) switches

from 0 to 1. Proposition 2.1 remains true as stated for the finite player game, with

θ∗I replacing θ
∗. This was essentially shown by Carlsson and van Damme (1993b).

The key step in the proof is showing that in a symmetric strategy profile, each

player has uniform beliefs over the proportion of players observing a higher signal.

To see why this is true, note that the probability that a player observing signal x
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assigns to exactly proportion n
I−1 of his opponents signal greater than k is

∞Z
θ=−∞

1

σ
f

µ
x− θ
σ

¶µ
I − 1

I − 1− n
¶·
F

µ
k − θ
σ

¶¸I−1−n ·
1− F

µ
k − θ
σ

¶¸n
dθ

where F (·) is the c.d.f. of f (·). Letting x = k − σz and carrying out the change
of variables ξ = k−θ

σ
, this expression becomes

∞Z
ξ=−∞

f (ξ − z)
µ

I − 1
I − 1− n

¶
[F (ξ)]I−1−n [1− F (ξ)]n dξ

This expression is now independent of σ and k, so we may denote this expression

by ψI
¡
n
I−1 ; z

¢
. For the same argument to work as in the continuum case, it is

enough to show that ψI (·; 0) is the uniform distribution. But integration by parts
gives:

ψI
µ

n

I − 1; 0
¶

=

µ
I − 1

I − 1− n
¶ ∞Z
ξ=−∞

f (ξ) [F (ξ)]I−1−n [1− F (ξ)]n dξ

=

µ
I − 1
I − n

¶ ∞Z
ξ=−∞

f (ξ) [F (ξ)]I−n [1− F (ξ)]n−1 dξ

= ...

=

∞Z
ξ=−∞

f (ξ) [F (ξ)]I−1 dξ

=
1

I
.

Appendix C: PROOF OF LEMMA 2.3

Recall the following expression for a player’s expected payoff gain to choosing

action 1 for a player who has observed a signal x and knows that all other players
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will choose action 0 if they observe signals less than k:

π∗σ (x, k) ≡
∞Z

θ=−∞

1

σ
f

µ
x− θ
σ

¶
π

µ
1− F

µ
k − θ
σ

¶
, x

¶
dθ

With a change of variables (setting z = θ−k
σ
), this expression becomes:

π∗σ (x, k) =

∞Z
z=−∞

f

µ
x− k
σ

− z
¶
π (1− F (−z) , x) dz

We can re-write this expression as

π∗σ (x, k) = h (x, k, x)

where

h (x, k, x0) ≡
∞Z

z=−∞

ef (x, z) g (z, x0) dz
ef (x, z) ≡ f

µ
x− k
σ

− z
¶

and g (z, x0) ≡ π (1− F (−z) , x0)

Now observe that, by A7, ef (x, z) satisfies a monotone likelihood ratio property,
i.e., if x > x, then

ef (x,z)ef (x,z) is increasing in z; also observe that, by A1*, g (·, x0)
satisfies a single crossing property: there exists z∗ ∈ R ∪ {−∞,∞} such that
g (z, x0) < 0 if z < z∗ and g (z, x0) > 0 if z > z∗. Now lemma 5 in Athey (2000b)

implies that h (·, k, x0) satisfies a single crossing property: there exists x∗ (k, x0)
such that h (x, k, x0) < 0 for all x < x∗ (k, x0) and h (x, k, x0) > 0 for all x >

x∗ (k, x0). But by A2, we know that h (x, k, x0) is strictly increasing in x0.
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Now suppose h (x, k, x) = 0. If x0 < x, then

h (x0, k, x0) < h (x0, k, x) , by A2

< h (x, k, x) , by the single crossing property of h

By a symmetric argument, we have x0 > x⇒ h (x0, k, x0) > h (x, k, x). Thus there

exists β : R→ R such that

π∗σ (x, k) < 0 if x < β (k)

π∗σ (x, k) = 0 if x = β (k)

π∗σ (x, k) > 0 if x > β (k)

Thus if a player thinks that others are following a strategy with cutoff k, a player’s

best response is to follow a switching strategy with cutoff β (k). But by (A3), we

know that there exists exactly one value of k such that

π∗σ (k, k) =

1Z
l=0

π (l, k) dl = 0.

Thus there is a unique symmetric switching strategy equilibrium.
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