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Abstract

Local features provide powerful cues for generic image
recognition. An image is represented by a “bag” of lo-
cal features, which form a probabilistic distribution in the
feature space. The problem is how to exploit the distribu-
tions efficiently. One of the most successful approaches is
the bag-of-keypoints scheme, which can be interpreted as
sparse sampling of high-level statistics, in the sense that it
describes a complex structure of a local feature distribution
using a relatively small number of parameters. In this pa-
per, we propose the opposite approach, dense sampling of
low-level statistics. A distribution is represented by a Gaus-
sian in the entire feature space. We define some similarity
measures of the distributions based on an information ge-
ometry framework and show how this conceptually simple
approach can provide a satisfactory performance, compa-
rable to the bag-of-keypoints for scene classification tasks.
Furthermore, because our method and bag-of-keypoints il-
lustrate different statistical points, we can further improve
classification performance by using both of them in kernels.

1. Introduction

With the significant advances in computer systems,
appearance-based image recognition methods using statis-
tical learning have drawn increasing attention. In particu-
lar, automatic scene and object categorization has been one
of the most important challenges, and has seen substantial
progress in the last decade. One notable breakthrough is
the advances in local feature description, which provides a
powerful cue to represent the semantics of images. In this
approach, a bunch of local features, typically SIFT [15] or
SURF [4], are extracted from local sub-windows of an im-
age. These local features form a probabilistic distribution
in the feature space, which is expected to contain rich in-
formation related to the local and global image structures.
Therefore, the basic question is: How to efficiently exploit
the distribution of local features?

The most well-known and practical example of local ap-
proach methods is the bag-of-keypoints scheme (bag-of-
visual-words) [8]. The first step of this method is to per-
form vector quantization of the local features of training im-
ages using clustering algorithms to obtain centroids, which
represent the visual words. The resulting feature is the
histogram of visual word occurrences in the image. This
method can be interpreted as a sparse sampling of high-
level statistics of local feature distributions, in the sense
that it describes the complex structure of a distribution us-
ing some small number of representative parameters (# of
visual words). High-level statistics are suited for detecting
locally distinctive patterns in an image, which are thought
to be especially important for capturing the characteristics
of solid objects.

In this work, we focus on the opposite approach: dense
sampling of low-level statistics. We simply model a local
feature distribution of each image as a Gaussian, which we
call the global Gaussian (GG) approach. This is equivalent
to sampling all zeroth- and first-order statistical moments.
While the bag-of-keypoints (BoK) basically captures the lo-
cal frequency in the feature space, a Gaussian provides fun-
damental global information. This is thought to be suitable
for describing abstract scenes, where solid distinctive cues
are not always available. Following the information geome-
try approach [3], we derive theoretically supported similar-
ity measures for Gaussians, and then apply them to kernel
functions for training a classifier. Using an information ge-
ometry technique, we can derive both an optimal kernel and
an efficient linear approximation.

Although some previous studies are closely related to
ours [18, 26], a Gaussian based approach has not always
received enough attention compared to BoK in the field of
scene recognition. In experiments of scene categorization,
using three state-of-the-art datasets, we show that the global
Gaussian approach achieves promising results well com-
parable to that of bag-of-keypoints. Furthermore, because
our method and BoK illustrate different statistical points,
we can further improve classification performance by using
both of them in kernels. Overall, our contributions are:
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Table 1. Summary of previous work and our work from the view-
point of local feature statistics.

High-level Low-level

Dense Non-parametric [5] Covariance [25, 26]
GMM [18, 30] Ours (Gaussian)

Sparse Bag-of-keypoints [8]

• A thorough experiment with the global Gaussian ap-
proach in the context of scene categorization.

• Theoretically deriving optimal kernel metrics and a
scalable linear approximation using the information
geometry technique.

• Proposing the idea of combining the global Gaussian
and BoK techniques and demonstrating the effective-
ness of that combination.

2. Related Work

Generally, the local features of an image are generated
from a complex hidden distribution. However, the number
of statistically independent samples that can be extracted
from one image is severely restricted. Therefore, estimating
the distribution is an extremely difficult task.

With this in mind, Table 1 summarizes the approaches of
both previous work and ours. A straightforward approach
is to use raw local features for matching images. Boiman et
al. [5] proposed the Naive-Bayes nearest neighbor (NBNN)
classification algorithm, which finds the nearest patch in the
training corpus for all patches in the query image. This
method showed excellent performance, probably because a
non-parametric approach can handle the complex structure
of real data relatively stably using a limited number of ex-
amples. However, the computational cost of this method is
immense because they need to preserve all raw local fea-
tures in the training images for use in classification.

As examples of parametric estimation, Vasconcelos et al.
exploited a Gaussian mixture model (GMM) for modeling
the distribution [18, 28]. To apply their generative model to
discrimination, they proposed a kernel function for defining
a similarity between two distributions, and used it on a sup-
port vector machine (SVM). In addition, Zhou et al. [30]
estimated a GMM for each image and used its parameters
as the appearance feature. These methods are interpreted as
sampling of the high-level statistics of local feature distri-
butions. Ideally, this will give an optimal representation of
a distribution. However, as we mentioned above, it is nearly
impossible to estimate a large-scale GMM using local fea-
tures sampled from each individual image. Therefore, [30]
applied a hierarchical estimation of GMM, where a distribu-
tion of each image is estimated as a deviation from the en-
tire training corpus. This approach, however, cannot always

provide an effective representation for each image because
the estimation will be severely affected by the characteris-
tics of the training corpus.

A similar problem occurs in the codebook generation in
the bag-of-keypoints (bag-of-visual-words) scheme [8], be-
cause a standard k-means tends to place its clusters around
the densest regions in the training corpus. Many recent
works are dedicated to this problem. For example, Jurie
et al. [12] exploited a radius-based mean-shift clustering
to generate a more appropriate codebook. Wu et al. [29]
showed that a histogram intersection is generally a better
metric for clustering local features. Moreover, Tuytelaars
et al. [24] presented a lattice-based vector quantization in-
stead of a data-driven approach. Further, there are many
studies focused on improving BoK related to other aspects.
For example, the soft assignment strategy [22, 27] is shown
to create more descriptive visual word histograms.

Probably, the study by Tuzel et al. [26] is the closest to
ours. They extracted a covariance matrix of the local fea-
tures of an image, and described it as a point on a Rieman-
nian manifold. Further, they performed LogitBoost learning
using the structure of the manifold by means of differen-
tial geometry. They achieved excellent performance with
a human detection task. This method can be interpreted
as using the shape of a Gaussian for describing an image.
Covariances are typical examples of low-level statistics and
are expected to be relatively stable, although they are sam-
pled from each image independently. However, an obvious
problem is that they lose the mean information. That is, two
Gaussians at different points having similar shapes are in-
distinguishable. Moreover, because our method is based on
a “flat” manifold, we can effectively exploit the structure of
tangent spaces.

3. Our Approach

In this study, an image is represented as a probabil-
ity distribution of its local features. Suppose a bag of d-
dimensional local features {xk} are extracted from an im-
age Ij . Then Ij can be explained with the distribution
pj(x;θ(j)) having θ(j) as the parameters. We plot each
sample on a flat Riemannian manifold using the informa-
tion geometry technique. We derive some theoretically sup-
ported similarity metrics on the manifold and use them for
kernel functions so that they can be applicable to discrimi-
nation. As a natural result, it is shown that a theoretically
optimal kernel is the one based on the Kullback-Leibler
(KL) divergence. Basically, this kernel becomes the same
one used in [18], and is expected to provide the upper limit
performance of our global Gaussian approach. However,
the scalability of a KL divergence based method is low be-
cause it requires high-cost nonlinear computation. There-
fore, we also derive an approximate linear kernel based on
the Riemannian metric.



3.1. Brief Summary of Information Geometry

Information geometry, which is based on differential ge-
ometry, began as the geometric study of statistical estima-
tion [3]. It expresses the model space of a certain family of
parametric probability functions as a Riemannian manifold.
Each sample, which constitutes a probabilistic distribution,
is represented as a point on the manifold. Let us consider
the manifold S formed with a probabilistic model p(x;θ)
having n-dimensional parameters θ = (θ1, ..., θn). An in-
formation geometry framework gives a statistically natural
structure to the manifold. First, we exploit a Fisher infor-
mation matrix as a Riemannian metric.

Gθ
lm(θ) = Eθ

[
∂ log p(x;θ)

∂θl

∂ log p(x;θ)
∂θm

]
. (1)

Next, we apply a symmetric connection called an α-
connection 1, having α as a parameter to determine the
structure of the manifold. For some special probabilistic
models, we find a flat manifold by taking an appropriate
affine coordinate system ξ, where tangent spaces are flatly
connected. If such a coordinate ξ exists, the model space is
defined as α-flat, and ξ is defined as the α-affine coordinate
system. In an α-flat space, a geodesic is represented as a
line on an α-coordinate system (α-geodesic). It is known
that an α-flat space is always −α-flat and that we can take
another affine coordinate system that is dual to ξ. As dis-
cussed in more detail below, α = ±1 becomes especially
important in information geometry 2. Actually, it is known
that there exist ±1-coordinate systems for many practical
probabilistic models which are used widely for statistical
learning. Therefore, information geometry has been suc-
cessfully applied to the analysis and interpretation of many
kinds of learning methods such as EM algorithm [2], boost-
ing [19] and variational Bayes [10]. For further details, refer
to [3].

The exponential family is among the most basic and im-
portant probabilistic models for practical applications. It
also plays an important role in the information geometry
framework. A distribution of the exponential family is rep-
resented as follows:

p(x;θ) = exp

(
n∑

i=1

θiFi(x) − ψ(θ) + C(x)

)
. (2)

Here, θ is the model parameter, F is a function of the ob-
served variable x, ψ(θ) is the potential function, and C(x)
is a constant function independent of θ. The exponential

1α = 0 corresponds to the Levi-Civita connection.
2In information geometry, terms such as 1-connection, 1-flat are specif-

ically called e-connection and e-flat (e:exponential), and -1-connection and
-1-flat are called m-connection and m-flat (m:mixture). However, we do
not change the terminology in this paper for simplicity.

family is 1-flat, taking θ as the corresponding affine coor-
dinate system. We can take another affine coordinate sys-
tem η = (η1, ..., ηn) which is dual to θ and is defined as
ηi = Eθ[Fi(x)]. The η-coordinate system is interpreted as
the space of sufficient statistics and is −1-flat. The Rieman-
nian metric of the η-coordinate system becomes the inverse
of that of the θ-coordinate system (Gθ, Eq. 1). This can be
explicitly described using the following conversion.

Gη
lm =

∂θl

∂ηm
. (3)

3.2. Gaussian Embedding
A Gaussian also belongs to the exponential family and

is described by n = d + d(d + 1)/2 parameters. Let μ
and Σ denote the sample mean and covariance respectively.
Letting

C(x) = 0, Fi(x) = xi, Fij(x) = xixj (i ≤ j),

θi =
d∑

j=1

(Σ−1)ijμj , θii = −1
2
(Σ−1)ii,

θij = −(Σ−1)ij (i < j), (4)

then, a Gaussian is represented as follows:

p(x;θ) = exp

⎡
⎣∑
1≤i≤d

θiFi(x) +
∑

1≤i≤j≤d

θijFij(x) − ψ(θ)

⎤
⎦ .

(5)
Here,

ψ(θ) =
1
2
μT Σ−1μ +

1
2

log(2π)d|Σ|. (6)

Also, the η-coordinates become as follows:

ηi = μi, ηij = Σij + μiμj (i ≤ j). (7)

The θ-coordinate is based on model parameters and the η-
coordinate is based on sufficient statistics. In an ideal situa-
tion where we can obtain perfect information from samples,
we may take any of them for the image feature space. How-
ever, usually we have only a limited amount of observations
(local features) for each sample (an image). Therefore, we
take the estimated sufficient statistics from the observations
and plot each sample on the η-coordinates. Let ei,eij de-
note the basis vectors corresponding to ηi and ηij respec-
tively. Then the η-coordinate system is described as:

η =
∑

1≤i≤d

ηiei +
∑

1≤i≤j≤d

ηijeij

= (η1, ..., ηd, η11, ..., η1d, η22, ...η2d, ..., ηdd)T

=
(
μ̂1, ..., μ̂d, Σ̂11 + μ̂2

1, ..., Σ̂1d + μ̂1μ̂d,

Σ̂22 + μ̂2
2, ..., Σ̂dd + μ̂2

d

)T
. (8)



As Eq. 8 shows, the η-coordinates consist of all means and
correlations of the elements of observed local features. The
Riemannian metric of the η-coordinate system is as follows:

Gη
ij = (Σ−1)ij(1 + μT Σ−1μ)+∑d

k=1
μk(Σ−1)ki

∑d

k=1
μk(Σ−1)kj ,

Gη
i(pq) = − (Σ−1)pi

∑d

k=1
μk(Σ−1)kq −

(Σ−1)qi

∑d

k=1
μk(Σ−1)kp (p < q),

Gη
i(pp) = − (Σ−1)pi

∑d

k=1
μk(Σ−1)kp

Gη
(pq)(rs) = (Σ−1)ps(Σ−1)qr + (Σ−1)qs(Σ−1)pr

(p < q, r < s),

Gη
(pq)(rr) = (Σ−1)pr(Σ−1)rq (p < q),

Gη
(pp)(rr) =

1
2
(Σ−1)2pr. (9)

Above, the suffixes correspond to Eq. 8. For example,
Gη

i(pq) = 〈ei,epq〉, and Gη
(pq)(rr) = 〈epq,err〉.

3.3. Kernel Functions

KL divergence based kernel

In information geometry, the α-divergence between two
points P : f(x), Q : g(x) in a dually-flat space is defined
as follows:

D(α)(P ||Q) = ψ
(
θ(P )

)
+ ϕ

(
η(Q)

)− n∑
i=1

θi(P )ηi(Q).

(10)
Here, ϕ(η) is the potential function of the η-coordinate
system. The α-divergence is an important metric for in-
formation geometry. Intuitively, it represents the dissimi-
larity between two points; strictly speaking, it is different
from a mathematical distance, because a symmetric prop-
erty does not hold unless P and Q are sufficiently close.
Also, the dual −α-divergence becomes D(−α)(P ||Q) =
D(α)(Q||P ). In the case of the exponential family, 1-
divergence (α = 1) becomes equal to the KL divergence
between f(x) and g(x):

k(f ||g) =
∫
f(x) [log f(x) − log g(x)] dx. (11)

Also, the dual −1-divergence (α = −1) is equal to k(g||f).
Since we take the −1-flat η-coordinate system, we con-

sider −1-divergence. However, since this is an asymmetric
metric, we cannot use it directly as a kernel function. There-
fore, we define a distance between two samples by sym-

metrizing the divergence following the approach of [18].

dist
(
η(P ),η(Q)

)
= D(−1)(P ||Q) +D(−1)(Q||P )
= k(g||f) + k(f ||g)
= tr(ΣP Σ−1

Q ) + tr(ΣQΣ−1
P ) − 2d +

tr
(
(Σ−1

P + Σ−1
Q )(μP − μQ)(μP − μQ)T

)
. (12)

To define a kernel that satisfies the Mercer conditions, we
simply exponentiate the distance following [18]:

Kkl(P,Q) = exp
(−a dist(η(P ),η(Q)

))
. (13)

Above, a is a smoothing parameter. KL divergence requires
computing the inverse of a covariance matrix, which can be
unstable when only a small number of features are available.
Therefore, we add a regularization matrix to the covariance
matrices for improving numerical stability. That is, we let
Σ → Σ + bI . This process is equivalent to adding artificial
white noise to local features.

Ad-hoc linear kernel

First, as the simplest baseline of linear approximation, we
simply apply a linear kernel to the η-coordinate system.
This is a strong approximation that ignores the manifold
metric, and will be severely affected by the nature of the
local descriptors and scaling effects. We call this the ad-hoc
linear kernel (ad-linear).

Kad(P,Q) = η(P )T η(Q). (14)

Center tangent linear kernel

For a more strict formulization, we need to exploit the Rie-
mannian metric in Eq. 9, which takes different values at
each point of the η-coordinate. Suppose we have N train-
ing images. Following some previous work [1], we take the
metric on the mean of them, ηc = 1

N

∑N
i η(i) for approx-

imation.

Kct(P,Q) = η(P )TGη(ηc)η(Q). (15)

Here, Gη(ηc) is the metric on ηc. This process is inter-
preted as approximating the model space using the tan-
gent space of ηc. ηc corresponds to the Gaussian distri-
bution estimated from the local features of the entire train-
ing corpus, which is a reasonably representative point. We
call this the center tangent linear kernel (ct-linear). The
ct-linear kernel can be efficiently computed by applying a
normal linear kernel to the transformed coordinate system

ζ =
(
Gη(ηc)

)1/2
η. Therefore, we can substantially im-

prove the performance from the ad-hoc linear kernel with-
out losing scalability.



4. Classification Method

In this work, we employ two classification methods. The
first is the SVM, which is a common tool for classification
in recent work on generic image recognition. The other is
the probabilistic discriminant analysis (PDA) [11], a prob-
abilistic interpretation of the classical linear DA. A benefit
of PDA is that we can build a multiclass classifier by solv-
ing an eigenvalue problem only once, while SVM needs a
fusion of binary classifiers. In both SVM and PDA, we ap-
ply kernel functions to cope with non-linear structures. For
SVM implementation, we use LIBSVM [7].

Below, we introduce the kernel DA, which is the core of
the PDA, and the classification rule provided by the PDA
framework. Suppose a kernel function K(η(i),η(j)) =
〈φ(η(i)), φ(η(j))〉 is given, where φ : η → φ(η) de-
notes the projection that maps an input vector on a high-
dimensional feature space. We let N denote the number of

training samples, ηK =
(
K(η,η(1)), ...,K(η,η(N))

)T
denote the kernel base vector, ΣK

w denote the within-class
covariance matrix of kernel base vectors, and ΣK

b denote
the between-class covariance matrix. The kernel DA is for-
mulated as the following generalized eigenvalue problem.

ΣK
b W = Σ́K

wWΛ (WT Σ́K
wW = I). (16)

Here, Σ́K
w = ΣK

w +γI . γ is a small positive number used to
determine the amplitude of the regularization matrix, which
is used to control generalization. Λ is a diagonal matrix
having eigenvalues as the elements.

Kernel DA is interpreted as performing linear DA on
an implicit high-dimensional space using the kernel trick.
Therefore, we can exploit the classification rule using the
structure of a latent subspace provided by a probabilistic
linear DA framework [11]. Let t denote the number of
samples in each class, and μK

η denote the mean of kernel
base vectors over the entire training dataset. The following
projection maps an image feature η to a point in the latent
space:

u =
(
t− 1
t

)1/2

WT (ηK − μK
η ). (17)

The covariance of the latent values is given by the following
expression:

Ψ = max

(
0,
t− 1
t

Λ − 1
t

)
. (18)

Using this structure, we classify a newly input sample ηK
s

by the maximum likelihood estimation. We assume that us,
the projected point of ηK

s , is generated from a certain class
C with probability:

p(us|uC
1...t) = N

(
us| tΨ

tΨ + I
ūC, I +

Ψ
tΨ + I

)
. (19)

Here, uC
1...t are latent values of n independent training sam-

ples that belong to class C, and ūC is their mean. We clas-
sify ηK

s in the class with the largest value of Eq. 19. This is
an extremely simple process similar to the nearest-centroid
approach.

5. Implementation

5.1. Local Feature Sampling

We use the SIFT [15] descriptor (128-dim) and SURF [4]
descriptor (64-dim) as the local feature descriptors. Miko-
lajczyk et al. [17] showed that the SIFT descriptor has aver-
agely the best performance among local feature descriptors.
Also, SURF is known as a powerful descriptor comparable
to SIFT, although its computational cost is substantially re-
duced. As the feature sampling method, we take the dense
sampling strategy, following many successful works related
to image categorization [9, 20, 6, 29, 30]. We space the key-
points five pixels apart, and extract local features from each
patch of 16 × 16 pixels having the keypoint at the center.
Note that we extract local features from gray images in all
experiments, even if color images are available.

5.2. Use of Spatial Information

We incorporate spatial information of images into our
kernels following the standard spatial pyramid kernel [13].
We hierarchically partition images into grids using the ze-
roth layer (original image) to the L-th layer. Each l-th layer
(0 ≤ l ≤ L) is partitioned into a 2l×2l grid. Then, we gen-
erate the local η-coordinate system independently for each
region and compute kernels such as Kkl or Kct. Finally,
they are merged as follows:

KGG(P,Q) =
1∑L

i=0 β
i

L∑
l=0

βl

22l

22l∑
k=1

K(l,k)(P,Q). (20)

Here, β ∈ R is a relative weight parameter of layers. The
suffix (l, k) indicates that the element belongs to the k-th
region of the l-th layer.

As for the implementation of Kct kernel, since comput-
ing the metric for each region is expensive, we simply use
the one from L = 0 for all regions.

5.3. Bag-of-Keypoints Baseline

To provide a quantitative baseline, we implement the
BoK method using the same local features sampled for the
proposed method. We use the standard k-means method for
generating a codebook. We set the number of visual words
to 200 and 1000. For training classifiers, we use a histogram
intersection kernel and apply the spatial pyramid matching
[13]. We let KBoK denote this kernel function in the fol-
lowing.



Figure 1. Images from benchmark datasets. Top left: LSP15 [13].
Bottom left: 8-sports [14]. Right: Indoor67 [23].

In some experiments, we merge our proposed kernels
(Eq. 20) and those for BoK for further performance im-
provements. Here, we simply exploit a linear combination.

KGG+BoK =
1

1 + κ
KGG +

κ

1 + κ
KBoK . (21)

Here, κ is a weight parameter.

6. Experiments

6.1. Datasets

We experiment with three challenging datasets: 15 class
scene dataset provided by Lazebnik et al. [13] (LSP15),
eight class sports events dataset provided by Li et al. [14]
(8-sports), and a 67 class indoor scene dataset by Quattoni
et al. [23] (Indoor67). Figure 1 shows some images from
each dataset.

LSP15 has been the standard benchmark for scene clas-
sification tasks. It consists of 10 outdoor and five indoor
classes. The 8-sports dataset has both scene recognition and
object recognition aspects. Images in this dataset are char-
acterized by background scenes and foreground athletes. In-
door67 is a new scene dataset published in 2009, and is the
largest scene dataset currently available. It is characterized
by a large number of classes and their high intra-class vari-
ations. Also, it is pointed out in [23] that indoor scene cat-
egorization is more difficult than natural scene categoriza-
tion.

We follow standard experimental protocols used in pre-
vious work. In LSP15, we randomly choose 100 training
samples for each class and use the remaining samples for
testing. Also, we randomly choose 70 training and 60 test-
ing samples in 8-sports, and 80 training and 20 testing sam-
ples in Indoor67. Performance is evaluated in terms of the
mean of the classification rate of each class 3. This score is
averaged over many trials, wherein the training and testing

3Average of diagonal elements of the confusion matrix.

Table 2. Basic results of the global Gaussian approach with the
LSP15 and 8-sports datasets using different kernels (%). No spa-
tial information is used here.

LSP15 8-sports
SIFT SURF SIFT SURF

PDA ad-linear 77.3 75.9 77.9 72.4
ct-linear 78.8 78.5 79.7 78.1
KL div. 80.4 81.5 81.7 79.6

SVM ad-linear 69.9 72.1 70.6 70.2
ct-linear 75.7 77.7 75.5 73.3
KL div. 76.3 78.3 78.3 74.9

Table 3. Performance comparison with spatial information on
LSP15 (%). The SURF descriptor is used.

L=0 L=1 L=2
GG PDA (ad-linear) 75.9 78.8 79.8

PDA (ct-linear) 78.5 81.6 82.3
PDA (KL div.) 81.5 84.8 86.1
SVM (ad-linear) 72.1 73.2 74.3
SVM (ct-linear) 77.7 80.1 80.7
SVM (KL div.) 78.3 82.2 83.1

BoK200 PDA 71.9 78.5 81.1
SVM 70.6 76.3 78.6

BoK1000 PDA 77.1 80.7 82.5
SVM 74.9 78.0 79.4

Table 4. Performance comparison with spatial information on the
8-sports dataset (%). The SIFT descriptor is used.

L=0 L=1 L=2
GG PDA (ad-linear) 77.9 79.3 80.2

PDA (ct-linear) 79.7 81.5 82.9
PDA (KL div.) 81.7 83.2 84.4
SVM (ad-linear) 70.6 71.6 71.7
SVM (ct-linear) 75.5 77.2 78.8
SVM (KL div.) 78.3 80.2 81.4

BoK200 PDA 72.0 76.9 79.6
SVM 71.7 76.3 77.7

BoK1000 PDA 77.8 80.6 81.5
SVM 76.2 78.1 79.1

samples are replaced randomly. In all experiments in this
study, we take the average over 10 trials.

6.2. In-depth study with LSP15 and 8-sport datasets

First, we investigate the effectiveness of our approach
using LSP15 and 8-sports datasets. Table 2 shows the ba-
sic performance without the use of spatial information. We
test both SIFT and SURF descriptors. The notation “ad-
linear” denotes the ad-hoc linear kernel, “ct-linear” denotes



Table 5. Performances of global Gaussian, BoK, and combined
approach (%). L = 2 spatial pyramid is implemented. Kernel
PDA is used for classification. SURF descriptor is used for LSP15
and SIFT descriptor is used for 8-sports.

LSP15 8-sports
GG (KL) 86.1±0.5 84.4±1.4
GG (ct-linear) 82.3±0.4 82.9±1.0
BoK200 81.1±0.7 79.6±1.1
BoK1000 82.5±0.7 81.5±1.7
GG (ct-linear) + BoK200 85.0±0.5 83.2±0.9
GG (ct-linear) + BoK1000 85.3±0.5 83.4±0.7
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Figure 2. Merging the global Gaussian and BoK with the LSP15
dataset. κ is the parameter for weighting kernels (Eq. 21).
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Figure 3. Merging the global Gaussian and BoK with the 8-sports
dataset. κ is the parameter for weighting kernels (Eq. 21).

the center tangent linear kernel, and “KL div.” denotes the
KL divergence based kernel. As shown, the KL divergence
based kernel achieves the best performance, followed by ct-
linear and ad-linear. The ct-linear kernel substantially im-
proves performance compared to the ad-linear kernel, and
PDA obtains better performance than that of SVM (LIB-
SVM). In addition, the result shows that SURF is superior
in LSP15 and SIFT is superior in 8-sports.

Next, we investigate the effect of spatial information in

Table 6. Performance comparison with previous work (%). For our
method, L = 2 spatial pyramid is implemented, and kernel PDA
is used for classification. We use the SURF descriptor for LSP15
and Indoor67, and the SIFT descriptor for 8-sports.

Method LSP15 8-sports Indoor67
GG (KL-div.) 86.1±0.5 84.4±1.4 45.5±1.1
GG (ct-linear) 85.3±0.5 83.4±0.7 44.9±1.3

+ BoK1000
Previous 85.2 [30] 84.2 [29] 25.0 [23]

84.1 [29] 73.4 [14]
83.7 [6]

our method. Here, we implement BoK to provide a base-
line. In both our method and BoK, we use spatial pyramids
up to L = 2. We use SURF for LSP15 and SIFT for 8-
sports here. Table 3 shows the results with LSP15, and Ta-
ble 4 shows the results with 8-sports. Our method obtains a
satisfactory result that compares well with BoK using 1000
visual words. Also, the result show that spatial information
can reasonably improve the performance of our method.

Finally, we try to merge our global Gaussian ap-
proach and BoK. Although the KL divergence based kernel
achieves a high performance, it is not suitable for practical
systems because of its low scalability. Therefore, here we
combine the ct-linear kernel of our method and histogram
intersection kernel of BoK method as Eq. 21. Table 5 shows
that we can further improve the performance by concatenat-
ing different statistics of local features provided by Gaus-
sian and BoK. Figure 2 and 3 show the effect of weighting
parameter κ. This approach is expected to be feasible in a
perfectly linear framework by further incorporating the lin-
ear approximation technique of the histogram intersection
kernel [16].

6.3. Comparison with previous work

We compare the performance of our approach with that
of previous work with LSP15, 8-sports and Indoor67. Ta-
ble 6 summarizes the best performance of our method and
that of previous work. For LSP15, hierarchical Gaussian-
ization [30], which is a GMM-based method, achieved the
current best score of 85.2%. Our best score using the KL
divergence based kernel is 86.1%. The performance of a
more scalable ct-linear + BoK technique is reasonably close
at 85.3%. For 8-sports, HIK-codebook [29] achieved 84.2%
and we get the slightly better score of 84.4%. Note that [29]
improved the performance by sampling local features from
an original image and Sobel image at five different scales,
while we only extract features from a single scale original
image. (Without Sobel images, [29] achieved 81.9%.) In
Indoor67, the original work [23] achieved an accuracy of
25.0% by concatenating global description with the Gist



descriptor [21] and ROI detection using BoK. We use the
SURF descriptor for Indoor67, motivated by its promising
performance with the LSP15 scene dataset. Our best score
is 45.5%, which is superior to [23] by a large margin. How-
ever, the result also shows that we still have a long way to
go with this challenging large scale dataset.

7. Conclusion

This study focused attention on the low-level statistics
of local feature distributions and applied them to scene cat-
egorization. Compared to high-level statistics, low-level
statistics can be extracted stably and densely from a sin-
gle image and can be a powerful discriminative cue. In
the proposed approach, we express an image sample with a
Gaussian distribution of its local features, and derive some
kernel metrics theoretically supported by the information
geometry framework. Also, we proposed a scalable linear
approximation approach exploiting a tangent space on the
Riemannian manifold. A thorough study using three chal-
lenging datasets showed the effectiveness of our approach.
In addition, we showed that we can further improve the per-
formance by merging our approach with BoK, which can
efficiently extract some high-level statistics.
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