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Abstract

Background: Cell-cell communication is an important factor in feto-maternal units during placentogenesis. The placenta

produces pivotal hormones and cytokines for communication between cotyledonary villi and the maternal caruncle.

Gene expression in bovine placenta throughout pregnancy was comprehensively screened by a cDNA microarray, and

we searched for a common transcription factor in a gene cluster that showed increasing expression throughout gestation

in cotyledonary villi and caruncle.

Methods: Placentomal tissues (villi and caruncle) were collected from Day 25 to Day 250 of gestation for microarray

analysis. Global gene expression profiles were analyzed using the k-means clustering method. A consensus sequence cis-

element that may control up-regulated genes in a characteristic cluster was examined in silico. The quantitative

expression and localization of a specific transcription factor were investigated in each tissue using quantitative real-time

RT-PCR and in situ hybridization.

Results: The microarray expression profiles were classified into ten clusters. The genes with most markedly increased

expression became concentrated in cluster 2 as gestation proceeded. Cluster 2 included placental lactogen (CSH1),

pregnancy-associated glycoprotein-1 (PAG1), and sulfotransferase family 1E estrogen-preferring member 1 (SULT1E1),

which were mainly detected in giant trophoblast binucleate cells (BNC). Consensus sequence analysis identified

transcription factor AP-2 binding sites in some genes in this cluster. Quantitative real-time RT-PCR analysis confirmed

that high level expression of transcription factor AP-2 alpha (TFAP2A) was common to cluster 2 genes during gestation.

In contrast, the expression level of another AP-2 family gene, transcription factor AP-2 beta (TFAP2B), was extremely

low over the same period. Another gene of the family, transcription factor AP-2 gamma (TFAP2C), was expressed at

medium level compared with TFAP2A and TFAP2B. In situ hybridization showed that TFAP2A, TFAP2B and TFAP2C

mRNAs were localized in trophoblast cells but were expressed by different cells. TFAP2A was expressed in cotyledonary

epithelial cells including BNC, TFAP2B was specifically expressed in BNC, and TFAP2C in mononucleate cells.

Conclusion: We detected gestational-stage-specific gene expression profiles in bovine placentomes using a combination

of microarray and in silico analysis. In silico analysis indicated that the AP-2 family may be a consensus regulator for the

gene cluster that characteristically appears in bovine placenta as gestation progresses. In particular, TFAP2A and TFAP2B
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may be involved in regulating binucleate cell-specific genes such as CSH1, some PAG or SULT1E1. These results suggest

that the AP-2 family is a specific transcription factor for clusters of crucial placental genes. This is the first evidence that

TFAP2A may regulate the differentiation and specific functions of BNC in bovine placenta.

Background
The placenta that connects the mother to the fetus plays a
crucial role in mammalian fetal growth and maintenance
of the pregnancy. The mechanisms of implantation, pla-
centation, fetogenesis and delivery are unclear because the
complicated cell-cell communication involved is modu-
lated by hormones, cytokines and growth factors. At each
stage in gestation, intricate molecular and biochemical
regulation is involved in maintaining the fetal-maternal
relationship. Placentomes consisting of fetal and maternal
tissues, namely cotyledons and caruncles, develop step-
by-step during gestation in cattle [1]. The giant trophob-
last binucleate cells (BNC) characteristically appear early
in gestation and represent approximately 20% of tro-
phoblast cells throughout gestation in the bovine placenta
[2]. BNCs participate directly in modifying the endome-
trial epithelium, beginning at implantation and continu-
ing until term, and play a major role in feto-maternal
communication in ruminants [1]. Although BNCs are
known to produce various specific molecules – prolactin-
like hormones, pregnancy-associated glycoproteins
(PAG), steroid hormones and prostanoids, thus acting as
endocrine cells [1,3] – the regulatory mechanisms com-
mon to the expression of these molecules remain to be
investigated. Analyses of global gene expression profiling
reveal a new aspect of the intricate molecular mechanisms
in the bovine placenta. Even with new technology, analy-
sis of enormous amounts of genetic information reveals a
highly complex situation. We have examined the follow-
ing gene expression profiles: (i) global gene expression in
the placenta, mainly in the caruncle or endometrium in
early pregnancy, in order to investigate the genes involved
in placentation [4]; (ii) global gene expression in the
embryo and extra-embryonic membranes during the
implantation period [5]; and (iii) trophoblast cell-specific
gene expression in a bovine trophoblast cell line (BT-1)
[6] using a custom-made cDNA microarray. Other groups
have also studied global gene expression in ruminants
using cDNA arrays during the pre- or peri-implantation
period, specifically in the 8-cell bovine embryo [7], gastru-
lation [8], implantation [9] and endometrium [10-12].
Microarray analysis gives information about thousands or
tens of thousands of genes simultaneously and suggests
biological pathways in organs and cells. However, it is dif-
ficult to establish correlations among genes within one
gene cluster; gene expression data tend to fluctuate
because there is still insufficient information about the
bovine genome. A common transcription factor may be
utilized for genes in identical clusters with very similar

expression patterns [13]. Currently, bioinformatics meth-
ods allow genome-wide expression of transcriptional reg-
ulatory elements to be analyzed rapidly in humans and/or
yeast [14-19]. It would be interesting to identify a com-
mon response regulator of the principal genes in the pla-
centa; this could elucidate the mechanism of placentation
and the properties of BNC. Here, we investigated global
gene expression within the placenta from the initial to the
late stages of pregnancy, in order to identify the genes
related to placentation and placental maintenance. After
microarray analysis, a possible common response regula-
tor for trophoblast-cell functions and the maintenance of
gestation was examined by in silico analysis, using infor-
mation about the bovine genome, quantitative real-time
RT-PCR (QPCR) and in situ hybridization.

Methods
Animals and tissue collection

Placentomal tissues for mRNA expression were collected
from Japanese Black cows. The necessary extra-embryonic
membranes, placenta and endometrium were collected at
a local slaughterhouse on days 25 to 28, 56 to 64, 144 to
149 and 245 to 252 after artificial insemination (Day 0)
and on Day 13 of the estrus cycle (non-pregnant). The tis-
sues were separated into two portions, the cotyledonary
villous (COT) and the caruncle areas (CAR), the latter
including the maternal placentomal septa in the
endometrium. It was difficult to separate the COT from
the fetal membranes on days 25 to 28, as the extra-embry-
onic membrane (EEM) contained very few villi. Tissue
taken from three different cows on days 25, 27 and 28 of
gestation (n = 2 animals for the microarray; n = 3 animals
for QPCR) was designated Day 25 EEM; Day 25
endometrium was designated Day 25 ENDO. Placen-
tomal tissues were collected on days 56 (two animals), 64
and 65 (totally n = 3 animals for the microarray; n = 4 ani-
mals for QPCR) and were designated Day 60 COT and
Day 60 CAR. Sample materials from days 144, 148 and
149 (n = 2 animals for the microarray; n = 3 animals for
QPCR) and days 245 (two animals), 249 and 252 (totally
n = 2 animals for the microarray; n = 4 animals for QPCR)
were respectively marked Day 150 COT, Day 150 CAR,
Day 250 COT and Day 250 CAR. The cotyledonary and
caruncular parts were mechanically separated, with each
part containing some of the tissue. Two samples from
non-pregnant cows were collected for the microarray. The
collected samples were stored at -80°C prior to RNA
extraction, and additional placentomes from Day 56 were
fixed in 3.7% formaldehyde PBS at pH 7.4 and then
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embedded in paraffin wax and stored at 4°C prior to in
situ hybridization. All procedures for these animal experi-
ments were carried out in accordance with guidelines
approved by the Animal Ethics Committee of the
National Institute of Agrobiological Sciences for the use of
animals.

Sample RNA preparation

Total RNA was individually isolated from ENDO, CAR,
EEM and COT using ISOGEN (NipponGene, Toyama,
Japan) according to the manufacturer's instructions. Poly
(A)+ RNA was prepared from the total RNA using an Oli-
gotex-dT30 Super mRNA isolation kit (JSR, Tokyo, Japan).
The extracted poly (A)+ RNA was used for the cDNA
microarray experiment.

Microarray analysis

cDNA microarray

A custom-made utero-placental cDNA microarray devel-
oped in our laboratory [4,20] was used. A total of 3955
clones were spotted on one chip; 1780 individual genes
were annotated by BLASTn. The details of the cDNA
microarray experiments were described in previous
reports [4,5].

Microarray hybridization

cDNA microarray hybridization was performed as
described previously [4,5]. Poly(A)+ RNA was reverse-
transcribed with Cy3 or Cy5 fluorescent dye (Amersham
Biosciences, Buckinghamshire, UK) using SuperScript II
reverse transcriptase (Invitrogen, Carlsbad, CA, USA) to
make the hybridization probes. The labeled probes were
concentrated in a Microcon filter (Millipore, Bendford,
MA, USA), diluted in hybridization solution (a mixture of
SSC, SDS, poly(A) and yeast tRNA), and applied to the
microarray. After incubation at 65°C, the array chips were
sequentially washed with SSC/SDS solution and SSC solu-
tion. The hybridization images were scanned using a
GenePix 4000B (Axon Instrument, Union City, CA, USA)
and analyzed by the GenePix Pro 4.0 program.

Sample hybridizations were performed in duplicate for all
samples. The COT and CAR samples from the pregnant
cows were reverse-labeled. In the reverse labeling proce-
dure, for example, the cDNAs for COT of Day 60 and CAR
of Day 60, which had initially been labeled with the fluo-
rescent dyes Cy3 and Cy5, respectively, were then labeled
with Cy5 and Cy3, respectively. The two endometrial sam-
ples were self-labeled; for example, the ENDO cDNA sam-
ples were labeled with Cy3 or Cy5, respectively, and both
labeled cDNA were mixed and hybridized on the microar-
ray. Each data point was individually normalized and the
average value was used for data analysis.

Data normalization for microarray

Data were normalized by the following procedures [5,21].
The local background intensity of each spot was
smoothed by a local weight regression (lowess) smoother
and subtracted from the feature intensity data. The sub-
tracted intensity data were subjected to non-parametric
regression and local variance normalization. Non-para-
metric regression can reduce intensity-dependent biases.
Compared with linear regression, the accuracy is
improved as long as the points in the scatter plot of Cy3
vs. Cy5 are not distributed around a straight line. Normal-
ization of local variance controlled most of the back-
ground in low-intensity data, whereas the normalized
data, in many cases, showed no significant fold-differ-
ences in comparison with the background-subtracted raw
intensity ratios, which frequently indicated higher fold-
differences. Thus, the variance method employing bovine
utero-placental array data produced highly reliable nor-
malized ratios. Compliance with Minimum Information
About a Microarray Experiment (MIAME) [22] was
assured by depositing all the data in the Gene Expression
Omnibus (GEO) repository [23]. The GEO accession
numbers are as follows. Platform: GPL1221; Samples:
GSM170629, GSM170632, GSM170636, GSM170637,
GSM170638, GSM170639, GSM170640, GSM170641,
GSM170642, GSM170643, GSM170644, GSM170645,
GSM170655, GSM170679, GSM170687, GSM170688,
GSM170689, and GSM170690; Series: GSE7096.

Cluster analysis of microarray data

The data for individual genes were obtained by averaging
the corresponding spots on the microarray. The trans-
formed log2 values were used for cluster analysis. The
TIGR MultiExperiment Viewer 3.0 (MeV 3.0) program was
used for k-means cluster analysis [24,25]. The general
expression patterns of the 1446 unique genes, except for
unreliable low-expression genes, were investigated using
the k-means algorithm. The data for each gene were repre-
sented by an eight-dimensional vector. K-means cluster-
ing was performed by partitioning around 10 centroids.
The distances between the gene vectors were calculated
using the cosine coefficient (vector angle).

The search for a transcription factor common to a cluster

We searched for a transcription factor consensus binding
site common to all genes in cluster 2, because the micro-
array analysis revealed the most marked changes in this
cluster. We obtained a region 200 bp upstream from each
gene from Map Viewer on the NCBI web site [26]. We
searched for a transcription factor binding site common to
these upstream regions using the TFBIND program
[27,28].

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GPL1221
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170629
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170632
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170636
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170637
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170638
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170639
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170640
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170641
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170642
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170643
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170644
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170645
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170655
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170679
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170687
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170688
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170689
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSM170690
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GSE7096


Reproductive Biology and Endocrinology 2007, 5:17 http://www.rbej.com/content/5/1/17

Page 4 of 17

(page number not for citation purposes)

Quantitative real-time RT-PCR (QPCR)

We investigated the mRNA expression patterns of (i) six
characteristic genes selected from the microarray analysis
(Annexin I (ANXA1), RNA polymerase II carboxy-termi-
nal domain small phosphatase 2 (CTDSP2), Msh homeo
box 1 (MSX1), Heat shock 70 kDa protein 1A (HSPA1A),
Heat shock 70 kDa protein 8 (HSPA8) and Sulfotrans-
ferase family 1E estrogen-preferring member 1
(SULT1E1)), and (ii) transcription factors for which con-
sensus binding sites were present in multiple members of
cluster 2, namely transcription factors AP-2 alpha
(TFAP2A), AP-2 beta (TFAP2B) and AP-2 gamma
(TFAP2C).

Real-time RT-PCR was performed using the SYBR Green
Detection System (Applied Biosystems, Foster City, CA,
USA). Fifty nanograms of total RNA was reverse-tran-
scribed for 30 min at 48°C by MultiScribe™ reverse tran-
scriptase with a random primer, dNTP mixture, MgCl2 and
RNase inhibitor. After heat inactivation of the reverse
transcriptase for 5 min at 95°C, PCR and the resulting rel-
ative increase in reporter fluorescent dye emission were
monitored in real time using an Mx3000P QPCR system
(Stratagene, La Jolla, CA, USA). The primer pair was
designed by the Primer Express Program (Applied Biosys-
tems). The primers for each gene are listed in Table 1. The
thermal cycling conditions included one cycle at 50°C for
2 min, one cycle at 95°C for 10 min, and 40 cycles at
95°C for 15 s and 60°C for 1 min. The relative difference
in the initial amount of each mRNA species (or cDNA)
was determined by comparing the CT values. To quantify
the mRNA concentrations, standard curves for each gene
were generated by serial dilution of the plasmid contain-
ing its cDNA. We confirmed the melting curve for detect-
ing the SYBR Green-based objective amplicon because
SYBR Green also detects double-stranded DNA including
primer dimers, contaminating DNA and PCR products
from misannealed primers. Contaminating DNA or
primer dimers appear as a peak separate from the desired
amplicon peak. The expression ratio of each gene to
GAPDH mRNA was calculated to adjust for variations in
the RT-PCR reaction. All values are presented as mean ±
SEM. QPCR was duplicated on one animal sample. To be
more precise: for the Day25 and Day150 samples, QPCR
data were collected from 3 animals (biological replicates)
and the technique was repeated for one animal sample
(technical duplicate); in total, six data were obtained. For
QPCR data from the Day60 and Day250 samples, 4 bio-
logical replicates were obtained and technical duplicate
was performed on one sample (eight data in total). One-
way ANOVA followed by the Tukey-Kramer multiple com-
parison test was used for statistical analysis. Differences
were considered significant at P < 0.05.

In situ hybridization

Approximately 500 bp cDNA of a representative cluster 2
gene, SULT1E1, and of the genes commonly utilized in
the cluster, TFAP2A, TFAP2B and TFAP2C, was used as
template for synthesizing a hybridization probe. Digoxi-
genin (DIG)-labeled anti-sense and sense cRNA probes
were prepared as described in previous studies [29-31].
Day 56 bovine placentomes were sectioned into 7 µm-
thick sections. In situ hybridization was performed using
an automated Ventana HX System Discovery with a
RiboMapKit and a BlueMapKit (Ventana, Tucson, AZ,
USA) [29-31]. Briefly, the sections were hybridized with
DIG-labeled probes in RiboHybe (Ventana) hybridization
solution at 63°C (SULT1E1 and TFAP2A) or 61°C
(TFAP2B and TFAP2C) for 6 hours, then washed for 3 × 6
min in RiboWash (Ventana) at 65°C and fixed in RiboFix
(Ventana) at 37°C, 10 min. The SULT1E1 and TFAP2A

hybridization signals were detected using a monoclonal-
anti-digoxin biotin conjugate (Sigma, Saint Louis, MI,
USA). The TFAP2B and TFAP2C hybridization signals
were detected with a rabbit polyclonal anti-digoxin HRP
conjugate (Dako Cytomation, Carpinteria, CA, USA)
using an AmpMapKit (Ventana). After preparation, the
hybridized slides were observed with a Leica DMRE HC
microscope (Leica Microsystems, Wetzlar, Germany) and
a Fujix digital camera HC2500 (Fujifilm, Tokyo Japan).

Results
Correlations in the microarray data

We examined the correlations of microarray data among
tissues at corresponding stages of pregnancy (Table 2).
The correlations for non-pregnant (n = 2 animals), Day25
(n = 2 animals), Day60 (n = 3 animals), Day150 (n = 2
animals) and Day250 (n = 2 animals) samples were calcu-
lated in the biological replicates and technical duplicates
by reverse labeling. The correlation coefficients between
the two sets of Day 25 and the three sets of Day 60 data
are high. This is also true for the two sets of Day 150, Day
250 and non-pregnant data. Therefore we used the aver-
ages of the two data sets for each of these stages of gesta-
tion.

Cluster analysis of global gene expression in bovine 

placenta

General gene expression

Three hundred and twenty genes out of a total of 1780
were excluded from cluster analysis because of their low
expression values. The remaining 1446 genes were parti-
tioned into ten categories by k-means clustering, as
depicted in Fig. 1. The ten k-means cluster profiles were
classified into three types: (i) profiles with COT gene-
expression intensities higher than those of CAR from Day
60 to Day 250 of gestation (clusters 4 and 9); (ii) those
with expression intensities in COT level similar to those of
CAR in clusters 2, 3, 7 and 8; and (iii) those with CAR
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expression intensities higher than those of COT (clusters
1, 5, 6 and 10). The number of genes in each cluster
ranged from about 500 to 30. Specifically, cluster 7 con-
tained 470 genes, whereas cluster 2 contained only 30
genes.

Specific genes and their expression patterns in the clusters

Cluster 1 comprised 131 genes including numerous ribos-
omal proteins, osteonectin (SPARC), decorin (DCN),
cytochrome-c oxidase subunit V and Rho GDP dissocia-
tion inhibitor beta (ARHGDIB). The expression intensities
were high in the ENDO-CAR tissues in non-pregnant sub-
jects and declined slightly until Day 60, after which they
remained more or less constant until Day 250. In contrast,
the expression level was low in EEM-COT tissues on Day
25 and increased up to Day 150. In cluster 2, the expres-
sion intensity increased from Day 25 to Day 150 in both
ENDO-CAR and EEM-COT. Cluster 2 comprised only 30
genes including placental lactogen (CSH1), prolactin-
related proteins (PRPs), PAGs and SULT1E1. In cluster 3,

gene expression intensities were high in ENDO-CAR and
EEM-COT. Expression decreased slightly from non-preg-
nant to Day 60 in CAR, but increased markedly in EEM-
COT from Day 25 to Day 60 and continued to increase
gradually up to Day 250. Cluster 3 included 86 genes,
mainly cytoskeleton and cell adhesion genes such as beta-
actin (ACTB), alpha-tubulin (TUBA), tropomyosin 2
(TPM2), Villin 2 (VIL2, ezrin) and chloride-channel cal-
cium-activated family member 3 (CLCA3, Lu-ECAM-1).
In cluster 4, the profiles of gene expression intensities in
EEM-COT and ENDO-CAR were opposite; the intensities
increased slightly from Day 25 to Day 250 in EEM-COT,
but declined slightly from non-pregnant ENDO to Day
250 in CAR. This cluster included 65 genes such as alpha-
lactalbumin (LALBA), aldose reductase (AKR1B1), the
insulin-like growth factor II (IGF2), HSPA1A, HSPA8, and
heat shock 27 kDa protein 1 (HSPB1). In cluster 5, the
gene expression intensity was higher in ENDO than in
EEM. Cluster 5 included 89 genes such as type III and XII
collagens, Calbindin 3 (CALB3), tissue inhibitor metallo-

Table 2: The correlation coefficients (r) between the same stage of microarray data. 

Gestation Days EEM-COT/r value ENDO-CAR/r value

Non-Pregnant --- ≥ 0.87

Day25 ≥ 0.87 ≥ 0.91

Day60 ≥ 0.85 ≥ 0.86

Day150 ≥ 0.85 ≥ 0.92

Day250 ≥ 0.81 ≥ 0.70

The correlations of non-pregnant, Day25, Day150, and Day250 samples were calculated at biological duplicate n = 2 and technical duplicate by 
reverse labeling n = 2. The correlations of Day60 samples were calculated at biological duplicate n = 3 and technical duplicate by reverse labeling n 
= 3. Differences were considered significant at P < 0.05.

Table 1: Oligonucleotide primers used for quantitative real-time RT-PCR analysis

Gene Primer Sequence Position

ANXA1 Forward 5' GGCTTTGCTTTCTCTTGCTAAGG 3' 611–633

(NM_175784) Reverse 5' TGAATCAGCCAAGTCGTCATTT 3' 680–669

CTDSP2 Forward 5' GGCCTGGTGTCCAAGTCCT 3' 203–221

(DT808814) Reverse 5' CAGAAAAGGGCCTTGAAGATGT 3' 267–246

MSX1 Forward 5' TCCCTTGTTCAGCACCGC 3' 1207–1224

(NM_174798) Reverse 5' CGGAGGACAAACCAGAGCA 3' 1270–1252

HSPA1A Forward 5' GCAGACCCGCTATCTCCAAG 3' 41–60

(NM_174550) Reverse 5' ACCTGAAAACGGCCCACAG 3' 117–99

HSPA8 Forward 5' CAAGCTATGTCGCCTTTACTGA 3' 115–136

(NM_174345) Reverse 5' GGATTCATTGCGACTTGGTTC 3' 188–168

SULT1E1 Forward 5' CAGGATCATCTGGACAGTGTACCA 3' 182–205

(NM_177488) Reverse 5' CCAAGTTTGCCAAAGTAATCTGAA 3' 259–236

TFAP2A Forward 5' CCCAACGAAGTCTTCTGTTCAGT 3' 775–797

(XM_875452) Reverse 5' ACCTTGTACTTCGAGGTGGAGC 3' 842–821

TFAP2B Forward 5' CGAATGCCTCAATGCGTCT 3' 1090–1108

(BC120374) Reverse 5' CCCATTTTTCGATTTGGCTC 3' 1150–1131

TFAP2C Forward 5' GGTGTTCTCAGAAGAGCCAAGTC 3' 1016–1038

(BC120401) Reverse 5' GACATAGGCAAAGTCCCGAGC 3' 1186–1166

GAPDH Forward 5' AAGGCCATCACCATCTTCCA 3' 178–197

(U85042) Reverse 5' CCACTACATACTCAGCACCAGCAT 3' 253–230

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_175784
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DT808814
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174798
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174550
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174345
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_177488
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XM_875452
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC120374
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC120401
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U85042
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K-means clusters of the gene expression pattern from non-pregnant ENDO to Day 250 CAR and Day 25 EEM to Day 250 COTFigure 1
K-means clusters of the gene expression pattern from non-pregnant ENDO to Day 250 CAR and Day 25 EEM 
to Day 250 COT. The 1446 unique genes except for the genes that exhibited low expression intensity were subjected to 
clustering analysis. The blue line shows to the k-means center of gene expression on ENDO to CAR. The pink line shows to 
the k-means center of gene expression on EEM to COT. The expression intensity refers log2 value of normalized data.
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proteinase 2 (TIMP2), and trophoblast Kunitz domain
protein 5 (TKDP5). In cluster 6, the expression intensity
was low in both ENDO-CAR and EEM-COT. The intensity
increased from Day 25 to Day 150. In contrast, the inten-
sity increased markedly from Day 25 to Day 150 and then
declined to Day 250. Cluster 6 included 87 genes such as
fibronectin (FN1), coronin actin-binding protein 2A
(CORO2A), profilin 1 (PFN1), an inhibitor of metallopro-
teinase 1 (TIMP1), the insulin-like growth factor binding
protein-3 (IGFBP3), the macrophage migration inhibitory
factor (MIF) and heat shock 90 kDa protein (HSP90). In
cluster 7, expression was low in both ENDO-CAR and
EEM-COT. The intensity declined further to Day 60 and
then remained steady up to Day 250. In contrast, the
expression intensity in EEM-COT increased significantly
from Day 25 to Day 150. Cluster 7 comprised the largest
number of genes (470), including 11-beta hydroxysteroid
dehydrogenase 2 (HSD11B2), Annexin II (ANXA2), vin-
culin (VCL), alpha E-catenin (CTNNA1), mucin (MUC1),
RNA polymerase II carboxy-terminal domain small phos-
phatase 2 (CTDSP2), Msh homeo box 1 (MSX1), vascular
endothelial growth factor (VEGF) and VEGFB. In cluster 8,
the initially rather high intensity in ENDO-CAR decreased
throughout the examination period. In contrast the ini-
tially low expression intensity in EEM-COT showed a
slight increase from Day 25 to Day 60, then decreased
slightly up to Day 250. Cluster 8 included 108 genes, such
as extracellular matrix (ECM) related genes, type I colla-
gen alpha 2 (COL1A2), matrix Gla protein (MGP), lam-
inin beta 1 (LAMB1), clusterin (CLU) and uterine milk
protein (UMP). In cluster 9, low expression intensities
were found in ENDO-CAR and EEM-COT. The expression
in ENDO-CAR declined to Day 250. In contrast, it
increased slightly in EEM-COT from Day 25 to Day 150
and then decreased to Day 250. This cluster included 168
genes such as stanniocalcin (STC1), growth hormone
receptor (GHR), selectin L (SELL), glycoprotein-4-beta-
galactosyltransferase 2 (B4GALT1), annexin I (ANXA1)
and cathepsin L (CTSL). In cluster 10, expression was low
in ENDO-CAR, with the intensity decreasing slightly from
non-pregnant to Day 250. An extremely low initial inten-
sity was detected in EEM-COT but this increased greatly
from Day 25 to Day 150. Cluster 10 included 213 genes
such as S100 calcium binding protein A11 (S100A11),
apolipoprotein D (APOD), cytochrome P450 family 11,
subfamily A polypeptide 1 (CYP11A1) and matrix metal-
loproteinase 2 (MMP2). The 10 genes representative of
the individual clusters are listed in Table 3.

QPCR analysis of representative genes

We selected dominant genes for which the expression
level was known during the implantation, placentation or
embryogenesis stages in other species [32-38]: ANXA1

from Cluster 9, MSX1 and CTDSP2 from Cluster 7, HSPAs

(1A and 8) from Cluster 4 and SULT1E1 from Cluster 2.

These data are shown in Fig. 2. In CAR, the microarray
data for ANXA1, HSPA1A and HSPA8 were weak relative
to the QPCR value. For CTDSP2, MSX1 and SULT1E1, the
QPCR values clearly reflected the microarray data. In gen-
eral, the QPCR results were consistent with the microarray
analysis results.

The search for a transcription factor common to cluster 2

Cluster 2 contained genes with expression intensities that
were strong and up-regulated during gestation. This clus-
ter contained many placenta-specific genes such as CSH1,
PRPs and PAGs. The transcription factor that commonly
regulates these genes is expected to have a pivotal role in
the bovine placenta. Some genes were selected from clus-
ter 2 in order to search for the cis-element. They were
CSH1, PAG1, PAG17, PRP1, SULT1E1 and thymosin β10
(TMSB10), all selected by MapView from the NCBI web
site. A transcription factor binding site common to the six
upstream region sequences was examined in these genes
using TFBIND software [27]. We found that the six
sequences had AP-2 binding sites within 200 bp upstream
of the transcription start (Fig. 3).

Localization of cluster 2 genes

Most of cluster 2-specific genes such as CSH1, PRP1 and
PAG1 are mainly expressed in BNC, as previously reported
[29,30,39-43]. SULT1E1 was also expressed in BNC (Fig.
4).

QPCR analysis of transcription factor AP-2 family

The QPCR results are presented in Fig. 5. In EEM-COT,
expression of TFAP2A increased from Day 25 to Day 60
and maintained a constant level up to the late stage of
pregnancy. In ENDO-CAR, expression of this gene
increased as gestation progressed, but the intensity in
EEM-COT was higher than in ENDO-CAR at all stages.
TFAP2B was expressed throughout gestation in both
ENDO-CAR and EEM-COT. TFAP2C expression was low
in ENDO-CAR and EEM-COT, but increased late in preg-
nancy. TFAP2A was more highly expressed than TFAP2B

or TFAP2C.

Localization of AP-2 family mRNA by in situ hybridization

The cells expressing the AP-2 family were identified by in
situ hybridization in the bovine placentome on Day 60 of
gestation (Fig. 6). DIG-labeled TFAP2A, TFAP2B and
TFAP2C anti-sense RNA probes specifically detected the
mRNA transcripts in the placentome. TFAP2A appeared
mainly in the cotyledonary villous epithelium (Fig. 6A).
The principal expressing cells were in the cotyledonary vil-
lous epithelium, including the BNC. TFAP2B was specifi-
cally expressed in the BNC of cotyledonary villi (Fig. 6C).
TFAP2C was specifically expressed in trophoblast mono-
nucleate cells of the cotyledonary villi (Fig. 6E). No signif-
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icant signals for any gene were detected with sense probes
(Figs. 6B, D and 6F).

Discussion
Placental and trophoblast gene expression profiles
depend on the cells and tissues, as well as the period of
gestation. Diverse expression profiles have been reported
and spatially and temporally different expressions have
been observed in bovine placentomes [4,5]. However,
global gene profiles have not been available for the whole
of gestation in bovine placenta. In previous studies, spe-
cific expression of genes in trophoblast cells, such as
CSH1, PRPs and PAGs in BNC, has been noted because of
marked changes in expression level [29,30,39-44]. In the
present study, placentomal gene expression profiles dur-
ing gestation were analyzed for their intensities and pat-
terns. The factors proactive in regulating gene expression
were also examined.

The most marked changes were found in genes related to
trophoblast cells, as in previous reports [4,5]. In Cluster 2,
the expression intensities of CSH1, PAGs, PRPs, SULT1E1,
TMSB10 and others increased as gestation progressed.
These genes are known to be among the crucial factors for
implantation, placentation and the maintenance of gesta-
tion in cattle [30,40-42,44]. Various ECM-related genes
expressed in the endometrium declined from the early to
the late stages of pregnancy. Cluster 8 comprised ECM-
related genes and proteinases and their inhibitors, such as
COL1A2, MGP, LAMB1, CLU, CST3 and CTSB. Many of
these may also play important roles in maintaining gesta-
tion and may be expressed specifically in the endometrium
[4,45-47]. The genes in this cluster may mostly have spe-
cific roles in remodeling the endometrium throughout ges-
tation, especially during implantation and placentation. In
mice, both the cysteine proteinase CTSB and its inhibitor
CST3 are expressed in the placenta; they are important in
remodeling the ECM and forming the decidua [48]. These
global gene expression data suggest that the genes grouped
in the same cluster are related not only in showing a similar
expression pattern, but also in having similar or opposite
functions. For example, COL1A2, MGP, LAMB1 and CLU in
cluster 8 have ECM-related functions. In contrast, CTSB and
its inhibitor CST3, also expressed in cluster 8, have opposite
functions. The global gene expression profiles in the
present microarray study were confirmed by QPCR using
selected genes (ANXA1, CTDSP2, HSPA1A, HSPA8, MSX1

and SULT1E1). The comparatively high reliability of the
microarray data was confirmed by QPCR, as well as by pre-
vious studies [4-6]. These selected genes may have a central
role in placental formation and function; it is suggested
that ANXA1 inhibits inflammation in the human placenta
[32]. CTDSP2 is the enzyme that dephosphorylates the C-
terminal domain (CTD) of RNA polymerase II [33]. Unex-
pectedly, CTD phosphorylation was found not to be essen-

tial for RNA polymerase II-mediated transcription in
mouse trophoblast giant cells [34]. Members of the HSPA
family are expressed constantly throughout pregnancy until
parturition in human placenta [35] in cytotrophoblast,
syncytiotrophoblast, intermediate trophoblast and
endothelial cells [36]. MSX1 is regulated by the leukemia
inhibitory factor (LIF) or ovarian steroid hormones (estro-
gen and progesterone) in mouse endometrium specifically
during the implantation period, and its expression
decreased as implantation progressed [37]. SULT1E1 regu-
lates active estrogen and is active in mid to late pregnancy
[38].

A microarray can be used to collect the vast amount of
data related to expression profiling and to monitor the
expression levels of thousands of genes simultaneously.
One of the goals of this work was to discover the transcrip-
tion factors common to the regulation of gene expression
during bovine reproduction [4,49]. We also examined
whether the microarray results suggest a regulatory cas-
cade of gene expression. Cluster 2 genes exhibited a char-
acteristic expression pattern, increasing from the early to
the late stage of pregnancy. This increase in gene expres-
sion suggests functional and morphological develop-
ments of the placentomes. Microarray analysis can be
used as an exploratory tool for understanding the biolog-
ical functions of placental cells.

A genome-wide analysis of a common transcription factor
is one approach to utilizing microarray data effectively. In
silico research involving the search for a common tran-
scription factor by microarray data analysis has been
reported [14-19]. We searched for a common regulatory
element in the cluster in which the bovine trophoblast
cell-specific genes appear using the TFBIND program [27].

The results indicated that an AP-2 binding site is common
to the upstream (promoter) regions of the principal genes
in cluster 2 (Fig. 3). It is known that the AP-2 family plays
a role in the differentiation and proliferation of mouse,
human and ovine trophoblast cells [50-54]. Embryos of
TFAP2C-deficient mice die during the middle stage of
development, suggesting that trophectodermal cells can-
not proliferate in a TFAP2C-deficient mouse [51,52]. This
research was mainly carried out using cultured human
cells in which placental-specific genes such as hCSH1,
human chorionic gonadotropin (hCG) and human corti-
cotropin-releasing hormone (hCRH) are regulated by the
AP-2 family [53,54]. There are some reports on the regu-
lation of placenta-essential genes by the AP-2 family. Ade-
nosine deaminase (ADA) is a purine metabolism enzyme
that is enriched in trophoblast cells in the murine pla-
centa. Studies on ADA-deficient mice have demonstrated
that the absence of ADA from trophoblast cells is associ-
ated with perinatal lethality [55,56]. This gene is regulated
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Table 3: The representative genes which were distributed to each cluster

Accession No. Gene Name

Cluster 1

NM_175797 ARHGDIB: Rho GDP dissociation inhibitor beta

NM_174506 BCKDHA: branched chain alpha-keto acid dehydrogenase

NM_001034046 COX5B: Cytochrome c oxidase subunit Vb

NM_173906 DCN: Decorin

NM_001040498 JSP.1: MHC Class I JSP.1

NM_001015556 RPL18: Ribosomal protein L18

NM_001015531 RPS5: Ribosomal protein S5

NM_174464 SPARC: secreted protein, acidic, cysteine-rich

NM_001002885 TMSB4X: Thymosin beta 4, X chromosome

NM_174491 YWHAE: 14-3-3 epsilon

Cluster 2

NM_181007 CSH1: Placental lactogen

AB098803 LOC404051: Similar to thrombin inhibitor

AB098909 SERPINB6: Serpin peptidase inhibitor clade B member 6

NM_174411 PAG1: Pregnancy-associated glycoprotein 1

NM_176616 PAG5: Pregnancy-associated glycoprotein 5

NM_176618 PAG7: Pregnancy-associated glycoprotein 7

NM_174159 PRP1: Prolactin-related protein 1

M27239 PRP2/4: Prolactin-related protein 2/4

NM_177488 SULT1E1: Sulfotransferase family 1E estrogen-preferring member 1

NM_174623 TMSB10: Thymosin, beta 10

Cluster 3

NM_173979.3 ACTB: Actin, beta

NM_181018 CLCA3: Chloride channel, calcium activated, family member 3

NM_174333 GRP58: Glucose regulated protein 58 kD

M83104 LOC515773: Cytochrome b-5 reductase

XM_870635 FTH1: Ferritin heavy polypeptide 1

NM_001038163 MGC133894: Similar to Tubulin alpha-3 chain

NM_174600 SLC1A3: Solute carrier family 1

NM_001010995 TPM2: Tropomyosin 2

M62428 UBC: Polyubiquitin

NM_174217 VIL2: Villin 2

Cluster 4

NM_001012519 AKR1B1: Aldose reductase

NM_174800 CFDP2: craniofacial development protein 2

AF013213 EEF1A1: Eukaryotic translation elongation factor 1 alpha 1

NM_174550 HSPA1A: Heat shock 70 kD protein 1

NM_174345 HSPA8: Heat shock 70 kDa protein 8

NM_001025569 HSPB1: Heat shock 27 kDa protein 1

NM_174087 IGF2: Insulin-like growth factor 2

NM_174378 LALBA: Lactalbumin, alpha

XM_583697 LOC507139: Similar to grancalcin

NM_180999 LYZ: Lysozyme

Cluster 5

NM_181003 AQP4: Aquaporin 4

NM_174257 CALB3: Calbindin 3

AB099882 COL12A1: Collagen, type XII, alpha 1

NM_001034039 COL1A1: Collagen, type I, alpha 1

NM_174770 GPX4: Glutathione peroxidase 4

NM_001033610 KRT8: Keratin 8

XM_588040 LOC510833: Similar to Collagen alpha 1(III)

NM_174459 SEPP1: Selenoprotein P-like protein precursor

NM_174472 TIMP2: Tissue inhibitor of mettaloproteinase 2

AF241780 TKDP5: Trophoblast Kunitz domain protein 5

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_175797
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174506
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001034046
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_173906
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001040498
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001015556
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001015531
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174464
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001002885
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174491
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_181007
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB098803
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB098909
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174411
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_176616
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_176618
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174159
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M27239
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_177488
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174623
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_173979.3
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_181018
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174333
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M83104
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XM_870635
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001038163
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174600
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001010995
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M62428
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174217
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001012519
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174800
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF013213
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174550
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174345
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001025569
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174087
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174378
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XM_583697
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_180999
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_181003
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174257
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB099882
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001034039
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174770
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001033610
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XM_588040
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174459
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174472
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF241780
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Cluster 6

NM_001046249 CALM1: Calmodulin 1

NM_001038220 CORO2A: Coronin, actin binding protein, 2A

K00800 FN1: Fibronectin 1

NM_174076 GPX1: Glutathione peroxidase 1

NM_174343 HSD3B: HSD3B protein

NM_174556 IGFBP3: Insulin-like growth factor binding protein 3

XM_614707 LOC534812: Similar to Heat shock protein HSP 90-alpha

NM_001033608 MIF: Macrophage migration inhibitory factor

NM_001015592 PFN1: Profilin 1

NM_174471 TIMP1: Tissue inhibitor of metalloproteinase 1

Cluster 7

NM_174716 ANXA2: Annexin A2

NM_001045935 CTDSP2: CTD small phosphatase 2

NM_174642 HSD11B2: Hydroxysteroid (11-beta) dehydrogenase 2

XM_612863 LOC533452: Similar to Alpha-1 catenin

NM_174798 MSX1: Msh homeo box 1

NM_174115 MUC1: Mucin 1

NM_205775 TKDP4: Trophoblast Kunitz domain protein 4

BE477825 VCL: Vinculin

NM_174216 VEGF: Vascular endothelial growth factor

NM_174487 VEGFB: Vascular endothelial growth factor B

Cluster 8

NM_173902 CLU: Clusterin

NM_174520 COL1A2: Collagen, type I, alpha 2

NM_174029 CST3: Cystatin C

NM_174031 CTSB: Cathepsin B

NM_176612 HMGB1: High-mobility group box 1

NM_174092 IL1A: Interleukin 1, alpha

XM_598260 LAMB1: Laminin, beta 1

NM_174707 MGP: Matrix Gla protein

NM_174030 CTGF: Connective tissue growth factor

NM_174797 UMP: Uterine milk protein

Cluster 9

NM_175784 ANXA1: Annexin I

AF515786 B4GALT1: Glycoprotein-4-beta-galactosyltransferase 2

NM_174032 CTSL: Cathepsin L

NM_176608 GHR: Growth hormone receptor

NM_178319 GRP: Gastrin-releasing peptide

NM_174125 NPPC: Natriuretic peptide precursor C

NM_176621 PAG10: Pregnancy-associated glycoprotein 10

NM_176619 PAG8: Pregnancy-associated glycoprotein 8

NM_174182 SELL: Selectin L

NM_176669 STC1: Stanniocalcin 1

Cluster 10

BC109863 APOD: Apolipoprotein D

NM_176648 CAPZB: Capping protein (actin filament) muscle Z-line, beta

NM_176644 CYP11A1: Cytochrome P450, family 11, subfamily A, polypeptide 1

NM_174363 INHBA: Inhibin, beta A

NM_174100 LDHB: Lactate dehydrogenase B

NM_001034053 LMNA: Lamin A

XM_615304 LOC541253: Similar to Limbic system-associated membrane protein

NM_174745 MMP2: Matrix metalloproteinase 2

NM_174409 OSTF1: Osteoclast stimulating factor 1

BC102667 S100A11: S100 calcium binding protein A11

Table 3: The representative genes which were distributed to each cluster (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001046249
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001038220
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=K00800
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174076
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174343
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174556
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XM_614707
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001033608
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001015592
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174471
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174716
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001045935
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174642
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XM_612863
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174798
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174115
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_205775
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE477825
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174216
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174487
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_173902
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174520
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_174029
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by TFAP2C [51,57]. hCG is a placenta-specific gene in the
human placenta and the expression of hCGα or hCGβ is
also regulated by TFAP2A or TFAP2C [54,58-61]. CSH1, a
gene with trophoblast cell-specific expression, is regulated
by TFAP2A or TFAP2C in mouse, rat, human and sheep
[62-65]. The binding site for AP-2 in CSH1 was identical
to the site specified for ovine CSH1 [50,65]. The binding
site in the bovine gene may again be similar because the
upstream sequences in the orthologous genes resemble
each other. An AP-2 binding site has also been reported in
the promoter regions of mouse, rat and human CSH1

[54,63,64]. It is anticipated that TMSB10 and SULT1E1,
which are expressed at high levels in the placenta, are sim-

ilarly regulated by the AP-2 family, as determined by
TFBIND analysis. In PRP1, the existence of an AP-2 bind-
ing site in the enhancer region (-1215 to -1204) has been
reported, and the AP-2 family is predicted to bind at this
site [66]. In our results, two AP-2 binding sites were newly
confirmed by the TFBIND search at -74 to -63 and -44 to
-33. AP-2 binding sites in the PAG17 promoter region
were confirmed at three positions (Fig. 3). However, an
AP-2 binding site in the PAG1 promoter region was con-
firmed only at -16 to -5 (Fig. 3) [67]. General transcription
factors may occupy this site. AP-2 binding sites were also
confirmed in the PAG1 enhancer region (-1026 to -1024)
by a TFBIND search. It was possible to predict the inte-

QPCR analysis and normalized microarray data of ANXA1, CTDSP2, MSX1, HSPA1A, HSPA8, and SULT1E1 mRNA at each stage of bovine tissue (ENDO, CAR, EEM, COT)Figure 2
QPCR analysis and normalized microarray data of ANXA1, CTDSP2, MSX1, HSPA1A, HSPA8, and SULT1E1 
mRNA at each stage of bovine tissue (ENDO, CAR, EEM, COT). The gene expressions on Days 25 ENDO (n = 3), 60 
CAR (n = 4), 150 CAR (n = 3), 250 CAR (n = 4), 25 EEM (n = 3), 60 CAR (n = 4), 150 CAR (n = 3), and 250 CAR (n = 4) are 
shown. The QPCR expression of these genes was normalized to the expression of GAPDH measured in the same RNA prepa-
ration. The pink bar shows gene expression on fetal side (EEM to COT) by QPCR. The blue bar shows gene expression on 
maternal side (ENDO to CAR) by QPCR. The yellow line shows normalized value of the microarray. Values are means ± SEM. 
Values with different letters are significantly different (P < 0.05).
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grated regulatory elements of gene clusters that specifi-
cally appeared in the trophoblast. Integrated
transcriptional regulator analysis may be of value for
investigating gene cascades on a genome-wide level.

The AP-2 family has splice variants. Three of these,
TFAP2A, TFAP2B and TFAP2C, were examined in the
present study to determine their expression intensities
and locations. AP-2 genes were expressed mainly in the
COT epithelium along with CSH1, PRP1, PAG1 and
BCL2-related protein A1 (BCL2A1) [29,31,42,43]. How-
ever, localization of the expressing cells was dependent on
the type of AP-2 variant. TFAP2A was confirmed in BNC
and mononucleate cells. TFAP2B was confirmed in only
BNC but its expression level was extremely low. TFAP2C

was confirmed in trophoblast mononucleate cells an
expression level mid-way between those of TFAP2A and
TFAP2B (Fig. 6). These results suggest that this gene family
may have different roles in the differentiation and prolif-
eration of trophoblasts. In murine and human placenta,
TFAP2C was found to be the most highly expressed of the
AP-2 family; TFAP2A was detected in the trophoblast cell
lineage (giant cells and cytotrophoblast cells), but TFAP2B

was not completely confirmed [54,57]. CSH1 is specifi-

cally expressed in trophoblast giant cells in rodents, in
syncytial trophoblast in humans and in BNC in ruminants
[68]. Previous studies and the present study clearly suggest
that the AP-2 family is a principal factor in regulating
CSH1 functions in rodents and humans [54,62-65]. The
present study also suggests that AP-2 regulates cytochrome
P450-related genes for producing steroid hormones in
bovine placental BNC [69,70]. Steroid hormone produc-
tion and cytochrome P450 and SULT1E1 expression may
also be linked by AP-2 regulation, because SULT1E1 sul-
fates estrone [38]. Recently, it was reported that an endog-
enous retrovirus regulates BNC differentiation in sheep
[71,72]. The endogenous retrovirus may have an impor-
tant role in developing viviparity, trophoblast cell migra-
tion and placental development, so the AP-2 family might
be related to its expression. Because the appearance of
BNC in the trophoblast cell lineage coincides with CSH1

expression [40,73], the AP-2 family may play a crucial role
in trophoblast cell differentiation, remodeling of the
endometrium, implantation and maintenance of gesta-
tion in bovine placenta. However, the regulation of AP-2
gene expression and the role of AP-2 in bovine placenta
remain unclear [74,75].

Potential AP-2 binding site in upstream region (-200 to -1) of principal genes in cluster 2, identified by TFBIND softwareFigure 3
Potential AP-2 binding site in upstream region (-200 to -1) of principal genes in cluster 2, identified by TFBIND 
software. The AP-2 consensus sequence is "MKCCCSCNGGCG" (M = A/C/G; K = A/G/T; S = G/C; N = A/G/C/T) from 
TRANSFAC databases. The threshold value exhibits homology with the above consensus sequence. "1" represents perfect 
coincidence with the consensus sequence.
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Localization of SULT1E1 mRNA in a bovine placentome on Day 56 of gestationFigure 4
Localization of SULT1E1 mRNA in a bovine placentome on Day 56 of gestation. SULT1E1 mRNA was detected by in 
situ hybridization. (A) DIG-labeled anti-sense cRNA probes were used. (B) DIG-labeled sense cRNA probes were used. Seven-
micrometer sections of bovine placentome were hybridized with each probe. Scale bar = 20 µm. CaE: caruncular epithelium. 
CaS: caruncular stroma. CoE: cotyledonary epithelium. BNC: binucleate cell.

QPCR analysis of TFAP2A, TFAP2B, and TFAP2C mRNA at each stage of bovine tissue (ENDO, CAR, EEM, COT)Figure 5
QPCR analysis of TFAP2A, TFAP2B, and TFAP2C mRNA at each stage of bovine tissue (ENDO, CAR, EEM, 
COT). The gene expression on Days 25 ENDO (n = 3), 60 CAR (n = 4), 150 CAR (n = 3), 250 CAR (n = 4), 25 EEM (n = 3), 
60 CAR (n = 4), 150 CAR (n = 3), and 250 CAR (n = 4) are shown. The expression of these genes was normalized to the 
expression of GAPDH measured in the same RNA preparation. The pink bar shows gene expression on fetal side (EEM to 
COT) by QPCR. The blue bar shows gene expression on maternal side (ENDO to CAR) by QPCR. Values are means ± SEM. 
Values with different letters are significantly different (P < 0.05).
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Localization of TFAP2A, TFAP2B, and TFAP2C mRNA in the bovine placentome on Day 56 of gestationFigure 6
Localization of TFAP2A, TFAP2B, and TFAP2C mRNA in the bovine placentome on Day 56 of gestation. TFAP2A 
(A, B), TFAP2B (C, D) and TFAP2C (E, F) mRNA were detected by in situ hybridization. (A, C, E) DIG-labeled anti-sense cRNA 
probes were used. (B, D, F) DIG-labeled sense cRNA probes were used. Seven-micrometer sections of bovine placentome 
were hybridized with each probe. Scale bar = 20 µm. CaE: caruncular epithelium. CaS: caruncular stroma. CoE: cotyledonary 
epithelium. BNC: binucleate cell.
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Conclusion
Global gene expression analysis was performed on bovine
placentomes using a microarray. The genes were parti-
tioned into ten expression-profile clusters by k-means
clustering. Some placental-specific genes such as CSH1,
PRP1 and PAG1 were assigned to cluster 2. We searched
for transcription factors common to the regulation of clus-
ter 2 expression using in silico analysis. The results suggest
that the AP-2 family includes such factors. The microarray
and in silico analyses provided clues to the regulatory
mechanism common to the crucial genes in bovine pla-
centa. Expression of the AP-2 family in the placenta was
quantified and localized. It was confirmed only in BNC or
mononucleate cells. We deduced that the AP-2 family reg-
ulates genes that play a crucial role in placetogenesis. It is
also suggested that the role differs for each gene in the AP-
2 variants.
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