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Abstract

Genetic variation can modulate gene expression, and thereby phenotypic variation and
susceptibility to complex diseases such as type 2 diabetes (T2D). Here we harnessed the
potential of DNA and RNA sequencing in human pancreatic islets from 89 deceased donors to
identify genes of potential importance in the pathogenesis of T2D. We present a catalog of
genetic variants regulating gene expression (eQTL) and exon use (sQTL), including many
long noncoding RNAs, which are enriched in known T2D-associated loci. Of 35 eQTL genes,
whose expression differed between normoglycemic and hyperglycemic individuals, siRNA of
tetraspanin 33 (TSPAN33), 5'-nucleotidase, ecto (NT5E), transmembrane emp24 protein
transport domain containing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1
cells resulted in reduced glucose-stimulated insulin secretion. In addition, we provide a
genome-wide catalog of allelic expression imbalance, which is also enriched in known
T2D-associated loci. Notably, allelic imbalance in paternally expressed gene 3 (PEG3) was
associated with its promoter methylation and T2D status. Finally, RNA editing events [...]
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Genetic variation can modulate gene expression, and thereby pheno-

typic variation and susceptibility to complex diseases such as type 2

diabetes (T2D). Here we harnessed the potential of DNA and RNA

sequencing in human pancreatic islets from 89 deceased donors to

identify genes of potential importance in the pathogenesis of T2D.We

present a catalog of genetic variants regulating gene expression

(eQTL) and exon use (sQTL), including many long noncoding RNAs,

which are enriched in known T2D-associated loci. Of 35 eQTL genes,

whose expression differed between normoglycemic and hyperglyce-

mic individuals, siRNA of tetraspanin 33 (TSPAN33), 5′-nucleotidase,

ecto (NT5E), transmembraneemp24protein transport domain contain-

ing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1 cells

resulted in reduced glucose-stimulated insulin secretion. In addition,

we provide a genome-wide catalog of allelic expression imbalance,

which is also enriched in known T2D-associated loci. Notably, allelic

imbalance in paternally expressed gene 3 (PEG3) was associated with

its promoter methylation and T2D status. Finally, RNA editing events

were less common in islets than previously suggested in other tissues.

Taken together, this study provides new insights into the complexity

of gene regulation in human pancreatic islets and better understand-

ing of how genetic variation can influence glucose metabolism.

Type 2 diabetes (T2D) is an increasing global health problem
(1). Although genome-wide association studies (GWAS)

have yielded more than 70 loci associated with T2D or related
traits (2, 3), they have not provided the expected breakthrough in
our understanding of the pathogenesis of the disease. They have
nonetheless pointed at a central role of the pancreatic islets and
β-cell dysfunction in the development of the disease (4, 5). It
therefore seems pertinent to focus on human pancreatic islets to
obtain insights into the molecular mechanisms causing the disease
(6, 7). Given that most SNPs associated with T2D lie in noncoding
regions, the majority of causal variants are likely to regulate gene
expression rather than protein function per se. Therefore, combi-
nation of DNA and RNA sequencing in the same individuals may
help to disentangle the role these SNPs play in the pathogenesis of
the disease (8). Although the human pancreatic islet transcriptome
has been previously described (6, 9–18), usingmicroarrays or RNA
sequencing of a limited number of nondiabetic individuals, this has
not allowed a more global analysis of the complexity of the islet
transcriptome in T2D. Here we combined genotypic imputation,
expressionmicroarrays, and exome and RNA sequencing (Exome-
Seq and RNA-Seq) in a large number of human pancreatic islets
from deceased donors with and without T2D. This study identified
a number of novel genes, including long intergenic noncoding
RNAs (lincRNAs), whose expression and/or splicing influences
insulin secretion and is associated with glycemia. In addition, we
provide a catalog of RNA editing and allele-specific expression
events in human pancreatic islets (SI Appendix, Fig. S1).

Results

Genes Showing Differential Expression Between Islets from

Normoglycemic and Hyperglycemic Donors. To obtain a profile of
gene expression variation in human islets, we sequenced the poly-
adenylated fraction of RNA from 89 individuals with different
degrees of glucose tolerance, using 101 base pairs paired-end on an
Illumina HiSeq sequencer (Dataset S1 and SI Appendix, Fig. S1).
Each individual transcriptome yielded, on average, 38.2 ± 4.4
(mean ± SD) million paired-end reads mapped to the human ge-
nome, with∼88%mapping to known exons from theRefSeqGene
database. Because any expression cutoff is arbitrary, we considered
a gene to be expressed if it was observed in at least 5% of the
samples. Applying this definition, we detected 91% of RefSeq
genes. However, most of these genes are expressed at low levels,
supporting the view of pervasive transcription and leakage in the
human transcriptome (SI Appendix, Fig. S2) (19). Moreover, in
support of previous results (20), we observed a good correlation
between gene expression based on RNA-seq and microarrays in
the 89 samples (r = 0.83; P < 0.001) (SI Appendix, Fig. S3). To
evaluate how well the RefSeq genes in our RNA-seq dataset are
covered, we sequenced one sample at high depth of coverage
(∼150 million paired-end reads). As seen in SI Appendix, Fig. S4,
our average sample coverage of 38.2 million paired-end reads is
deep enough to detect the majority of known genes, transcripts,
exons, and junctions. As expected, glucagon, insulin, and other

Significance

We provide a comprehensive catalog of novel genetic variants

influencing gene expression and metabolic phenotypes in hu-

man pancreatic islets. The data also show that the path from

genetic variation (SNP) to gene expression is more complex than

hitherto often assumed, and that we need to consider that ge-

netic variation can also influence function of a gene by influ-

encing exon usage or splice isoforms (sQTL), allelic imbalance,

RNA editing, and expression of noncoding RNAs, which in turn

can influence expression of target genes.
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known pancreatic genes showed the highest expression (Fig. 1A
and Dataset S1). To identify genes whose expression is influenced
by glycemia (cause or consequence), we related gene expression to
HbA1c, a measure of long-term glycemia, and compared expres-
sion in islets from donors with normal glucose tolerance (HbA1c <

6%), impaired glucose tolerance (IGT; 6% ≤ HbA1c < 6.5%),
and T2D (HbA1c ≥ 6.5%). By using a linear model adjusting for
age and sex, we detected 1619 genes associated with HbA1c levels
in both RNA-seq andmicroarrays (Database S1 and SI Appendix).
Briefly, genes were kept if both microarray and RNA-seq gene
expression were nominally associated with HbA1c levels, with
both nominal and permutation P values < 0.05. In addition, 271
genes showed specific exon associations, with HbA1c levels not
detected at the gene level (Database S1). Of the genes associated
with HbA1c levels, 70 were also associated with in vitro insulin
secretion in human islets, further highlighting their role in glucose
metabolism (Database S1). Of particular interest are the genes
whose expression is associated with lower HbA1c levels and
higher insulin secretion, such as RAS guanyl releasing protein 1
(RASGRP1) (6), transcription factor RFX3 (21), and nicotinamide
nucleotide transhydrogenase (NNT) (22), all of which have been
suggested to regulate insulin secretion (SI Appendix, Figs. S5–S7).
RFX3 has also been suggested to regulate the glucokinase pro-
moter, and thereby its expression in a mouse insulinoma cell line
MIN6 (21). In line with these findings, we observed a clear coex-
pression between the RFX3 and GCK genes in human islets (SI
Appendix, Fig. S19). Of the established T2D and glycemic associ-
ated loci (2, 3, 23–28) whose gene expression proxies were associ-
ated with HbA1c levels, solute carrier family 30 (zinc transporter),
member 8 (SLC30A8), glucose-6-phosphatase, catalytic, 2 (G6PC2),
and proprotein convertase subtilisin/kexin type 1 (PCSK1) showed
the highest expression using RNA-seq (Fig. 1B and Database S1).
This is in line with our previous findings using microarrays (6).
SLC30A8, G6PC2, and PCSK1 also showed a strong positive
correlation with glucagon expression (SI Appendix, Fig. S8). By
using theRABTCufflinks transcript assemblymethod (29), we also
detected 445 potential novel genes with exon–exon junctions in
addition to the existing GENCODE (30), UCSC, and Ensembl
gene structure annotations (Database S1). Of these potential novel
gene loci, 28 (6%) show coding potential, as assessed by the CPAT
tool (31), and 391 (88%) are within 5 kb of known human islet
active chromatin DNase, FAIRE, or H3K4me3 peaks (32–34),
pointing to candidate nearby promoters for those genes (Database
S1). One of these potential novel genes, although not showing any
coding potential nor close to any known islet open chromatinmark,
was also associated with HbA1c, and this new gene locus is in

Fig. 1. Genes expressed in 89 human pancreatic islets stratified by glucose

tolerance status. (A) RNA-seq normalized median expression of the top 25

nonribosomal genes expressed in islets. (B) RNA-seq normalized median ex-

pression of the 17 genes that show significant islet expression association with

glucose tolerance status and are putatively associated with established T2D

and glycemic associated loci (2, 3, 23–28). Genes are ordered by decreasing

median expression in all 89 islet donors. Normal corresponds with normogly-

cemic donors (HbA1c < 6%; n = 51), IGT corresponds with impaired glucose-

tolerant donors (6% ≤ HbA1c < 6.5%; n = 15), and T2D corresponds with di-

abetic donors (HbA1c ≥ 6.5%; n = 12). Error bars represent SEM values. *Genes

that show significant expression association with glucose tolerance status

detected both by expression arrays and RNA-seq with both nominal and per-

mutation P values < 0.05 (after performing 10,000 permutations). §Additional

genes that show significant expression association with glucose tolerance

status detected only with RNA-seq (at permuted P value < 0.05).

Fig. 2. Landscape of cis-eQTLs (≤250 kb) in 89 hu-

man pancreatic islets and eQTL genes validated to

interfere with glucose metabolism and insulin se-

cretion. (A) Manhattan plot of the best P value per

SNP, showing the top 10 eQTL genes (FDR < 1% line

drawn in black at P value = 2.267e−05). (B) eQTL SNP

genotype versus eQTL gene expression (n = 89). All

eQTLs pass FDR < 1% and 10,000 permutations. (C)

eQTL gene expression stratified by glucose toler-

ance status [normal, HbA1c < 6% (n = 51); IGT, 6% ≤

HbA1c < 6.5% (n = 15); T2D, HbA1c ≥ 6.5% (n =

12)]. All genes have a nominal and permutation

P value < 0.05 in both RNA-seq and microarrays

(after 10,000 permutations). (D) Insulin secretion in

response to 2.8 and 16.7 mM glucose 72 h after siRNA

transfection, as measured during 1 h static incubation.

Data are shown from three independent experiments

for each siRNA. Data are normalized for protein

content. Bars represent mean ± SD. **P < 0.01 and

*P < 0.05 versus control siRNA. The knockdown effi-

ciency of NT5E, PAK7, and TMED6 were above 80%,

whereas for TSPAN33 it was 50%.

Fadista et al. PNAS | September 23, 2014 | vol. 111 | no. 38 | 13925

G
E
N
E
T
IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402665111/-/DCSupplemental/pnas.1402665111.sd01.xlsx


a ∼10-kb region nominally significant in the MAGIC database for
fasting glucose (23) (SI Appendix, Fig. S9).

Effect of SNPs on Gene Expression (eQTLs) and Splicing (sQTLs) in

Human Pancreatic Islets. Because many SNPs are located in non-
coding regions, suggesting they may influence gene expression, we
analyzed whether any SNP genotyped in our islet samples and further
imputed to the 1000 Genomes reference panel (35) would influence
RNA-seq gene expression (eQTL) or exon use (sQTL) in cis (within
250 kb of the SNP). For analysis purposes, we identified a single best
“sentinel” SNP for each gene or exon, defined as the SNP with the
lowest P value per eQTL or sQTL gene. Applying these criteria and
thresholds, we identified 616 cis eQTLs for known genes (Fig. 2A and
Database S1), whereas 24 eQTLs were detected in previously un-
known transcribed loci (DatabaseS1;Materials andMethods).Notably,
54%of these eQTLs would have beenmissed in amicroarray because
the gene is not probed on the array or shows low expression (SI Ap-
pendix, Fig. S10).
Our sample size permitted us to detect significant eQTLs at >90%

power with an effect size of 0.5 (beta) ormore (SI Appendix, Fig. S11).
Notably, only in about half of the cases did the eQTL SNPs influence
expression on the nearest gene. The strongest eQTLswere detected in
the lactate dehydrogenase C (LDHC), tRNA-yW synthesizing protein
1 homolog B (Saccharomyces cerevisiae) (TYW1B), and endoplasmic
reticulumaminopeptidase 2 (ERAP2) genes (Fig. 2A).LDHC encodes
the enzyme lactate dehydrogenase C, which catalyzes the glycolytic
conversion of lactate to pyruvate. Although expression of another
lactate dehydrogenase, LDHA, is suggested to be repressed in pan-
creatic β cells because of a minor role of anaerobic glycolysis in the
adult β cell (36), LDHC is expressed at similar levels in α and β cells
(17). Knock-down of LDHC and TYW1B in INS-1 cells using siRNA
did not affect insulin secretion. ERAP2 has been ascribed a role in
autoimmunity and type 1 diabetes (37), and its eQTL sentinel SNP is
in high linkage disequilibrium (r2 > 0.8) with the genome-wide
significant GWAS SNP rs1019503 for glucose levels 2 h after an
oral glucose challenge (3). Furthermore, we observed 371 splicing
QTLs (sQTLs) not reflected by changes in expression at the gene
level (Database S1 and SI Appendix, Fig. S13). There was eQTL and
sQTL enrichment in regions of islet active chromatin, such as those
characterized by DNase I hypersensitivity [Fisher exact test, P value
< 2.2e−16 (odds ratio = 2.1) for eQTLs; and P value = 3.8e−11 (odds
ratio= 1.9 for sQTLs)],H3K4m3 [P value< 2.2e−16(odds ratio= 3.1),
for eQTLs and P value < 2.2e−16 (odds ratio = 2.3) for sQTLs], and
FAIRE [P value= 2.1e−07 (odds ratio= 2.7) for eQTLs andP value=
0.02 (odds ratio = 1.9) for sQTLs] (32–34). There was no indication
that these eQTLs and sQTLs were enriched in evolutionarily
conserved sites.
Because GWAS for T2D only enabled identification of loci, rather

than genes, we examined whether SNPs known to associate with T2D
or related traits (glucose, insulin) would have a cis effect on gene
expression or exon use. We found enrichment for GWAS T2D/gly-
cemic trait loci in eQTLs (Fisher exact test, P value 4.1e−03; odds
ratio = 5.0), with five GWAS SNPs showing a cis eQTL effect, and
in the case of rs1535500, the effect was not on the nearest gene
(Table 1 and SI Appendix, Fig. S14). Notably, of the 1,619 genes
whose expression correlated with HbA1c, 35 (2%) had an eQTL
(Database S1). We examined whether the eQTL SNPs in these genes
were associated with insulin and glucose concentrations in the
DIAGRAM and MAGIC databases (2, 3, 23–28). The sentinel
eQTL SNP for sorting nexin 19 (SNX19), rs3751034, was nominally

associated with HbA1c in MAGIC (P value < 0.01) (28). SNX19
has also been shown to regulate insulin secretion in a mouse
pancreatic β-cell line (38). Finally, we tested whether the three
eQTL genes [tetraspanin 33 (TSPAN33), 5′-nucleotidase, ecto
(NT5E), and transmembrane emp24 protein transport domain
containing 6 (TMED6)] showing the strongest effect on HbA1c
levels would also influence insulin secretion by disrupting their
expression in INS-1 cells. We also tested p21 protein activated
kinase 7 (PAK7), a gene associated with HbA1c levels in both
RNA-seq and microarray but only detected as an eQTL gene by
RNA-seq. Down-regulation of the expression of these genes was
associated with significantly reduced glucose-stimulated insulin
secretion (Fig. 2 B–D). Taken together, we present a list of SNPs
influencing gene expression in human pancreatic islets with a
likely role in regulating glucose homeostasis.

Table 1. Genome-wide significant GWAS T2D/glycemic hits as eQTLs in human pancreatic islets

SNP Nearest gene eQTL gene eQTL P value Allele change eQTL direction GWAS trait GWAS effect allele

rs1019503 ERAP2 ERAP2 7.1e−24 G > A + 2-h glucose (3) A

rs2028299 AP3S2 AP3S2 1.1e−14 C > A — T2D (24) A

rs505922 ABO ABO 5.3e−08 T > C + Disposition index (25) C

rs10830963 MTNR1B MTNR1B 8.6e−08 C > G + T2D, fasting glucose (2, 26) G

rs1535500 KCNK16 KCNK17 1.2e−06 G > T + T2D (27) T

Fig. 3. Expressionanalysisof the lincRNALOC283177 in89humanpancreatic islets.

(A) The lincRNA LOC283177has aneQTL (n=89, significant at FDR<1%and10,000

permutations), (B) which is associated with HbA1c in the islet donors (nominal and

permutation P value < 0.05 after 10,000 permutations). Normal corresponds to

normoglycemic donors (HbA1c < 6%; n = 51), IGT corresponds to impaired glucose

tolerant donors (6% ≤ HbA1c < 6.5%; n = 15), and T2D corresponds to diabetic

donors (HbA1c ≥ 6.5%; n = 12). LOC283177 is coexpressed with the diabetic genes

(C)MADD, (D)PAX6, (E)SYT11,and(F)associateswithdepolarization-evokedinsulin

exocytosis (Spearman correlation test significance at FDR < 1%).
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eQTLs and HbA1c Influence Expression of lincRNAs. lincRNAs have
recently been ascribed a role in the regulation of gene transcrip-
tion, including pancreatic islets (16). We identified 493 RefSeq
lincRNAs expressed in the pancreatic islets, with 54 of those being
influenced by eQTLs or sQTLs and/or related to HbA1c levels
(Database S1). Of these 54 lincRNAs, seven (13%) have also been
reported in a study of lincRNAs in human pancreatic β cells (15).
Of the 616 eQTLs we identified (Fig. 2A), 33 (5%) influenced the
expression of lincRNAs, eight of which have also been reported in
other tissues. Moreover, six (2%) of 371 sQTLs were seen within
lincRNAs. Notably, 17 lincRNAs were significantly associated
with HbA1c levels, two of which also had an eQTL (LOC283177
and SNHG5) (Database S1). To obtain insight into putative target
genes of these two lincRNAs, we performed a coexpression anal-
ysis linking their expression with all other genes in pancreatic islets.
This analysis showed a strong coexpression of the MAP-kinase
activating death domain (MADD), synaptotagmin 11 (SYT11), and
paired box 6 (PAX6) genes with LOC283177 (Fig. 3). All these
genes have been ascribed a key role in islet function. Synapto-
tagmin 11 (SYT11) is known to regulate exocytosis of insulin (39)
and MADD proinsulin synthesis (25), and PAX6 is involved in
development of pancreatic islets (40). In support of this,
LOC283177 expression was directly associated with insulin exo-
cytosis in the islets (Fig. 3F). The lincRNAANRIL (also known as
CDKN2B-AS1), located in a locus on chromosome 9p, has been
associated with both T2D (2) and cardiovascular disease. Al-
though eQTLs for ANRIL have been reported in human blood
(41), we could not detect any eQTL for ANRIL in human islets
or any coexpressed genes.

Allelic Expression Imbalance. Both allelic expression imbalance
(AEI) and cis-QTL analysis detect genetic effects on gene tran-
scription, although they frequently do not capture the same loci.
Whereas eQTL and sQTL refer to the effect of a SNP on ex-
pression of the gene or specific exons/isoforms, respectively, AEI
refers to imbalance between expression of maternal and paternal
alleles and, consequently, can only be detected in the case of
heterozygosity. To further elucidate the cis-regulatory potential in
islets, we searched for genes showing allelic expression imbalance.
We compared transcriptome and exome sequencing from the
same individuals, using Fisher test to define significant deviation
from the expected 50/50 allelic distribution for the SNPs. Thereby,

we could detect 1,528 SNPs showing potential allelic imbalance in
at least two samples at false discovery rate (FDR) <1% (Database
S1). These encompass 1,102 genes, 14% of which have been pre-
viously suggested to be imprinted and/or showing imbalance of
expression in other human tissues (Database S1). Only 3% of
eQTLs and 0.5% of sQTLs were in strong linkage disequilibrium
with an AEI SNP. We validated, with Sanger sequencing, an AEI
in the MMP7 gene and showed that the missense variant
rs10502001 is nominally associated with exocytosis of insulin (SI
Appendix, Fig. S15). To detect allelic imbalance sites relevant to
T2D, we filtered AEI sites ascertained in at least 50% of the
samples and found PEG3 (paternally expressed gene 3). PEG3 is
a gene known to be imprinted in other tissues and to change its
methylation levels in murine oocytes of diabetic females (42), sug-
gesting a link between allelic imbalance and imprinting/methylation.
Notably, we show clear differences in the degree of methylation in
a region of the PEG3 promoter, being hypomethylated in T2D
islets, which do not have allelic imbalance (Fig. 4). These data in-
dicate that differential methylation could be the cause of allelic
imbalance, which in turn could influence susceptibility to T2D. Of
SNPs associated with T2D or related glycemic traits, we found en-
richment for allelic imbalance (Fisher exact test P value = 2.3e−06;
odds ratio = 10.1), with eight showing evidence of allelic imbalance
in solute carrier family 2, member 2 (SLC2A2), adaptor-related
protein complex 3, sigma 2 subunit (AP3S2), thyroid adenoma as-
sociated (THADA), MADD, ERAP2, aminomethyltransferase
(AMT), forkhead box A2 (FOXA2), and La ribonucleoprotein
domain family, member 6 (LARP6) loci (Table 2).

RNA Editing. Finally, we assessed the frequency of RNA editing
events in the pancreatic islet transcriptome, using a stringent
pipeline to identify differences between DNA and RNA sequen-
ces, by comparing exome and RNA sequencing data (SI Appendix,
Fig. S16). We found 65 loci showing potential RNA editing in at
least two individuals overlapping 61 genes, two of which were in
loci associated with T1D and T2D, GLIS3 (44) and ZFAND3 (2)
(Database S1). Seven of the RNA editing events have also been
reported before. As previously observed (45), the majority of RNA
editing events were localized in the 3′UTR region or downstream
of genes (67%), suggesting that RNA editing might play a role
in miRNA-mediated regulation of gene expression by altering
miRNA target sites or by affecting degradation of RNA. As

Fig. 4. Allelic imbalance in the PEG3 gene is as-

sociated with diabetic status. (A) Methylation

fraction of different parts of PEG3 was assessed by

Illumina’s 450k chip in a subset of islets (adjusted

t-test P value depicted). Cases were three patients

with T2D, and controls were 21 normal patients or

patients with IGT, sampled at random from the 89

total samples. Methylation of a CpG site in the

promoter of PEG3 was significantly higher in the

nondiabetic islets. (B) The CpG site is in the islet

active promoter of PEG3 (43). The black bar cor-

responds to PEG3 promoter, and the red bar cor-

responds to an islet active enhancer region. (C)

Probed with the SNP rs3143, the RNA allelic im-

balance is more pronounced in nondiabetic (normal

and IGT, n = 37) than diabetic (T2D, n = 9) islets

(P value = 0.03, Wilcoxon rank sum test). The y axis

being 0.5 means no allelic imbalance, whereas

y axis = 1 or 0 means expression of only one allele;

that is, imprinting. Not all normal, IGT, or T2D were

tested because of the harsh filtering criteria before

allelic imbalance testing (SI Appendix). TSS1500,

1,500 base pairs from transcription start site. TSS200,

200 base pairs from transcription start site. UTR3′, 3′

untranslated region. UTR5′, 5′ untranslated region.
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described for other tissues, the vast majority of RNA editing events
were canonical A-to-G events (83% if T-to-C events indicative of A-
to-I editing on the opposite strand also are included) (SI Appendix,
Fig. S17) (45). By randomly choosing nine editing events, we could
validate three of the six A-to-G events by Sanger sequencing, but
noneof the three nonA-to-Gevents (SIAppendix, Fig. S18). This low
validation rate brings into question some previous reports of thou-
sands of RNA editing events based simply on RNA sequencing (46).

Discussion

By combining RNA and exome sequencing of human pancreatic
islets with in vitro and in vivo functional studies, we present novel
insights into the molecular mechanisms by which impaired islet
function can contribute to deregulated glucose metabolism. Coex-
pression analysis showed that expression of many genes correlated
strongly with glucagon, not least SLC30A8 encoding the zinc
transport ZnT8 (SI Appendix, Fig. S8A). Rare loss-of-function
variants in the SLC30A8 gene have recently been associated with
lowering of blood glucose and protection from T2D (47), but the
mechanism for this glucose-lowering effect has been unclear, es-
pecially as disruption of the SLC30A8 gene in mice has yielded the
opposite phenotype: glucose intolerance (48).
The current data might thus shed some light on this paradox:

the lower the expression in human pancreatic islets of SLC30A8,
the lower the expression of glucagon. It remains to be shown
whether carriers of these loss-of-function mutation carriers also
show inappropriately low glucagon concentrations. Because most
SNPs associated with T2D are intronic or intergenic, it has been
assumed that most of them would influence expression, rather
than function, of a gene. Although the nearest genes often have
been suggested as targets, this has not previously been formally
tested in human islets, which represent the culprit in the path-
ogenesis of T2D. Our current study in a large number of human
islets allowed this analysis and showed enrichment of GWAS
SNPs associated with T2D or glycemic traits in eQTLs (Table 1)
and in genetic variants showing allelic imbalance (Table 2). Al-
though we often assume that both parental alleles are expressed
to the same degree, this was not the case for SNPs in 1,102 genes,
including eight T2D-associated genes (Table 2). This could easily
mask an association if the effect of the two parental alleles is
bidirectional. We also found allelic imbalance to be often asso-
ciated with DNA methylation. Genes found to be differentially
methylated in human pancreatic islets of non-T2D versus T2D
donors (49) were enriched to have allelic imbalance of expression
in our dataset (Fisher exact test P value = 6.8e−4; odds ratio =
1.5). Moreover, PEG3 was here detected to have its allelic im-
balance associated with diabetic status (Fig. 4). PEG3 encodes for
a zinc finger protein that may play a role in cell proliferation and
p53-mediated apoptosis (50), mechanisms that could be involved
in the regulation of functional β-cell mass (51).
We also found several eQTLs and sQTLs associated with mea-

sures of β-cell function and glucose metabolism, most notably var-
iation in the TMED6, NT5E, PAK7, and TSPAN33 genes, whose
disruption in INS-1 cells resulted in impaired insulin secretion
(Fig. 2 B–D). These and the other identified genes with an eQTL

associated with in vitro and in vivo effects on glucose metabolism
could be further explored as potential novel drug targets (Database
S1). In addition, many eQTLs and sQTLs influenced expression of
noncoding RNAs, many of which seem to target genes of impor-
tance for β-cell function. Among them, the lincRNA LOC283177
was found to be coexpressed with key genes implicated in islet
function (PAX6, SYT11, andMADD) (25, 39, 40), and its expression
correlated with HbA1c levels and insulin exocytosis (Fig. 3). Finally,
we also provide, to the best of our knowledge, the first genome-wide
catalog of RNA editing events in human islets mostly related to A-
to-G events, but our data also emphasize the need for validation
rather than simply relying on RNA sequencing.
There are some limitations with the study we need to take into

account. One caveat could be purity of human cadaver islets and
differences in contribution of exocrine and endocrine tissue or
different contribution of α and β cells between normoglycemic and
hyperglycemic donors. We focused on whole islets, as sorting of
islet cells would have limited the amount of tissue available for the
different analyses. Furthermore, there is important additional in-
formation to gain from studying the microorgan islet as an entity,
as shown by the expression of other pancreatic hormones and their
coexpression. However, some information on cell-specific ex-
pression is available from three recent papers (16–18) on a small
number of sorted β cells. As described in the Materials and Meth-
ods, Database S1, and SI Appendix, Fig. S20, there was no differ-
ence in purity between individuals with NGT, IGT, and T2D
(Kruskal-Wallis rank sum test P value = 0.83). In addition, the
contribution of exocrine and endocrine tissue did not significantly
differ between diabetic and nondiabetic islets, as indicated by ex-
pression of pancreatic-specific exocrine (alpha 2 amylase) and
endocrine (glucagon in alpha cells, MAFA in beta cells, and so-
matostatin in delta cells) genes (SI Appendix, Fig. S21). Moreover,
beta cell content, asmeasured by FACS β/α cells ratio, was also not
significantly different amongNGT, IGT, andT2D (Kruskal-Wallis
rank sum test P value = 0.14) (SI Appendix, Fig. S22). Acknowl-
edging these limitations, only large enough numbers can outweigh
the problems of heterogeneity and purity. To this end, the current
study, to our knowledge, represents the largest collection of human
islets published thus far. In conclusion, we provide a comprehen-
sive catalog of novel genetic variants influencing gene expression
in human pancreatic islets and metabolic phenotypes to facilitate
diabetes research.

Materials and Methods

Detailedmaterials andmethods, including all statistical analysis, are available

in SI Appendix. Islets from 89 cadaver donors of European ancestry were

provided by the Nordic Islet Transplantation Program and processed as

previously described (6). Microarray analysis was performed using oligo (52)

and sva (53) Bioconductor packages and processed with the standard Affy-

metrix protocol. Sample preparation for RNA-seq was performed using

Illumina’s TruSeq RNA Sample Preparation Kit. Output reads were aligned to

the human reference genome (hg19) with TopHat v.2.0.2 (54), using Bowtie

v.0.12.8 (55). The dexseq_count python script was used by counting uniquely

mapped reads in each exon (56). Gene and exon expression normalizations

were then performed using the TMM method (57), and further normaliza-

tion was applied by adjusting the expression to gene or exon length,

Table 2. Allelic imbalance loci in high linkage disequilibrium with genome-wide significant GWAS T2D/glycemic

trait hits

AEI gene AEI SNPs

Linkage disequilibrium r2 > 0.8

with GWAS top SNP GWAS trait GWAS effect allele

SLC2A2 rs55679742, rs55989805 rs11920090 Fasting glucose (26) T

AP3S2 rs2028299 rs2028299 T2D (24) A

LARP6 rs3825970 rs1549318 Fasting proinsulin (25) T

THADA rs7578597 rs10203174 T2D (2) C

MADD rs35233100 rs35233100 Fasting proinsulin (25) C

ERAP2 rs2287988, rs2548538 rs1019503 2-h glucose (3) A

AMT rs6997 rs11715915 Fasting glucose (3) C

FOXA2 rs6048192 rs6113722 Fasting glucose (3) G
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respectively. A linear model adjusting for age and sex as implemented in

the R Matrix eQTL package (58) was used to determine the expression of

genes and exons associated with HbA1c class. Exome sequencing was

performed using the Illumina exome sequencing protocols. Reads were

aligned to the human genome (hg19) with BWA v.0.6.2 (59). Postalign-

ment processing and SNP calling was done with GATK v.1.6.2 (60). Allelic

imbalance of expression was analyzed by Fisher exact test to calculate the

proportion of reference/alternative alleles in the exome sequencing versus

RNA-seq for each sample. RNA editing sites were called on autosomes in

positions that were homozygous in the exome sequencing but heterozy-

gous in the RNA-seq data. Genotyping was performed on the Illumina

HumanOmniExpress 12v1 C chips, and all of the samples passed standard ge-

notype QC metrics. Genotypes were imputed to 1000 Genomes data, using

IMPUTE2 (61) and SHAPEIT (62). cis-eQTL and cis-sQTL associations were

computed between gene expression levels (eQTL) or exon expression levels

(sQTL) and all SNPs within 250 kb up- or downstream of each of these genes.

We used a linear model adjusting for age and sex, as implemented in the R

Matrix eQTL package (58).
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Supplemental Materials and Methods 

 

Sample processing. Islets from 89 cadaver donors of European ancestry were provided by 

the Nordic Islet Transplantation Programme (http://www.nordicislets.org). All procedures were 

approved by the ethics committee at Lund University. Purity of islets was assessed by dithizone 

staining, while measurement of DNA content and estimate of the contribution of exocrine and 

endocrine tissue were assessed as previously described (6). The islets were cultured in CMRL 

1066 (ICN Biomedicals) supplemented with 10 mM HEPES, 2 mM L-glutamine, 50 µg/ml 

gentamicin, 0.25 µg/ml Fungizone (GIBCO), 20 µg/ml ciprofloxacin (Bayer Healthcare), and 10 

mM nicotinamide at 37 °C (5% CO2) for 1–9 days prior to RNA preparation. Total RNA was 

isolated with the AllPrep DNA/RNA Mini Kit following the manufacturer’s instructions (Qiagen). 

RNA quality and concentration were measured using an Agilent 2100 bioanalyzer (Bio-Rad) and 

a Nanodrop ND-1000 (NanoDrop Technologies). 

Microarray. Whole transcript microarray analysis was performed using GeneChip Human Gene 

1.0 ST and processed with the standard Affymetrix protocol. The array data was then 

summarized and normalized with Robust Multi-array Analysis (RMA) method using the oligo 

package from BioConductor (52). Batch correction was done with COMBAT function from SVA 

package from BioConductor (53). Annotation was done using annotate package from 

BioConductor and hugene10sttranscriptcluster.db annotation data. Probesets were only kept if 

they matched uniquely to a gene in the latest hg19 human genome assembly. If more than one 

probeset matched a gene, one probeset at random was chosen in order to have only 1 probeset 

per gene. Finally, only probesets (or genes) mapped to the autosomes were kept.  

RNA sequencing and analysis of gene and exon expression. Sample preparation was 

made using Illumina’s TruSeq RNA Sample Preparation Kit according to their recommendations 

using 1 ug of high quality total RNA.  The target insert size was 300 bp and it was sequenced 

using a paired end 101 bp protocol on the HiSeq2000 platform (Illumina). Quality assessment 

was made pre- and post-sample preparation on the 2100 Bioanalyzer (Agilent). Illumina Casava 

v.1.8.2 software was used for base calling. Paired-end 101 bp length output reads were aligned 

to the human reference genome (hg19) with TopHat v.2.0.2 (54) using Bowtie v.0.12.8 (55). 

The TopHat parameters explicitly used are tophat -p 30 -G genes.gtf --library-type fr-

unstranded -r 100 -F 0.05 --microexon-search. The annotated RefSeq GTF transcript and fasta 

genome files were from UCSC and were downloaded from 

http://cufflinks.cbcb.umd.edu/igenomes.html.  Gene expression was measured as the 

normalized sum of expression of all exons. Exons were defined as non-overlapping unique 

exonic units, as described previously (56). The dexseq_count python script (http://www-

huber.embl.de/pub/DEXSeq/analysis/scripts/) was used by counting uniquely mapped reads in 

each exon. Gene and exon expression normalizations were then performed using the TMM 

http://www.nordicislets.org/


method (57), and further normalization was applied by adjusting the expression to gene or 

exon length, respectively. In addition, only the genes and exons that had reads mapped to 

them in at least 5% of the samples were kept. The Cufflinks tool v.1.3.0 (29) was used to 

detect novel gene loci. Novel intergenic gene loci were kept if they didn´t overlap any 

GENCODE v.12 gene (30), UCSC and Ensembl gene structures, had exon-exon junction reads 

mapped to them, had at least two exons with no Ns, and were expressed (non-null read 

coverage) in at least 5% of the samples. Coding potential of these novel intergenic loci was 

assessed with the CPAT tool (31).  

Differential expression of genes and exons between normoglycemic and 

hyperglycemic islets. Samples were stratified based upon glucose tolerance estimated from 

HbA1c, i.e. donors with normal glucose tolerance (HbA1c < 6%, n=51), impaired glucose 

tolerance (IGT, 6% ≤ HbA1c < 6.5%, n=15), and T2D (HbA1c ≥ 6.5%, n=12) (63). A linear 

model adjusting for age and sex as implemented in the R Matrix eQTL package (58) was used to 

determine the expression of genes associated with glucose tolerance status. Genes were kept if 

both microarray and RNA-seq gene expression were nominally associated with HbA1c levels, with 

both nominal and permutation p-values < 0.05 (after performing 10,000 permutations). Known 

exons overlapping only one gene were classified as associated with HbA1c levels if the exon 

expression in RNA-seq was also confirmed at their exon-exon junction’s expression level, with 

both nominal and permutation p-values < 0.01 (after performing 10,000 permutations), and p-

value/permutation p-value ratio ≤ mean ratio + 1 s.d.. Since most of the lincRNAs were not 

probed on the expression array, the list of lincRNAs associated with HbA1c levels was taken only 

from the RNA-seq data at a threshold of FDR<5%, and expressed in at least 5% of our samples. 

The same threshold was applied for the novel gene loci detected. Of note, the lincRNAs we have 

reported are all known RefSeq genes with known gene structures and annotations. 

Genotyping. Genotyping was performed on the Illumina HumanOmniExpress 12v1 C chips and 

genotype calling was done with the Illumina Genome studio software. All the samples passed 

standard genotype QC (quality control) metrics: sample call rate >98%, only European ancestry 

assessed by principal component analysis comparisons with HapMap populations, gender 

matched, no relatedness, and no genome-wide heterozygosity outliers. SNPs were removed if 

SNP call rate < 98% and Hardy-Weinberg equilibrium test p-values < 5.7x10-7. Individual QC 

genotypes were imputed to 1000 Genomes data, using IMPUTE2 (61) and the March 2012 

release of the 1000 Genomes Phase I panel 

(http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html). The 

program SHAPEIT (62) was used for the pre-phasing. Probabilistic genotypes were used for the 

subsequent analyses and after imputation, SNPs were filtered using a minor allele frequency 

(MAF) > 5% and an IMPUTE2 info value of >0.8.  

http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html


cis-eQTL and cis-sQTL analysis. cis-eQTL and cis-sQTL analyses were carried out on samples 

from 89 individuals. Associations were computed between gene expression levels (eQTL), or exon 

expression levels (sQTL), and all SNPs within 250kb up- or downstream of each of these genes. 

We used a linear model adjusting for age and sex as implemented in the R Matrix eQTL package 

(58). Adjusting also for HbA1c did not significantly affect QTL results, so all the results are shown 

only with age and sex as covariates. The eQTLs and sQTLs were kept if the false discovery rate 

(FDR) was less than 1%, the QTL variants had rs IDs (for the sentinel variants), and if no smaller 

p-value was obtained after doing 10,000 permutations. A literature search (64-79) was 

performed to reveal whether the eQTLs observed in islets also were observed in other human 

tissues. Human pancreatic islets H3K4m3, FAIRE (moderate stringency FAIRE-seq site threshold 

from intersection of 3 islet samples) and DNase I hypersensitivity sites were annotated as such 

from recent studies (32-34).  Evolutionarily conserved sites were defined has such if they were 

called conserved by both SiPhy (80) and GERP (81) programs, as annotated by Haploreg 

annotation tool (82). All enrichment analyses were carried out comparing the eQTL and sQTL 

SNPs plus SNPs in high LD (r2>0.8) with them vs. all the SNPs tested, to avoid biasing 

enrichment to more densely genotype or imputed genomic regions.  

Exome sequencing and Allelic expression imbalance (AEI). Exome sequencing was 

performed using Illumina exome sequencing protocols. To prepare the DNA for exome capture 1 

ug of intact DNA was used as input for the TruSeq DNA sample preparation Kit v2 (Illumina), 

which was processed according to standard protocols. Briefly, DNA shearing was performed on 

the Covaris S2 with a target fragment size of 300 bp before end-repair, A-tailing and adaptor 

ligation. After DNA sample preparation, 500 ng of each sample was pooled together in libraries of 

a total of 5 samples before clustering with the TruSeq PE Cluster Kit v3 (Illumina). The libraries 

for 82 out of the 89 samples were then sequenced on the HiSeq2000 (Illumina) platform (paired 

end 101 bp protocol). Illumina Casava1.8.2 software was used for base calling. Paired-end reads 

were aligned to the human genome (hg19) with BWA v.0.6.2 (59) in paired-end mode with –q 10 

as a set parameter. Duplicated aligned reads were removed by Picard v.1.58 

(http://picard.sourceforge.net), reads were then realigned and quality base scores were 

recalibrated using GATK v.1.6.2 (60). SNP calling was also done with GATK with parameters -T 

UnifiedGenotyper -baq RECALCULATE only under the TruSeq Exome targeted regions, and 

excluding regions of known segmental duplications, structural variants and repeats. We further 

restricted SNP calling to biallelic SNPs, with read depth > 14X, MAPQ0 < 1, homozygosity runs < 

3 bp, mapping quality > 30, and QD (QualByDepth) > 2. The RNA-seq reads from the same 82 

samples were also aligned with BWA but in single-end mode with –q 15 as a set parameter and 

without removing potential duplicated reads. For each RNA-seq sample we called the genotypes 

that were detected as heterozygous SNPs in the exome sequencing. We then filtered out genomic 

positions where RNA-seq reads had less than 10X coverage and that both the reference and 

alternative alleles in the exome sequencing had less than 10X coverage. We then did a Fisher 

http://picard.sourceforge.net/


exact test for the proportion of reference/alternative alleles in the exome sequencing vs. RNA-seq 

for each sample and kept only SNPs if the allelic imbalance was detected in at least 2 samples 

with a false discovery rate (FDR) p-value ≤ 0.01. False discovery rate (FDR) was calculated with 

the Benjamini & Hochberg method under the p.adjust function in R. Briefly, all the p-values 

retrieved from all the testable SNPs in each sample (after the filtering criteria written above) were 

sorted and FDR was applied to them for significance. We further filtered out SNPs overlapping 

known splice sites, that were not within RefSeq autosomal genes and were not present in dbSNP 

v.137 (with unique mapped position), as annotated by HaploReg (82). Genes with previous allelic 

imbalance or imprinting status were searched in literature (83, 84) 

(http://www.geneimprint.com/, http://www.otago.ac.nz/IGC). 

RNA editing. RNA-seq reads from the 82 samples aligned with BWA were used for SNP calling 

with the same parameters and filters used for exome sequencing reads described above. For 

each exome sequenced sample we called the genotypes that were detected as SNPs in the RNA-

seq data. RNA editing sites were called on autosomes in positions which were homozygous in the 

exome sequencing but heterozygous in the RNA-seq data in at least 2 samples. We further 

filtered out RNA editing variants with low quality and coverage < 15X; that were within +/- 10 bp 

of exon-exon junctions discovered in all 89 samples; overlapped known splice sites, more than 

one gene,  present in dbSNP v.137, had HaplotypeScore > 13.0, ReadPosRankSum < -8.0, 

MQRankSum < -12.5, were within 100bp of each other; and were not in uniquely mapable 

100mers regions. The RNA editing events were checked for novelty at DARNED database (85), a 

repository of RNA editing events in brain, blood and lymphoblastoid cell lines. 

Sanger sequencing analysis. Validation of allelic imbalance and RNA editing was carried out 

by RT-PCR with subsequent Sanger sequencing. For reverse transcription SuperScript II RT was 

used with a mixture of random hexamer primers and dT18 (Life Technologies); PCR was run using 

AmpliTaq Gold Master Mix (Life Technologies), and Sanger sequencing was performed by GATC 

Biotech.  RNA editing was examined in the genes listed in Table S18; nucleotide position, primers 

used, and numbers of samples are indicated. Allelic imbalance was tested for the three variants 

listed in Table S19 in the number of heterozygous samples indicated. PCR was run using the 

programme: 6’ 96° - [96° 15’’ - 55° 30’’ - 72° 45’’]50 - 4°∞. Sanger sequencing reads were 

analyzed with the Mutation Surveyor V3:97 software (SoftGenetics). 

RNA Interference (siRNA) and insulin secretion assay.  lonal INS-1  32 13   cells were 

cultured as previously described (86) and transfected using a mixture of DharmaFECT® 1 

(Dharmacon; Life Technologies) and the respective siRNAs. Different sets of siRNA sequences 

were purchased with siRNA identification numbers: s178860 and s178858 (TSPAN33), s132856 

and s132854 (NT5E), s161202 and s161203 (PAK7) and s146175 (TMED6) (Ambion). For control 

purposes, a previously described control sequence Silencer® Negative Control #2 from Ambion 

was used. Cells were cultured in medium for 72 hours at 37°C in a humidified atmosphere 

http://www.geneimprint.com/
http://www.otago.ac.nz/IGC


containing 95% air and 5% CO2 in the presence of 40 nM siRNA in 24-well cell culture 

microplates. Knockdown was assessed by RT-qPCR of the target genes as described above using 

the following Taqman® gene expression assays (Life Technologies): TSPAN33 

(Rn01500778_m1), NT5E (Rn00665212_m1), PAK7 (Rn01746951_m1) and TMED6 

(Rn01432785_m1). After transfection insulin secretion measurements were performed. Confluent 

plates containing transfected INS1-832/13 cells were washed twice with 1 mL pre-warmed 

Secretion Assay Buffer (SAB), pH 7.2 (114 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.16 mM 

MgSO4, 20 mM HEPES, 2.5 mM CaCl2, 25.5 mM NaHCO3 and 0.2% Bovine Serum Albumin) 

containing 2.8 mM glucose. The cells were then pre-incubated for two hours in new 2 mL SAB 

with 2.8 mM glucose. Afterwards, separate wells were incubated for 1 hour in 1 mL SAB 

containing either 2.8 mM or 16.7 mM glucose. Secreted insulin was measured from supernatant 

using Coat-a-Count Insulin radioimmunoassay kit (Siemens) and the values were normalized 

using total protein content individually for each well (BCA protein assay kit, Thermo Scientific). 

Flow cytometry of islets cells. Human islets were dissociated to single cell suspension using 

Accutase (Life Technology). Dissociated islet cells were fixed and permeabilised priori of flow 

cytometric analysis of intracellular insulin and glucagon using anti-insulin and anti- glucagon 

antibodies (R&D Systems) conjugated with R-phycoerythrin and allophycocyanin respectively by 

the Lightning-Link technology (Innova Bioscience, Cambridge, United Kingdom). Flow cytometry 

data were acquired on a CyAN ADP (Beckman Coulter) and analyzed using FlowJo software 

(TreeStar, Ashland, OR, USA). 

Accession numbers. Clinical information on the 89 islet donors, gene and exon annotation files, 

raw and processed files for their islet array and RNA-seq mRNA expression are deposited at GEO 

under the accession number GSE50398. 
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Supplemental Figure legends 

Figure S1. Overview of study design and main results. Different omics platforms were used to 

assess a comprehensive spectrum of gene regulation in human pancreatic islets. RNA sequencing 

(RNA-seq) was used to detect known and novel genes expressed in at least 5% of the 89 

samples, and known exons and novel genes associated with glucose tolerance status. Known 

genes were reported to associate with glucose tolerance status if both Expression microarrays 

and RNA-seq detect them at nominal and permutation p-value<0.05. SNPs genotyped in our islet 

samples and further imputed to the 1000 Genomes reference panel were used in combination 

with RNA-seq to detect expression quantitative trait loci (eQTL) for known and novel genes, and 

splicing QTL (sQTL) for known exons at a 1% false discovery rate (FDR) and 10,000 

permutations. 35 genes had both eQTLs and associated linearly with glucose tolerance status. 

Allelic imbalance was detected by using Fisher exact test to compute significant deviations from 

the expected 50/50 allelic distribution when comparing Exome sequencing (Exome-seq) and RNA-

seq for the same individuals (at 1% FDR and detected in at least 2 samples). RNA editing was 

also detected by comparing exome and RNA sequencing data after a stringent pipeline (Materials 

and Methods and Supplemental Information). 

Figure S2. Distribution of RNA-seq expression of known genes on 89 human pancreatic islet 

samples. Density of reads mapped to RefSeq genes with red vertical bars separating the 4 

quartiles of expression.  

Figure S3. Correlation between RNA-seq and microarray data on 89 human pancreatic islet 

samples. Spearman correlation between the normalized expression of genes detected in both 

platforms (Materials and Methods and Supplemental Information). 

Figure S4. Fraction of RefSeq genes, transcripts, exons and junctions detected by RNA-seq as a 

function of cumulative reads mapped to these features. Black vertical line marks the average 

number of reads per sample (38.2 million paired-end reads) mapped to the human genome. 

Fig. S5. Co-expression analysis of RASGRP1 (n=89). (A) RASGRP1 vs. GCG. (B) RASGRP1 vs. 

INS. (C) RASGRP1 vs. SST. (D) RASGRP1 vs. Glucose tolerance status. 

Fig. S6. Co-expression analysis of RFX3 (n=89). (A) RFX3 vs. GCG. (B) RFX3 vs. INS. (C) RFX3 

vs. SST. (D) RFX3 vs. Glucose tolerance status. 

Fig. S7. Co-expression analysis of NNT (n=89). (A) NNT vs. GCG. (B) NNT vs. INS. (C) NNT vs. 

SST. (D) NNT vs. Glucose tolerance status. 

Fig. S8. Co-expression analysis with glucagon gene (n=89). (A) SLC30A8 vs. GCG. (B) PCSK1 vs. 

GCG. (C) G6PC2 vs. GCG.  



Figure S9. Novel gene locus (chr12:43,504,654-43,507,028) (A) with evidence of sequence 

conservation and transcription, (B) associated with HbA1c levels in human pancreatic islets 

(Normal n=51; IGT n=15; T2D n=12), (C) and under a region nominally significant associated 

with fasting glucose in a previous study (23). Arrow provides the location of this new transcribed 

locus. 

Figure S10. RNA-seq eQTL fraction detected to be nominally significant in the microarray data, 

stratified by gene expression quartiles (1 being the lowest and 4 the highest quartile). 

Figure S11. Power to detect eQTLs as a function of sample size. This plot is calculated with the 

java applet at http://homepage.stat.uiowa.edu/~rlenth/Power/ 

Figure S12. High linkage disequilibrium (LD) region around ERAP2 eQTL sentinel SNP 

(rs2910686) shows nominal significance with fasting glucose in MAGIC database (23). 

Figure S13. Example of an sQTL not detected at gene level. (A) The sQTL is not detected at the 

gene expression level (p-value >0.05), (B) and only usage of exon 12 of BRD2 gene is associated 

with SNP rs114933220 (p-value = 9.5e-06). This gene has been linked to obesity and protection 

from type 2 diabetes. 

Figure S14. Known type 2 diabetes (T2D) GWAS locus rs1535500 as eQTL for KCNK17. (A) The 

SNP rs1535500 is located in KCNK16, but (B) shows an eQTL effect on neighboring KCNK17 gene 

(p-value = 1.2e-06) (C) and not on KCNK16 (p-value > 0.05).  

Figure S15. Example of allelic imbalance in the MMP7 gene validated by Sanger sequencing. (A) 

IGV browser with RNA-seq reads from samples in which the allelic imbalance locus rs10502001 

was validated by Sanger sequencing. (B) The genotype for rs10502001 is associated with 

depolarization-evoked insulin exocytosis. 

Figure S16. Overview of the pipeline for detecting RNA editing events in 82 human pancreatic 

islet samples. From the initial 89 samples we only had enough DNA and RNA for doing both RNA 

and Exome sequencing in 82 samples. Each of these 82 samples was then processed through this 

pipeline. To minimize the false positive rate we report only the RNA editing events detected in at 

least two individuals (Materials and Methods and Supplemental Information).  

Figure S17. Distribution of RNA editing events (Materials and Methods and Supplemental 

Information). 

Figure S18. RNA editing events in human pancreatic islets validated by Sanger sequencing. 

From 9 randomly chosen editing events, we could validate 3 out of 6 of the A-to-G events by 

Sanger sequencing, but none of the 3 non A-to-G events.  

Fig. S19. RFX3 co-expression with glucokinase (GCK) (n=89). 

http://homepage.stat.uiowa.edu/~rlenth/Power/


Fig. S20. Islet purity for our 89 human pancreatic islet samples (assessed by dithizone staining) 

in relation to disease status. Kruskal-Wallis rank sum test was used to assess the association of 

gene expression with glucose tolerance status of the islet donors (Normal n=51; IGT n=15; T2D 

n=12).  

Fig. S21. Expression of cell-type specific genes in relation to disease status. (A) GCG is an alpha-

cell specific gene. (B) MAFA is a beta-cell specific gene. (C) SST is a delta-cell specific gene. (D) 

AMY2A is an exocrine specific gene. Kruskal-Wallis rank sum test was used to assess the 

association of gene expression with glucose tolerance status of the islet donors (Normal n=51; 

IGT n=15; T2D n=12). 

Fig. S22. FACS beta/alpha cells ratio in relation to disease status of 49 islet donor samples 

(partially overlapped by our 89 islet donor samples used in our study). (A) Kruskal-Wallis rank 

sum test was used to assess the association of FACS beta/alpha cells ratio with glucose tolerance 

status (p-value = 0.1373) (Normal n=26; IGT n=14; T2D n=9). (B) The blue horizontal line 

separates the few T2D donors with high HbA1c (n=3, HbA1c ≥7.3%) that have an 

insulin/glucagon ratio less than any other Normal or IGT sample. 

 

 

 



RNA-seq gene expression & exon usage 
MAF ≥ 5% samples (18 567 known & 445 novel genes) 

Genotypic imputation  
r2 ≥ 0.8 & MAF ≥ 5% (6.2 M variants) 

89 human pancreatic islet donors 

• 616 cis-eQTLs (known genes)  

• 371 cis-sQTLs (known exons) 

• 24 cis-eQTLs (novel gene loci) 
(FDR<1% & 10k permutations) 

Expression 

microarray 

• 1619 known genes vs. HbA1c (array & RNA-seq) 

• 271 known genes with exons vs. HbA1c  (exon & 

junction data confirmation)  

• 1 novel gene locus vs. HbA1c (FDR<1% & 10k perm) 

Exome-Seq 

• 1102 allelic imbalance genes (FDR<1% & ≥ 2 samples) 

• 61 genes with RNA editing (≥ 2 samples)  

35 known genes have eQTLs 

and associate with HbA1c  
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Validation of RNA editing by Sanger sequencing 
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